Angular Momentum - Levine Ch 5 - all the arithmetic for rotational syst

We have worked out several problems whose energy eight functions were also eigen functions of the angular momentum operators:
$L_{z} e^{i m \phi}=m h e^{i m \phi}$
$L_{z} Y_{-m}=m h Y_{-m}$
$L^{2} Y_{_m}=_(+1) h^{2} Y_{-m}$

Angular momentum is a natural conserved quantity of "spherical" systems central force () (as rotation of rigid body, electro static attire) just as linear momentum natural property of linear syst (e.g. Newton's laws)

We have seen that $\left[L^{2}, L_{z}\right]=0$ because they have a set of simultaneous eigen functions and also noted $\left[L_{x}, L_{y}\right]=i h L_{z}$ (etc., x, y, z rotate) where \vec{L} is a vector operator:
$\vec{L}=\hat{L}_{x} \vec{i}+\hat{L}_{y} \vec{j}+\hat{L}_{z} \vec{k} \quad \vec{i}, \vec{j}, \vec{k}$ unit vector
note parallel:
$\overrightarrow{-}=\frac{f}{f \mathrm{X}} \overrightarrow{\mathrm{i}}+\frac{f}{f y} \overrightarrow{\mathrm{j}}+\frac{f}{f z} \overrightarrow{\mathrm{k}} \quad$ gradient operator
vector properties:
data on scalar prod: $\overrightarrow{\mathrm{L}} ? \overrightarrow{\mathrm{~L}}=\mathrm{L}_{\mathrm{x}}^{2}+\mathrm{L}_{\mathrm{y}}^{2}+\mathrm{L}_{\mathrm{z}}^{2} \quad \overrightarrow{\mathrm{~A}} ? \overrightarrow{\mathrm{~B}}_{\mathrm{z}} \mathrm{a}_{\mathrm{x}} \mathrm{b}_{\mathrm{x}}+\mathrm{a}_{y} \mathrm{~b}_{\mathrm{y}}+\mathrm{a}_{\mathrm{z}} \mathrm{b}_{z}$
$\overrightarrow{\mathrm{L}} \stackrel{\rightharpoonup}{\mathrm{L}}=0, \quad \overrightarrow{\mathrm{~L}}_{1} \stackrel{\vec{L}_{2}}{ }=\overrightarrow{\mathrm{i}}\left(\mathrm{L}_{\mathrm{y}_{1}} \mathrm{~L}_{z_{2}}-\mathrm{L}_{z_{1}} L_{y_{2}}\right)+$

$$
\vec{j}\left(L_{z_{1}} L_{x_{2}}-L_{x_{1}} L_{z_{2}}\right)+\vec{k}\left(L_{x_{1}} L_{y_{2}}-L_{y_{1}} L_{x_{2}}\right)
$$

Classically vector on cross prod:
$\overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \stackrel{\rightharpoonup}{\mathrm{p}}=\overrightarrow{\mathrm{i}}\left(\mathrm{y} p_{z}-\mathrm{zp} \mathrm{y}_{\mathrm{y}}\right)+\overrightarrow{\mathrm{j}}\left(\mathrm{zp} \mathrm{x}_{\mathrm{x}}-\mathrm{xp}_{z}\right)+\overrightarrow{\mathrm{k}}\left(\mathrm{x} p_{\mathrm{y}}-\mathrm{yp} p_{z}\right)$
converting to q.m.
$\left.\mathrm{L}_{\mathrm{x}}=-\mathrm{i} \hbar \overline{\mathrm{y}} \frac{f}{f \mathrm{z}}-\mathrm{z} \frac{f}{f \mathrm{y}} \sqrt{ }, \mathrm{L}_{\mathrm{y}}=-\mathrm{i} \hbar\left(2 \frac{f}{f \mathrm{x}}-\mathrm{x} \frac{f}{f \mathrm{z}}\right) . \mathrm{L}_{\mathrm{z}}=-\mathrm{i} \hbar \overline{\mathrm{x}} \frac{f}{f \mathrm{y}}-\mathrm{y} \frac{f}{f \mathrm{x}} \sqrt{ }\right\rfloor$

Plugging these into eqn for L^{2} can demonstrate:
$\left[L^{2}, L_{x}\right]=0=\left[L^{2}, L_{y}\right] \quad$ see Levine $p 89$
so why don't we specialize on L_{x} ? We can
totally arbitrary to use L_{z}, but arith convert it
but cannot do L_{x} and L_{z} etc because $\left[L_{x}, L_{z}\right]=-i h L_{y}$ etc (note order)

In (r, θ, ϕ) corrdinates this is cleaner _ by definition choose θ to be rotation about z (arb) but now one axis differs from other 2:
$\hat{L}^{2}=-\hbar^{2} \hat{\Lambda}^{2}=-\hbar^{2}-\frac{1}{\sin ^{2} \theta} \frac{f}{f \phi^{2}}+\frac{1}{\sin \theta} \frac{f}{f \theta} \sin \theta \frac{f}{f \theta} \sqrt{ }{ }^{\circ}$
see that onlyl $z \phi$ rotation is singled out and
$\left[\hat{L}^{2}, \hat{L}_{z}\right]=-\hbar^{2} \Lambda^{2},-\mathrm{i} \hbar \frac{f}{f \phi}=0$ since $\frac{f^{2}}{f \phi^{2}}, \frac{f}{f \phi}=0$ and $f(\theta), \frac{f}{f \phi}=0$

Levine 5.4
So what we have here are a number of operators with very well-defined relationships _ turns out that alone sufficient to define ang mom and do not need form of operator to understand:

Assume here vector operator $\hat{M}=\hat{M}_{x} \vec{i}+\hat{M}_{y} \vec{j}+\hat{M}_{z} \vec{k}$ with these properties:
$\left[\hat{\mathrm{M}}_{\mathrm{x}}, \hat{\mathrm{M}}_{\mathrm{y}}\right]=\mathrm{i} \hbar \hat{M}_{z}, \quad\left[\hat{\mathrm{M}}_{\mathrm{y}}, \hat{\mathrm{M}}_{z}\right]=\mathrm{i} \hbar \hat{M}_{z}, \quad\left[\hat{\mathrm{M}}_{z}, \hat{M}_{x}\right]=i \hbar \hat{\mathrm{M}}_{\mathrm{y}}$
now can write: $\hat{\mathrm{M}}^{2}=\hat{\mathrm{M}} \hat{M}=\hat{\mathrm{M}}_{\mathrm{x}}{ }^{2}+\hat{\mathrm{M}}_{\mathrm{y}}{ }^{2}+\hat{\mathrm{M}}_{\mathrm{z}}{ }^{2}$
solve: $\left[\hat{M}^{2}, M_{z}\right]=\left[M_{x}{ }^{2}, M_{z}\right]+\left[M_{y}{ }^{2}, M_{z}\right]+\left[M_{z}{ }^{2}, M_{z}\right]$
$=M_{x} M_{x} M_{z}-M_{z} M_{x} M_{x}+M_{y} M_{y} M_{z}-M_{z} M_{y} M_{y}$
$=M_{x}\left[M_{x}, M_{z}\right]+\left[M_{x}, M_{z}\right] M_{x}+M_{y}\left[M_{y}, M_{z}\right]+\left[M_{y}, M_{z}\right] M_{y}$
$\left[M^{2}, \hat{M}_{z}\right]=\left(-i \hbar M_{y}\right) M_{x}+\left(-i \hbar M_{y}\right) M_{x}+\left(i \hbar M_{x}\right) M_{y}+i \hbar M_{x} M_{y}=0$

See that can do same bit for: $\left[M^{2}, M_{x}\right]=\left[M^{2}, M_{y}\right]=0$ so knew that M^{2} and M_{x} or M_{y} or M_{z} will have simultaneous eigen functions

Levine calls these $Y: \quad \begin{aligned} & \hat{M}^{2} Y=a Y \\ & \hat{M}_{2} Y=b Y\end{aligned}$

Now define a new operator $\quad M_{+}=M_{x}+i M_{y}$
$M_{-}=M_{x}-i M_{y}$
Investigate: $M_{x} M_{-}=\left(M_{x}+i M_{y}\right)\left(M_{x}-i M_{y}\right)$
$=M_{x}{ }^{2}+M_{y}{ }^{2}+i\left[M_{y}, M_{x}\right]$
$=M^{2}-M_{z}^{2}+i\left[M_{y}, M_{x}\right]\left(-i h M_{y}\right)$
$=M^{2}-M_{z}^{2}+i h M_{z}$ same method: $M_{+}=M^{2}-M_{z}^{2}+h M_{z}$

Also: $\left[M_{+}, M_{-}\right]=M_{+} M_{-}-M_{-} M_{+}=2 h M_{z}$
$\left[M_{+}, M_{z}\right]=\left[M_{x}, M_{z}\right]+i\left[M_{y}, M_{z}\right]$
$=-\mathrm{ihM}_{\mathrm{y}}-\mathrm{hM} \mathrm{X}_{\mathrm{x}}$
$=-h M_{+}$
or $M_{+} M_{z}=M_{z} M_{+}-h M_{+}$
similarly $\quad M-M_{z}=M_{z} M_{-}+h M$

Now operate both sides on $Y: M_{+} M_{z} Y=\left(M_{z} M_{+}-h M_{+}\right) Y$
$\left.b M_{+} Y=M_{+}(b Y)=M_{z}\left(M_{+} Y\right)-h\left(M_{+} Y\right)=M_{z}-h\right)\left(M_{+} Y\right)$
rearrange: $M_{z}\left(M_{+} Y\right)=(b+h)\left(M_{+} Y\right)$
so $\left(M_{+} Y\right)$ is eigen fct of M_{z} with eigen value $(b+h)$

Raising a Lowery operator effect:
$M_{z}\left(M_{+} Y\right)=(b+h) M_{+} Y \quad$ or $\quad M_{+}|j k\rangle=c_{j k}^{+} \hbar|p, k+1\rangle$
if repeat: $M_{z}\left(M_{+}{ }^{2} Y\right)=(b+2 h)\left(M_{+}{ }^{2} Y\right) \quad$ or $\quad M-|p k\rangle=c_{j k}^{-} \hbar|p, k-1\rangle$
$M_{z}\left(M_{-}{ }^{n} Y\right)=(b-n h)\left(M_{-}{ }^{n} Y\right)$

Now we have a set of eigen values and eigen functions of M_{z} that are all h apart: $b-2 h, b-h, b, b+h, \ldots$ and since $\left[M^{2}, M_{z}\right]=0$ must also be eigen fct M^{2} but can show all same eigen value of M^{2}
$M^{2}\left[M_{+}{ }^{n} Y\right]=a\left[M_{+}{ }^{n} Y\right] \quad n=0,1,2, \ldots$

Know: $\left[M^{2}, M_{+}\right]=0=\left[M^{2}, M_{x}\right]+\left[\left[M^{2}, M_{y}\right]=0+0\right.$ can also show $\left[\mathrm{M}^{2}, \mathrm{M}_{+}{ }^{n}\right]=0$

Now: prones all same L^{2} eigen value a: $M^{2}\left(M_{ \pm}^{n} Y\right)=M_{ \pm}^{n}\left(M^{2} Y\right)=M_{ \pm}^{n} a Y=a\left(M_{ \pm}^{n} Y\right)$ or $M^{2} M_{ \pm}^{n}|p, k\rangle=a_{j k+n} c_{j k n}^{ \pm} \hbar^{2}|p, k \pm n\rangle$

So here sets of eigen fct and set eigen values but so far infinite. Must be same sine same eigen value
call then $Y_{n}^{ \pm}=M_{ \pm}^{n} Y \quad M_{z} Y_{n}^{ \pm}=b_{n}^{ \pm} Y_{n}^{ \pm} \quad b_{n}^{ \pm}=b_{n} n \hbar$
Bounds from $M^{2}=M_{x}{ }^{2}+M_{y}{ }^{2}+M_{z}{ }^{2} \quad$ (intrinsically positive quant)
$M^{2}-M_{z}{ }^{2}=M_{x}{ }^{2}+M_{y}{ }^{2}$
operate on $Y_{n}:\left(M^{2}-M_{z}^{2}\right) Y n=\left(M_{x}^{2}+M_{z}^{2}\right) Y_{n}$
$\left(a_{p}-h_{k}^{2}\right) h^{2} / n \geq 0$
$b_{K}^{2} \leq a \cdot b_{K} \leq \sqrt{a_{p}^{1} \text { or } a_{p}^{n / 2} \leq b_{K} \leq a_{p}^{1 / 2}}$

Now know that $\left|b_{k}\right|$ limited $<\sqrt{a_{p}}$ but what is it one of these is max $b_{\text {max }} ? M_{+}\left|p, k_{\max }\right\rangle=0$
so similarly $\mathrm{M}^{-} \mathrm{M}^{+}\left|\mathrm{p}, \mathrm{k}_{\max }\right\rangle=0$
$M^{-} M^{+}$established as: $\left.\left(M^{2}-M^{2}-\hbar M_{z}\right) p, k_{\max }\right\rangle=0$
$\left.M^{2}\left|\mathrm{p}, \mathrm{k}_{\max }\right\rangle=\left(\mathrm{M}^{2}+\hbar \mathrm{M}_{\mathrm{z}}\right) \mathrm{p}, \mathrm{k}_{\max }\right\rangle$
therefore $\quad a_{\mathrm{pk}} \hbar^{2}=\left(\mathrm{b}_{\mathrm{K} \text { max }}^{2}+\mathrm{b}_{\mathrm{K}}^{2}\right)^{2}=$
$\mathrm{a}_{\mathrm{jk}}=\mathrm{b}_{\mathrm{K} \max }\left(\mathrm{b}_{\mathrm{K} \text { max }}^{2}+1\right)$
Know that operate M - on $\left|\mathrm{pk}_{\text {max }}\right\rangle$
get new fct $\sim\left|\mathrm{p}, \mathrm{k}_{\text {max }}-1\right\rangle$
repeat n times $\left|p, k_{\text {max }}-n\right\rangle$ in steps of 1
so looks like $k_{\text {max }}$ special call it "j"
$b_{k}=j, j-1, j-2, \ldots \quad$ and $a_{p k}=j(j+1)$
Also a minimum for $\left|\mathrm{b}_{\mathrm{K}}\right|<\mathrm{a}$
same idea: $M^{+} M^{-}\left|p, k_{\text {min }}\right\rangle=0$
$\left(M^{2}-M_{z}^{2}-\hbar M^{2}\right)\left|p, k_{\text {min }}\right\rangle=0$
$M^{2}\left|p, k_{M}\right\rangle=b_{K_{\text {min }}}\left(b_{K_{M}}-1\right)_{i}^{2}=a_{p K} \hbar^{2}=$
or $b_{\text {Kmin }}\left(b_{\text {Kmin }}-1\right)=j(j+1)$
solu $b_{\text {Kmin }}=-j$
$M_{-}\left|j, k_{\max }\right\rangle=\mathrm{c}_{\mathrm{jk}}\left|\mathrm{j} \mathrm{k}_{\mathrm{m}}-1\right\rangle \cdots$ in steps of $\mathrm{k}=1$
but minimum and max are same magnitude
so $b_{K}=j, j-1, j-2, \ldots,-j+1,-j=M$ an integer or half integer
means M has possibilities of being $M=0, \pm 1 / 2, \pm 1, \pm 3 / 2 \cdots$ _ integer (ang mom), half integer (sum)

So now: $\quad M^{2}|j m\rangle=j(j+1) \hbar^{2}|j m\rangle$
$M_{2}|j m\rangle=m \hbar^{2}|j m\rangle$

But what is result of M ?
$\left.M_{-} M_{+}|j m\rangle=\left(M^{2}-M_{z}^{2}-\hbar M_{z}\right) j m\right\rangle$
$c_{j, m+1}^{-} c_{j, m}^{+} \hbar^{2}|j m\rangle=[j(j+1)-m(m+1)] \hbar^{2}|j m\rangle$

Know product but not each one so:
$\langle j m| M_{-}|j m+1\rangle=c_{j, m+1}^{-} \hbar\langle j m \mid j m\rangle=c_{j, m+1}^{-} \hbar$
$=\langle j m| M_{x}|j m+1\rangle-i\langle j m| M_{y}|j m+1\rangle$
$=\left\langle j_{m+1}\right| M_{x}|j m\rangle^{*}-i\left\langle j_{m+1}\right| M_{y}|j m\rangle^{*}$
$=\left\{\langle j, m+1| M_{x}|j m\rangle+i\langle j, m+1| M_{y}|j m\rangle\right\}^{*} \quad M_{x}, M_{y}$ hermitian: (not $M_{+}, M_{\text {n }}$ not observable)
$=\langle j m+1| M_{+}|j m\rangle^{*}=c_{j m}^{+}$
so $\left(c_{j m}{ }^{+}\right)^{*}=\left(c_{j m+1}{ }^{-}\right) \quad$ since $\langle a| M_{+}|b\rangle=\langle b| M_{-}|a\rangle^{*}$ call: hermitian conjugate
$c_{j m+1}{ }^{-} c_{j m}{ }^{+}=j(j+1)-m(m+1)$
$\left(c_{j m}\right)^{*} c_{j m}{ }^{+}=[j(j+1)-m(m+1)]$
$\left(c_{j m}{ }^{+}\right) c_{j m}{ }^{+}=[j(j+1)-m(m+1)]^{1 / 2}$
similarly $\left(c_{j m}{ }^{-}\right)=[j(j+1)-m(m-1)]^{1 / 2}$
result: $\quad M_{ \pm}|j m\rangle=[j(j+1)-m(m \pm 1)]^{1 / 2} \hbar|j m\rangle$

Note: try now: $M_{+}\left|j m_{\max }\right\rangle=\left[j(j+1)-m_{m}\left(m_{n} \pm 1\right)\right]^{1 / 2} \hbar|j m+1\rangle=0$
_ $m_{\max }=j$
similarly $M_{-}\left|j m_{\min }\right\rangle=\left[j(j+1)-m_{m}\left(m_{n} \pm 1\right)\right] h=0 ? \quad m_{\text {min }}=-j$

Form of the eigen fct - all above was abstract and totally general but if we want the solution (fct form) of $|j m\rangle$ we need to get rep for $M_{+}, M_{\text {., }} M_{z}$ but having those only med $|\mathrm{j}, \mathrm{j}\rangle$ all rest available by $\mathrm{M}^{\mathrm{k}}|\mathrm{j}, \mathrm{j}\rangle=($ const $)|\mathrm{j} \mathrm{j}-\mathrm{k}\rangle$ (const) $=\left(\mathrm{c}_{\mathrm{j}}^{-} \mathrm{m} \mathrm{c}_{\mathrm{j}}^{-} \mathrm{m}-1 \ldots \mathrm{c}_{\mathrm{j}}^{-} \mathrm{m}-(\mathrm{k}-1) \mathrm{C}\right)$
try: $\quad M_{z}=-i \hbar \frac{f}{f \phi}$

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{x}}=-\mathrm{i} \hbar \sin \phi \frac{f}{f \phi}+\cot \theta \cos \phi \frac{f}{f \phi} ? \\
& \mathrm{M}_{\mathrm{y}}=-\mathrm{i} \hbar \cos \phi \frac{f}{f \phi}-\cot \theta \sin \phi \frac{f}{f \phi} ? \\
& \mathrm{M}_{+}=\hbar \mathrm{e}^{\mathrm{i} \phi} \frac{f}{f \phi}+\mathrm{i} \cot \theta \frac{f}{f \phi} ? \\
& \mathrm{M}_{-}=-\hbar \mathrm{e}^{-\mathrm{i} \mathrm{\phi}} \frac{f}{f \phi}-\mathrm{i} \cot \theta \frac{f}{f \phi} ?
\end{aligned}
$$

since $M_{+}|j j\rangle=0=\hbar e^{i \phi} \frac{f}{f \phi}+i \cot \theta \frac{f}{f \phi} ? \Psi_{j j}(\theta, \phi)$
so subst $\Psi(\theta, \phi)=\Theta(\theta) \Phi(\phi)$
can show $\frac{\tan \theta}{\Theta} \frac{d \Theta}{d \theta}=-i \frac{1}{\Phi} \frac{d \Phi}{d \phi} \quad$ separates so each $=m$ (1st order diff) $\tan \theta \frac{d \Theta}{d \theta}=m \Theta \quad \frac{d \Theta}{d \theta}=i m \Phi$
$\Theta \sim \sin ^{m} \theta \quad \Phi=e^{i m \varphi} \quad$ solve $\mathrm{M}_{\mathrm{z}} \Psi_{\mathrm{ij}}=\mathrm{jh} \Psi_{\mathrm{ij}}$
$\Psi_{\mathrm{j}}(\theta, \phi)=\mathrm{N} \sin ^{\mathrm{m}} \theta \mathrm{e}^{\mathrm{imb}} \quad$ here $\mathrm{m}=\mathrm{j}$
all the rest: Y_{jm} by operate $\mathrm{M}-\Psi_{\mathrm{ij}}$ successively

Spin _ Uhlenbeck \& Goudsmit realized that if electron had intrinsic angular momentum and assoc. magnetic moment with 2 states $=\mathrm{j}=$ \qquad $m=\ldots,-$ so $S_{z}|1 / 2, \pm 1 / 2\rangle ? \pm 1 / 2 \hbar|1 / 2, \pm 1 / 2\rangle$

Then could explain atomic spectra and Zeeman perturbation of spectra

Half-integer spin (intrinsic magnetic moment) came about naturally from the Dinae equation which accounted for relativistic effects

Electron "spin" so important define: $\alpha=|1 / 21 / 2\rangle$
$S_{z} \alpha={ }_{h} h \alpha \quad S^{2} \alpha=h^{2} \gamma \quad \beta=|1 / 2-1 / 2\rangle$
$\mathrm{S}_{z} \beta=-_\mathrm{h} \beta \quad \mathrm{S}^{2} \beta=\mathrm{h}^{2} \beta$
and $\quad S_{+} \alpha=0 \quad S_{-} \alpha=h \beta \quad S_{+} \beta=h \alpha \quad S^{-} \alpha=0$

See to connect $\alpha, \beta:\langle\alpha| S^{+}|\beta\rangle=\hbar,\langle\beta| S^{-}|\alpha\rangle=\hbar$

Note - no functional form needed yet now all we need to describe angular momentum and Zeeman perturbation energy of field B^{+}magnetic dipole μ_{m}
$E=-\vec{\mu}_{m} ? \vec{B} \quad H=-\vec{\mu}_{m} ? \vec{B}=+g^{\beta} / \hbar \overrightarrow{\mathrm{S}} ? \vec{B} \quad g_{e} \sim 2.0023$
$\mu_{\mathrm{s}}=\mathrm{g}_{\mathrm{e}} \beta \quad \beta_{\mathrm{e}}=1 \mathrm{~h} / 2 \mathrm{~m}_{\mathrm{e}}=9.27 \times 10^{-24} \mathrm{~J} / \mathrm{T}$
if $B=B_{2}$ (i.e., unique axis) $\quad H_{B_{2}}=+g \beta / \hbar B ? \hat{M}_{z}$
Bohr magnetor mag of mag mom for elect with ang mom
$\mu_{\mathrm{L}}=\beta_{\mathrm{e}}(\mathrm{L}(\mathrm{L}+1))^{-}$

Levine Ch 11, 4, . . ; Atkins Ch 6, 6-7
More than one particle with angular momentum:
if 2 particles $\mathrm{j}, 2$ with ang mom \vec{j}_{1}, \vec{j}_{2}
what can we know about them (simultaneously)
since $\left[j_{1}, j_{2 x}\right]=0$ and same for all x, y, z
since \vec{j}_{1}, \vec{j}_{2} depend on diff coord syst
similarly $\left[j_{1}{ }^{2}, \mathrm{j}_{2}{ }^{2}\right]=0$ and all combine with $\mathrm{x}, \mathrm{y}, \mathrm{z}$
so state: $\left|\mathrm{j}_{1}, \mathrm{~m}_{1} ; \mathrm{j}_{2}, \mathrm{~m}_{2}\right\rangle$ should satisfy syst, i.e. each fully specified
This should tell us the quantum numbers of state for each particle independently
? can we discuss total angular momentum?
$\vec{j}=\vec{j}_{1}+\vec{j}_{2}$ and $\vec{j}_{x}=\vec{j}_{x}+\vec{j}_{2 x}$, etc.
natural way to write but is it an ang. mom?
yes since: $\left[j_{x}, j_{y}\right]=\left[j_{1 x}+j_{2 x}, j_{1 y}+j_{2 y}\right]$
$=\left[j_{1 x}, j_{2 x}\right]+\left[j_{1 y}, j_{2 y}\right]+$ zeros
$=i h\left(j_{1 z}+j_{2 z}\right)=i h j_{z}$
(neat aspect of general prop:)
so know: $\left[j^{2}, j_{z}\right]=0$
total ang mom: $\sqrt{j(j+1) \hbar^{2}}$
$j=0, \quad, 1,3 / 2, \ldots$
$m_{j}=-j,-j+1, \ldots,, j$
but what are j, m if know $\mathrm{j}_{1,,} \mathrm{j}_{2,} \mathrm{~m}_{1,} \mathrm{~m}_{2}$?
Show: $\left[j_{2}, j_{1}^{2}\right]=\left[j_{2}, j_{2}^{2}\right]=0 \quad$ so $j_{2}+j_{2}, j_{2}{ }^{2}$ simult.

$$
\mathrm{j}^{2}\left|\mathrm{j}_{1} \mathrm{~m}_{1}, \mathrm{j}_{2} \mathrm{~m}_{2}\right\rangle=\mathrm{j}(\mathrm{j}+1) \hbar
$$

and $\left[j^{2}, \mathrm{j}_{2}\right]=\left[\mathrm{j}^{2}, \mathrm{j}_{2}\right]=\left[\mathrm{j}_{2}^{2}, \mathrm{j}_{2}\right]=0$ simult.

So know that can specify total ang mom, component totals, and projection on z of tot on
$j^{2}\left|j_{1} j_{2} j m\right\rangle=j(j+1) \psi^{2}\left|j_{1} j_{2} j m\right\rangle$
$\mathrm{j}_{2}\left|\mathrm{j}_{1} \mathrm{j}_{2} \mathrm{j} \mathrm{m}\right\rangle=\mathrm{m} \hbar\left|\mathrm{j}_{1} \mathrm{j}_{2} \mathrm{j} \mathrm{m}\right\rangle$

But cannot specify m_{1}, m_{2}, with all the above because
$\left[j^{2}, j_{12}\right]=2 i h\left(j_{1 y} j_{2 x}-j_{1 x_{2 x}} j_{2}\right) \neq 0$
So can choose: $\left\langle\mathrm{j}_{1} \mathrm{j}_{2} \mathrm{j} m\right\rangle$ or $\left\langle\mathrm{j}_{1} \mathrm{~m}_{1}, \mathrm{j}_{2} \mathrm{~m}_{2}\right\rangle$
as rep of 2 coupled angular momentor now must know how to go back and forth and know what are values for j,m?
$\mathrm{j}_{2}\left|\mathrm{j}_{1} \mathrm{~m}_{1}, \mathrm{j}_{2} \mathrm{~m}_{2}\right\rangle=\left(\mathrm{j}_{\mathrm{z}_{1}}+\mathrm{j}_{\mathrm{z}_{2}}\right)\left|\mathrm{j}_{1} \mathrm{~m}_{1}, \mathrm{j}_{2} \mathrm{~m}_{2}\right\rangle$
$m \hbar\left|j_{1} m_{1}, j_{2} m_{2}\right\rangle=\left(m_{1}+m_{2}\right) \hbar\left|j_{1} m_{1}, j_{2} m_{2}\right\rangle$
so: $m=m_{1}+m_{2}$
makes sense, projection of each on z add up
now each m_{1}, m_{2} have maxima: j_{1}, j_{2}
So maximum $m=j_{1}+j_{2}$
But this must be $\mathrm{j}=\mathrm{j}_{1}+\mathrm{j}_{2}$ (one allowed value)
i.e. expect j must not be bigger than $j_{1}+j_{2}$
but incomplete since $(2 \mathrm{j}+1)$ states $\left|\mathrm{j}_{1} \mathrm{~m}_{1} ; m\right\rangle ?\left(2 \mathrm{j}_{1}+2 \mathrm{j}_{2}+1\right)$
but $\left(2 \mathrm{j}_{1}+1\right)\left(2 \mathrm{j}_{2}+1\right)$ states $\left|\mathrm{j}_{1} \mathrm{~m}_{1} ; \mathrm{j}_{2} \mathrm{~m}_{2}\right\rangle$? $2 \mathrm{j}_{1}+2 \mathrm{j}_{2}+4 \mathrm{j}_{1} \mathrm{j}_{2}$
so $4 \mathrm{j}, \mathrm{j}_{2}$ states need to be found, must have different j -value

Test: Max 75/most in 50-35 range A - 60, B - 40, C
Memorize proofs - ok; need work on physical concepts, lots of errors on \#3.
Problem is during appropriate work to answer question -- matter of experience

Review- coupling independent angular momentum

Established that $\left[M_{x}, M_{y}\right]=i h M_{z}$ for $\vec{M}=\hat{M}_{\overline{\mathrm{x}} \stackrel{\rightharpoonup}{i}}+\hat{M}_{\overline{\mathrm{y}}}^{\vec{j}}+\hat{M}_{\vec{z} \vec{k}}$
Makes an ang mom $\mathrm{M}_{2}|j \mathrm{~m}\rangle=\mathrm{m} \hbar|j \mathrm{~m}\rangle$
$M^{2}|j m\rangle=j(j+1) \hbar^{2}|j m\rangle$
$M_{ \pm}|j m\rangle=\{j(j+1) m(m \pm 1)\}^{1 / 2}|j m \pm 1\rangle \quad m=j, j-1, \ldots,-j$
all done without recourse to any functional form $|\mathrm{jm}\rangle$

Levine Ch 11

With multiple particles can have coupling of angular momentum--total is variable in question
since independent coord all op commute so state $\left|j_{1} m_{1}, j_{2} m_{2}\right\rangle$
$\vec{j}=\vec{j}_{1}+\vec{j}_{2}$ is ang mom since $\left[\mathrm{j}_{\mathrm{x}}, \mathrm{j}_{\mathrm{y}}\right]=\mathrm{ihj} \mathrm{j}_{2}=\mathrm{ih}\left(\mathrm{j}_{21}+\mathrm{j}_{22}\right)$
show also: $\left[j^{2}, j_{2}\right]=0$ and $m=-j,-j+1, \ldots, j ; j=0,1 / 2,1,3 / 2, \ldots$
$\left[j^{2}, j_{1}{ }^{2}\right]=\left[j^{2}, j_{2}{ }^{2}\right]=0 \quad\left|j_{1} j_{2} j m\right\rangle \quad$ should rep step
$j^{2}\left|j_{1} m j_{2} j m\right\rangle=j(j+1) \hbar^{2}\left|j_{1} j_{2} j m\right\rangle$
$j_{2}\left|j m j_{2} j m\right\rangle=m \hbar\left|j_{1} j_{2} j m\right\rangle$
choose between: $\left|\mathrm{j}_{1} \mathrm{~m}_{1}, \mathrm{j}_{2} \mathrm{~m}_{2}\right\rangle$ and $\left|\mathrm{j}_{1} \mathrm{j}_{2} \mathrm{jm}\right\rangle$
as representations - diff situation each more ???
since $j_{2}\left|j_{1} m_{1} j_{1} m_{1}\right\rangle=\left(j_{12}+j_{22}\right)\left|j_{1} m_{1}, j_{2} m_{2}\right\rangle=\left(m_{1}+m_{2}\right) \hbar\left|j_{1} m_{1}, j_{2} m_{2}\right\rangle$
$=m \hbar\left|j_{1} m_{1}, \mathrm{j}_{2} \mathrm{~m}_{2}\right\rangle$
Then $m=m_{1}+m_{2}-$ projection on z sum
$m_{1}(\max)=j_{1}, \quad m_{2}(\max)=j_{2}-m(\max)=j_{1}+j_{2}-j=j_{1}+j_{2}$
account for degeneracy $-(2 j+1)(2 j+1)\left(2 j_{2}+1\right)=$ $\left(2 \mathrm{j}_{1}+2 \mathrm{j}_{2}+1\right)<4 \mathrm{j}_{1} \mathrm{j}_{2}+\left(2 \mathrm{j}_{1}+2 \mathrm{j}_{2}+1\right)$
so need more than one j value

Next Ch. 8, 9 Approx methods Part Theory (9), Variation (8)

Consider m again: max $m \quad m_{m}=m_{1}+m_{2}$
next one down: $\left|j, m_{m}-1\right\rangle=\left|j_{1}\left(m_{1}-1\right), j m_{2}\right\rangle$ or $\left|j_{1} m_{1}, j_{2}\left(m_{2}-1\right)\right\rangle$
so 2 possibilities, one is $\left|\mathrm{j}, \mathrm{m}_{\mathrm{m}}-1\right\rangle$
and other is $\left|j^{\prime}, m_{m}-1\right\rangle$
now no other higher m than $m-1$ for j^{\prime}
so $\mathrm{j}=\mathrm{m}-1$
continue and get: $\mathrm{j}=\mathrm{j}_{1}+\mathrm{j}_{2}, \mathrm{j}_{1}+\mathrm{j}_{2}-1, \ldots . \mid \mathrm{j}_{1}-\mathrm{j}_{2}$
limited since j must be positive
ex: $j_{1}=1, j_{2}=1 \quad j=2,1,0$
$(2 \cdot 1+1)(2 \cdot 1+1)=\underline{9}$ states $\quad 5+3+1=\underline{9}$ states
or $j_{1}=1, j_{2}=1 / 2$ for p-elect
$3 \cdot 2=\underline{6 \text { states }} \quad j=3 / 2,1 / 2 \Rightarrow 4+2=\underline{6 \text { states }}$

Sometimes called the triangle condition (vector addition) sides must match up with $\mathrm{j}_{1}, \mathrm{j}_{2}, \mathrm{j}$ all integers

INSERT DIAGRAMS

leads to the vector model of angular momentum particularly used a lot for spin a) length $\sqrt{\mathrm{j}(\mathrm{j}+1)}$, same for components: $\sqrt{\mathrm{j}(\mathrm{j}+1)}$, etc.
b) lie on a core of height m,
spin $-\left|S_{1} m_{1}, S_{2} m_{2}\right\rangle:|1 / 21 / 2,1 / 21 / 2\rangle=\alpha_{1} \alpha_{2},|1 / 21 / 2,1 / 2-1 / 2\rangle=\alpha_{1} \beta_{2}, \beta_{1}, \alpha_{1}, \beta_{1} \beta_{2}$
$\left|\mathrm{S}_{1} \mathrm{~m}_{2}, \mathrm{Sm}\right\rangle:|1 / 21 / 2,1,1\rangle=\alpha_{1} \alpha_{2} \quad|1 / 21 / 2,1,0\rangle=1 / \sqrt{2}\left(\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right)$
in phase _ triplet
triplet/single: $|1 / 21 / 2,1,-1\rangle=\beta_{1} \beta_{2} \quad|1 / 21 / 2,0,0\rangle=1 / \sqrt{2}\left(\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}\right)$

So have established by inspection
$\left|j, j_{2} j m\right\rangle=\quad c_{m_{1} m_{2}}\left|j_{1}, j m_{1} j_{2} m_{2}\right\rangle$
For case $\mathrm{j}_{1}=\mathrm{j}_{2}={ }_{-}$
How do it formally:
Know $\mathrm{m}_{\max }=\mathrm{m}_{1 \text { max }}+\mathrm{m}_{2 \max }$-- one way
operate lowers op

$$
\begin{aligned}
M-\left|j_{1}, j_{2}, j_{1}+j_{2}, j_{1}+j_{2}\right\rangle= & \left.\left(M M_{-} M_{2-}\right) j_{1} j_{1}, j_{2} j_{2}\right\rangle \\
\{j(j+1)-m(m-1)\}^{1 / 2} \hbar|j, j-1\rangle= & \left\{j_{1}\left(j_{1}+1\right)-m_{1}\left(m_{1}-1\right)\right\}^{1 / 2} \hbar\left|j, j_{1}-1, j_{2}, j_{2}\right\rangle \\
& +\left\{j_{2}\left(j_{2}+1\right)-m_{2}\left(m_{2}-1\right)\right\}^{1 / 2} \hbar\left|j_{1} j_{1} ; j_{2}, j_{2}-1\right\rangle
\end{aligned}
$$

This gives you an expression for $\mathrm{C}_{\mathrm{m} 1 \mathrm{~m} 2}$
ex: $S_{-} \alpha_{1} \beta_{2}=S_{-}|11\rangle=\{2+1 ? 0\}^{1 / 2} 2|10\rangle$
$\left(S_{1}+S_{2}\right)_{\alpha_{1} \alpha_{2}}=\hbar \beta_{1} \alpha_{2}=\hbar \alpha_{1} \beta_{2}$
$|10\rangle=1 / \sqrt{2}\left(\beta_{1} \alpha_{2}+\alpha_{1} \beta_{2}\right) \quad$ as before
what about $|00\rangle_{\text {_ }}$ must be orthogonal to $|10\rangle$
so $1 / \sqrt{2}\left[\alpha_{1} \beta_{1}-\alpha_{1} \beta_{2}\right]=|00\rangle$

More?
general concept: multiply equation above by $\left\langle\mathrm{j}_{1} \mathrm{~m}_{1}, \mathrm{j}_{2} \mathrm{~m}_{2}\right|$
$\left\langle j_{1} m_{1}, j_{2} m_{2} \mid j_{1} m_{2}, j m\right\rangle=C_{m_{1} m_{2}}$

Terms:

Coupling of orbital angular momenter for two electrons

$$
\begin{aligned}
\ell_{1}+\ell_{2}=\ell_{\max }= & 0,1,2,3,4,5 \\
& \text { S P D F G H }
\end{aligned}|1,1,2, \mathrm{M}\rangle
$$

Multiple electrons:
Couple $j_{1}+j_{2}=j_{12}$ then all $j_{12}+j_{3}=j_{12}$, etc.
$j_{12}=\left(j_{1}+j_{2}\right),\left(j_{1}+j_{2}-1\right), \ldots,\left|j_{1}-j_{2}\right| ; j_{12}=\left(j_{12}+j_{3}\right), \ldots,\left|j_{12}-j_{3}\right| \quad$ for all

