Hydrogen Atom

Hydrogen Atom - two particles with an attractive force $\mathrm{F}=\frac{f \mathrm{~V}}{f \mathrm{R}}$ only dep on dist R

INSERT GRAPH

$V=-e^{2} / R$ or $\frac{-2 e}{R} \quad$ nucleus: Z at \#
$F=\frac{-f V}{f R}=-(-) \frac{-e^{2}}{R^{2}}=\frac{-e^{2}}{R^{2}}$
[Note: Review $1,8, p, 18$ - units $F=Q_{1} Q_{2} / r^{2}$ - coulomb law in Gaussian units F-dynes, Q-stat coul, r-cm
Units SI : same eigen but $\mathrm{F}=\mathrm{Q}_{1}{ }^{1} \mathrm{Q}_{2}{ }^{2} / r^{2}$
$F=$ neutron, $Q^{1}=Q /\left(4 \pi \varepsilon_{0}\right)^{1 / 2}, Q$ in coul, $r-m$
most QM texts drop $\left(4 \pi \varepsilon_{0}\right)^{1 / 2}$ for simplicity]

Now what do you expect _ symmetrical potential so have same energy either "side" - only dist not dimen

- imagine a virtual other side or rotate the $\mathrm{V}(\mathrm{r})$ around $\mathrm{r}=0$ axis to get surface See have a well - finite since $\mathrm{V}(\infty)=0$ so what do we expect for solution $\psi(\infty)$ _ 0 must be bound $\sim e^{\mathrm{Kr}}$ depend $\psi(0)_{-}$? but must have curvature
$2 \hat{\mathbf{T}}=\mathbf{s} \hat{\mathrm{V}} \quad \mathrm{V}=() / r=() r^{-1} \quad \mathrm{~s}=-1 \quad \hat{\mathrm{~T}}=-\hat{\mathrm{V}} / 2$
since \hat{V} ? 0 except at $r=\infty, \hat{\mathrm{T}}$? 0 must curve
As increase \hat{V} expect $\hat{\uparrow}$ increase _ oscillate to get more curvature
At high V expect energy _ polynomial solu again
levels to become closer together ~finite V
At $E>0$ expect continuum of states
_ plane wave solution _ dissociation
$E=0$ _ separate particles at $r=\infty$

Now let's look at the Hamiltonian:
$H \Psi=\frac{-\hbar^{2}}{2 m_{e}} \quad e^{2}-\frac{\hbar^{2}}{2 m_{N}} \quad N^{2}-\frac{Z_{\mathrm{n}} \mathrm{e}^{2}}{r_{\mathrm{eN}}} \downharpoonleft \sqrt{ } \Psi=E \Psi$

Note: This is a two particle problem and separable as before into center of Mass and relative coordinate dependent prob: $\mathrm{H}=\mathrm{h}_{\mathrm{CoM}}+\mathrm{h}_{\mathrm{reN}}$

C of M : H CoM $=\frac{-\hbar^{2}}{2 M} R^{2} \quad$ _ translation of atom get continuous E's _ plane wave
transform relative coordinates to spherical $\mathrm{r}_{\mathrm{eN}}=\mathrm{r}$
$H_{\text {rel }}=\frac{-\hbar^{2}}{2 \mu} \quad r^{2}-\frac{Z e^{2}}{r} \quad \mu=\frac{M_{e} M_{N}}{M_{e}+M_{N}} \sim M_{e}$
(1) $\frac{f^{2}}{f r^{2}}(r \Psi)+\frac{1}{r^{2}} \Lambda^{2} \Psi+\frac{2 \pi Z e^{2}}{\hbar^{2} r} \Psi=-\frac{2 \mu E}{\hbar^{2}} \downarrow \Psi$

Now recall how we separated particle on a sphere there r const so first ten _ 0 here r a real variable but only in potential and angular terms only in second term -- expect to separate: (mult by r^{2})
$\Lambda^{2} \Psi=-\ell(\ell+1) \Psi$
$\Psi=\Psi_{\mathrm{lm}}(\theta, \phi)$-- spherical harmonics
but can insert this into H :
let $\Psi=\mathrm{Ry}_{\mathrm{l}}$
$\left(\frac{1}{(}\right) \frac{f^{2}}{f r^{2}}(\mathrm{rRY})+\frac{2 \pi e^{2}}{\hbar^{2} r}-\frac{1}{\mathrm{r}^{2}} \ell(\ell+1) ? \underset{?}{R} \mathrm{Y}_{\ell \mathrm{m}}=-\frac{2 \pi \mathrm{E}}{\hbar^{2}}{ }^{2} \mathrm{RY} \ell \mathrm{m}$
see $Y_{l m}$ can cancel out as expected, and let $\mathrm{P}=\mathrm{rR}$ (by mult through by r)
$\frac{f^{2}}{f r^{2}} P(r)+\frac{2 \pi}{\hbar^{2}} \frac{e^{2}}{r}-\frac{\hbar^{2}}{2 \pi r^{2}} \ell(\ell+1) ? P(r)=-\frac{2 \pi E}{\hbar^{2}} \sqrt{ }{ }^{2} P$
(Atkins 4.3)
Now this has an interesting form -
1st term is typical K.E.
so 2nd is a P.E. _ note 2 effects
1st _ attractive electrostat $\sim 1 / r$
2nd _ form dep on ang. mom.
$F_{\text {centrif }}=(\text { ang mom })^{2} / \pi r^{3} _V \sim L^{2} / 2 \mu r^{2} \sim 1 / r_{2}$
Repulsive force _ repulsive pt. (decays thru attract pot)

INSERT GRAPH

$-\mathrm{V}_{\text {eff }}$ is some sort of effective pot balancing centrif repuls _ attract electrostatic [Note: $\ell=0$ _ no ang mom _ no centrif]
for $\ell \quad 0$ _ bit force keeping away from molecules _ really huge K.E. close in

Can look at this at extremes
$\mathrm{L}=0 \quad \mathrm{r}_{-} 0 \quad-\mathrm{e}^{2} / \mathrm{r}$ dominate $\mathrm{E}: \frac{f^{2} \mathrm{p}}{f \mathrm{r}^{2}}+\frac{2 \pi \mathrm{e}^{2}}{\hbar^{2} \mathrm{r}} \mathrm{p} \sim 0$
so here $P \sim A r+1 / 2 r^{2}$ from $P=r R$
and $R \sim A$ as r _ 0 on a const
so $\mathrm{I}=0$ has non zero prob at nucleus
(Note: no violation of continuity since no neg r)
$\mathrm{I}=0 \mathrm{r}_{-} 0$ centrif dom $\mathrm{E}: \frac{f^{2} \mathrm{p}}{f \mathrm{r}^{2}}-\ell(\ell+1) \frac{\hbar^{2}}{\mathrm{r}^{2}} \mathrm{p} \sim 0$
so solu $P \sim \mathrm{Ar}^{\mathrm{t+1}}+\mathrm{Br}^{-1} \quad \mathrm{P}=0$ at $\mathrm{r} _\mathrm{B}=0$
and $R=p / r \sim A r^{\prime} \quad r_{-} 0$
$R(0)=0$ for all $I=0$ _ always a node
Clearly radial solu will depend on I and shape will change from INSERT GRAPH to INSERT GRAPH

Solu Levine p. 121 ff
Solving the radial equations:
same strong find solved
by power series _ Laguerre polynomials
quantized to get oscill in pot _ $n=1,2, \ldots$
but as above also depend on _ $\ell=0,1,(n-1)$
and must decay exponentially: $\mathrm{e}^{-\boldsymbol{\gamma} / 2}$

$10(1 \mathrm{~s}) \quad(\mathrm{z} /)^{3 / 2} 2 \mathrm{e}^{-\gamma / 2}$
$20(2 \mathrm{~s}) \quad(\mathrm{Z} / \mathrm{a})^{3 / 2-\frac{1}{2 \sqrt{2}} \downarrow(2-\gamma) \mathrm{e}^{-\gamma / 2}, ~}$
1 (2p) $\left.\quad(Z / a)^{3 / 2} \frac{-1}{2 \sqrt{6}} \sqrt{ }\right\rfloor(\gamma) e^{-\gamma / 2}$
30 (3s) $\quad(z / a)^{3 / 2} \frac{-1}{9 \sqrt{3}} \sqrt{ } \sqrt{ }\left(6-6 \gamma+\gamma^{2}\right) \mathrm{e}^{-\gamma / 2}$
1 (3p) $\quad(Z / a)^{3 / 2} \frac{-1}{9 \sqrt{6}} \sqrt{ }{ }^{2}(4-\gamma) e^{-p / 2}$
2 (3d) $\quad(z / a)^{3 / 2} \frac{-1}{2 \sqrt{2}} \downarrow \gamma^{2} e^{-\rho / 2}$
handout on overhead figures p. 73 - Atkins

Note: s-zone zero at nucleus

- \# nodes = ($\mathrm{n}-1$)
- radial extent increases fast
p, d, etc.: - all zero at nucleus
- \# nodes = ($\mathrm{n}-1-\ell$)
- radial extent inc with ℓ but slowly

Now along with wave fct - insert into Sch. Eqn and get energies
$E_{n}=-\frac{z^{2} \mu e^{4}}{2 \hbar^{2} n^{2}}=\frac{-z^{2}}{n^{2}} \frac{e^{2}}{2 a} \downharpoonleft n=1,2, \ldots$
$E_{n} \sim 1 / n^{2}$ fit Bohr model
Balm/Rodberg series etc.
levels collapse as nine and E _ 0
degenerate: $\ell_{-}(\mathrm{n}-1)$
m_(2 $\ell+1)$
Levine 127: result $=\mathrm{n}^{2}$ degen
no spin (only H -atom ???)

H -atom energies/spectra

$E_{n}=-\frac{z^{2} \mu e^{4}}{2 \hbar^{2} n^{2}}=\frac{-z^{2}}{n^{2}} \frac{e^{2}}{2 a} \downarrow \downarrow \quad n=1,2,3, \ldots$
big behaviours: $E_{n} \sim 1 / n^{2}$
so energy levels collapse as n inc.
a has units of length, if $\mu \sim m_{e_{-}} a_{0}$ - Bohr radius
and a constant so only other variable Z
$E_{n} \sim Z^{2}$ expect much higher energies for other ions (correspond to smaller radii)

INSERT PICTURE

In terms of spectros copy all $\Delta \mathrm{n}$ allowed (if $\Delta \mathrm{l}=1$) gap is generally very large (E_{1} ~ 13.6 eV for \#) so all population is in ground state unless excite with light (or e) Fits the Bohr atom exactly because that works to explain H -atom spectra)

Spectra:
INSERT PICTURE from $\mathrm{n}=0_{-} \mathrm{n}=1,2,3, \ldots$-- Lyman
INSERT PICTURE $\quad \mathrm{n}=1 \quad \mathrm{n}=2,3$, -- Balm
INSERT PICTURE $n=2 _n=3,4$-- Pasch

These are the spectra that fir the Rydberg series
$\hat{v}=R-1 / n_{2}^{2}-1 / n_{1}^{2} \sqrt{V} \quad R \sim 10^{5} \mathrm{~cm}^{-1}$
but that generally is done by emission (excite atom relax back to various n's)

Orbitals - combining the three dimensional solu
$\Psi_{\mathrm{nlm}}(\mathrm{r}, \theta, \phi)=\mathrm{R}_{\mathrm{n} \mid}(\mathrm{r}) \Psi_{\mathrm{lm}}(\theta, \phi)$
gives the solu but cannot plot well since would require some 4-D representative (to do take slices through 3D space and on each 2-D slice plot ψ or $\psi^{\star} \psi$ value. Note - this is some technique used for making e-density maps in xtalography)

INSERT GRAPHS

see magnitude at nucleus drop with $n-$ radical extent grow $\sim n^{2}$
1st look at parts
$R_{n 1}(r) \quad \ell=0$
Levine p 132-133 (overhead)
\# nodes $=\mathrm{n}-1-\ell$

Since sampling (θ, ϕ) with this function, often re-rep as radial distribution fct $R^{2} R_{n 1}{ }^{1}(r)$
Idea - integrate out (θ, ϕ) on prob of being in a sphere at r away from nucleus and dr thickness
$\begin{array}{ll}\pi & 0 \pi \\ R_{\ell \ell}(r) & Y_{\ell m}^{*} Y_{\ell m} r^{2} \sin \theta d \theta d \phi d r=r^{2} R_{n \ell}^{2}(r) d r\end{array}$
now cannot mag at nucleus * zero volume

INSERT GRAPHS

outer lobes bigger (bigger vol)
see max prob move out fast

Angular part - know from before can plot length of $\left(\mathrm{Y}_{\mathrm{Im}}\right)$ as vector at (θ, ϕ)
INSERT PICTURE $\quad \ell=0, \mathrm{~m}=0$ sphere
INSERT PICTURE $\quad \ell=1, \mathrm{~m}=0$ targential spheres
INSERT PICTURE $\quad\left(Y_{11}-Y_{1-1}\right) \quad\left(Y_{11}+Y_{1-1}\right) \quad$ but alone - complex

Levine p 138-139

Put together see as expand sphere of consideration going to get varying picture can take contours - like hiking map

1s: like onion layers further apart with r since $e^{-\gamma / 2}$ dependence
INSERT PICTURE

2s: same but change sign - layers bunch than spread
INSERT PICTURE
$\underline{2 p o}=2 p z$: sort of squashed and opp sign on z
INSERT PICTURE

3po: must have radial sign change plus opp. sign lobes

INSERT PICTURE

$\mathrm{n}-\ell-1=2$
\# nodes are model plane is a sphere the other is a plane

