
Hydrogen Atom

Hydrogen Atom – two particles with an attractive force  F = 
R
V

ƒ
ƒ  only dep on dist R
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[Note:  Review 1,8, p, 18 – units F = Q1Q2/r
2 – coulomb law in Gaussian units

F-dynes, Q-stat coul, r-cm
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Now what do you expect  _  symmetrical potential so have same energy either

“side” – only dist not dimen

– imagine a virtual other side or rotate the V(r) around r = 0 axis to get surface

See have a well – finite since V(∞) = 0 so what do we expect for solution

ψ(∞)  _  0   must be bound     ~eKr depend

ψ(0)  _  ?   but must have curvature

V̂sT̂2 =         V = ( )/r = ( )r-1        s = -1        2
V̂T̂ −=

since 0V̂ ?  except at r = ∞, 0T̂ ?     must curve

As increase V̂  expect T̂  increase  _  oscillate to get more curvature

At high V expect energy  _  polynomial solu again

levels to become closer together  ~finite V

At E > 0 expect continuum of states
_  plane wave solution  _  dissociation

E = 0  _  separate particles at r = ∞

Now let’s look at the Hamiltonian:
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Note:  This is a two particle problem and separable as before into center of Mass

and relative coordinate dependent prob:  H = hCoM + hreN

C of M:  2
RM2CoM

2
�= −hH      _  translation of atom get continuous E’s  _  plane

wave

transform relative coordinates to spherical reN = r
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Now recall how we separated particle on a sphere

there r const so first ten  _  0

here r a real variable but only in potential and angular terms only in second term

-- expect to separate:  (mult by r2)

Λ2Ψ = - l ( l +1)Ψ
Ψ = Ψlm(θ,φ)  --  spherical harmonics

but can insert this into H:

let Ψ = Rylm
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see Ylm can cancel out as expected,

and let P = rR  (by mult through by r)
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(Atkins 4.3)

Now this has an interesting form –

1st term is typical K.E.

so 2nd is a P.E. _  note 2 effects

1st  _  attractive electrostat  ~ 1/r

2nd  _  form dep on ang. mom.

Fcentrif = (ang mom)2/πr3 _ V ~ L2/2µr2 ~ 1/r2

Repulsive force  _  repulsive pt. (decays thru attract pot)



INSERT GRAPH

– Veff is some sort of effective pot balancing centrif repuls  _  attract electrostatic

[Note: l  = 0  _  no ang mom  _  no centrif]

for l   0  _  bit force keeping away from molecules _ really huge K.E. close in

Can look at this at extremes

L = 0    r _ 0    -e2/r dominate E:  
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so here  P ~ Ar + 1/2r2    from P = rR

and  R ~ A  as r _ 0    on a const

so l = 0 has non zero prob at nucleus

(Note:  no violation of continuity since no neg r)

l = 0  r _ 0    centrif dom E: 
ƒ
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so solu   P ~ Arl+1 + Br-l        P = 0 at r  _  B = 0

and R = p/r ~ Arl    r _ 0

R(0) = 0  for all l = 0  _  always a node

_  Clearly radial solu will depend on l and shape will change from INSERT
GRAPH to INSERT GRAPH

Solu Levine p. 121 ff

Solving the radial equations:

same strong find solved

by power series  _  Laguerre polynomials

quantized to get oscill in pot  _  n = 1,2, . . .

but as above also depend on  _  l  = 0,1,(n-1)

and must decay exponentially:  e-γ/2

n     l               Rnl(r)        γ = (2Z/na)r;  a = h2/µe2



( )
( )
( )
( )
( )
( )

1 2

2

3

2

3
2 2

3
2

3
2

3
2 2

3
2

3
2 2

    0 (1s)       

   0 (2s)        (2- ) e

     1 (2p)        ( ) e

   0 (3s)        (6 - 6 ) e

     1 (3p)        (4 - ) e

      (3d)         e

Z
a

Z
a

1
2 2

- 2

Z
a

1
2 6

- 2

Z
a

1
9 3

- 2

Z
a

1
9 6

- 2

Z
a

1
2 2

- 2

e−


��

�
↵√


��

�
↵√


��

�
↵√ +


��

�
↵√


��

�
↵√

γ

γ

γ

γ

ρ

ρ

γ

γ

γ γ

γ

γ

handout on overhead figures  p. 73 – Atkins

Note:  s – zone zero at nucleus

– # nodes = (n-1)

– radial extent increases fast

p, d, etc.: – all zero at nucleus

– # nodes = (n – 1 – l )

– radial extent inc with l  but slowly

Now along with wave fct – insert into Sch. Eqn and get energies
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En ~ 1/n2   fit Bohr model

Balm/Rodberg series etc.

levels collapse as nine and E _ 0

degenerate:  l  _ (n-1)

m _ (2 l +1)

Levine 127:  result  =  n2 degen

no spin (only H-atom ???)

H-atom energies/spectra
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big behaviours:  En ~ 1/n2

so energy levels collapse as n inc.

a has units of length, if µ ~ me _ a0 – Bohr radius

and a constant so only other variable Z

En ~ Z2 expect much higher energies for other ions (correspond to smaller radii)

INSERT PICTURE

In terms of spectros copy all ∆n allowed (if ∆l = 1) gap is generally very large (E1

~ 13.6 eV for #) so all population is in ground state unless excite with light (or e)

Fits the Bohr atom exactly because that works to explain H-atom spectra)

Spectra:

INSERT PICTURE      from n = 0  _  n = 1, 2, 3, . . .  -- Lyman

INSERT PICTURE      n = 1  _  n = 2, 3,  -- Balm

INSERT PICTURE       n = 2  _  n = 3, 4  -- Pasch

These are the spectra that fir the Rydberg series
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but that generally is done by emission (excite atom relax back to various n’s)

Orbitals – combining the three dimensional solu

Ψnlm(r,θ,φ)  =  Rnl(r) Ψlm(θ,φ)

gives the solu but cannot plot well since would require some 4-D representative

(to do take slices through 3D space and on each 2-D slice plot ψ or ψ*ψ value.

Note – this is some technique used for making e-density maps in xtalography)

INSERT GRAPHS

see magnitude at nucleus drop with n – radical extent grow ~ n2

1st look at parts

Rnl(r)  l  = 0

Levine p 132-133 (overhead)

# nodes  =  n-1- l



Since sampling (θ,φ) with this function, often re-rep as radial distribution fct

R2Rnl
1(r)

Idea – integrate out (θ,φ) on prob of being in a sphere at r away from nucleus and

dr thickness
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now cannot mag at nucleus * zero volume

INSERT GRAPHS

outer lobes bigger (bigger vol)

see max prob move out fast

Angular part – know from before can plot length of (Ylm) as vector at (θ,φ)

INSERT PICTURE       l  = 0,  m = 0  sphere

INSERT PICTURE      l  = 1,  m = 0   targential spheres

INSERT PICTURE      (Y11 – Y1-1)    (Y11 + Y1-1)   but alone – complex

Levine p 138-139

Put together see as expand sphere of consideration going to get varying picture

can take contours – like hiking map

1s:  like onion layers further apart with r since e-γ/2 dependence

INSERT PICTURE

2s:  same but change sign – layers bunch than spread

INSERT PICTURE

2po = 2pz:  sort of squashed and opp sign on z

INSERT PICTURE

3po:  must have radial sign change plus opp. sign lobes

INSERT PICTURE



n- l -1 = 2

# nodes are model plane is a sphere

the other is a plane


