
Rotational Motion (Ch. 5, Levine;  Ch. 4 Atkins)

Previous example – particle constrained to a ring:
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No dep of Ψ on R since R is const
m = 0, 1, 2, . . .   from B.C. continuity
Ψ(0) = Ψ(2π)
and substituting back:  E = m2h2/2I
I = mR2

moment of inertia

Meaning from
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angular momentum about z
LzΨm(φ)  =  mhΨm(φ)
so for this solution eigen fct of ang. mom. and sign of m indicates direction motion

INSERT PICTURES

[NOTE:  Ψ(φ)  =  Ae-mφ + Be+imφ perfectly okay but not eigen fct of Lz]
same for sin(mφ) or cos(mφ)
[NOTE:  plotting cos mφ  INSERT PICTURE  may look like distrib non-uniform
but Ψ*Ψ  = 1/2πeimφe-imφ – 1/2π  _  const & uniform]

[NOTE:  no zero point motion      m  =  0  _  p Lz   =  0, φ numbers don’t need curvature

to fulfill bonding coord]

INSERT PICTURES

# nodes increases ω/m + Em and so does Lz

alternate up – plot amplitude of Ψ as radius at angle φ



symmetry     Ψ(φ + π)  =  1
2π

ei(φ + π)m  =  eiπmΨ  =  (-1)mΨ

Now go to higher dimension – particle confined to sphere
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but again since R constant can effectively reduce dimension (2 variables)

INSERT GRAPH

x  =  R sinθ cosφ
y  =  R sinθ sinφ                (x,y,z)    (R,θ,φ)
z  =  R cosθ
rearrangement of Laplacia ( � 2 ) into (R,θ,φ) coordinates
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This problem is separable, let Ψ Θ Φ( , ) ( ) ( )θ φ θ φ=
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solve each independently
since fct of indep variables – set each equal to a const i – m
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      m  =  0, 1, 2, . . .

just like for particle on a ring



RHS – This is more complex and involves another power series solution done   Levine pp
95ff

But again this equation is one solved by LeGendre and his solution well-known (at least
in 19th cent!)

Θl lm ( ) (cos )θ θ =  p m

p m
l    Legendre polynomial

l  =  0,1,2, . . .
m  =  0, 1, 2, . . ., l     limit on m

Normally we write Λ2Ylm(θ,φ)  =  - l ( l  + 1)Ylm(θ,φ)
so by combining    Ylm(θ,φ)  =  Θlm(θ)Φm(φ)  --  spherical harmonics (waves on flooded
plat)

and − + = −l l
h
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2 1( )    only fct of l  not m

spacing ~( l 2 + l )
zero E possible l  = 0 solution

each l  level  --  (2 l  + 1) degenerate

plot length of vector ~ Ψ 2
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Solution:     Ylm(θ,φ)
l    m
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Note:  $ $ , $ $H T=   [ ,H] = 0π  so expect solution to have parity
?????????



Angular Momentum
Classically    

r r r
L r p= ↔

the magnitude     L  = Iω           ω – angular freq

converting to K.E.:  
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but we got q.m.         E Il
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? = +   L  2 2 1h l l( )

on magnitude angular momentum       h l l ( )+ 1

so total ang mom     quantized ad operator is
$ ( )L Y Ym m
2 2 2 1Ψ Λ= − +h h l ll l     2

from before know $L iz = − h2 ƒ
ƒφ

$L Y mm m2 l lh=  Y

so both L2 & Lz are quantized (consumed) in 2-D particle on sphere problem or Ylm eigen
fct of L2 and Lz  --  [L

2, Lz]  =  0

INSERT GRAPH

-- space quantization know magnitude, direction restricted to core of precession

ang momentum vector 
r
L  must precess about some axis z,     L Lz ?

gives uncertainty in Lx, Ly

-- Clean why value of m restricted by l

*find [Lz, Lx]    0 etc     but [Lx, L
2]  =  0   ?

(work it out    ihLy)
point one can know one component of angular momentum and the total magnitude (not
omit)

How about 2 particles  _
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Clearly this is separable if V = 0, no interaction between the particles means solve each
independently:
Ψ  =  Ψ1(R, θ1, φ1) Ψ2(R, θ2, φ2)
Ε  =  ε1 + ε2

Rigid Rotor
Now what if we have a very high force binding the particles together at specific sep’n d



now only motion of interest is of m1   w/r/t   m2  –  relative motion
since d is fixed  _  rotation of whole body

INSERT PICTURE

Key change variables
X  =  m1x1 + m2x2/M
Y  =  m1y1 + m2y2/M         center of mass
Z  =  m1z1 + m2z2/M

M  =  m1 + m2

and   x  =  x2 – x1,   y  =  y2 – y1,   z  =  z2 – z1       µ = +
m m

m m
1 2

1 2

Levine 6.3

Then H M X Y Z x y z
= + +
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(Note:  Still no potential, V = 0 but B.C. R = d)  _  quant

6.4
Since not interested in motion of center of mass  _  it is solved by 3-D place were (not
quant)

INSERT GRAPH

Transform (x,y,z)  _  (r,θ,φ)   but note r = d = const
then solution just

H Y Yrr
d I JM J JMΨ Λ Ψ Λ Ε= = =− −h h2

2
2 2 2

ƒµ ƒ θ φ θ φ( , ) ( , )

this can describe rotation of rigid body T  =  µd2 (linear only)
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Note:  traditional to use J as angular momentum operator for rotation

E J Jm Il
h= +

2

2 1( )                    I = µd2                    gJ = 2J + 1

no dependence on m

∆E JJ J I− + +1
2

1( )( )h

levels expand and spacing between them increase linearly with J
YJM Ang. Mom. eigen fct     Since some problem:  JzYJM = MhYJM,  J2YJM = J(J + 1)h2YJM

Good model for molecular rotational spectroscopy – molecules with ???



∆E = hν = (J + 1)h2/I         for DJ = 1  selection rule
ν = (J + 1)h/2πI = 2B          B = h/4πI         (in cm-1   B = h/4πcI)
increase µ on d  _  I inc  _  ν dec
– for very light molecules (H-containing)
µ ~ 1 cm,  d ~ 0.1 nm
gives rise to absorptions in far-ir (10’s cm-1)
– heavier molecules  _  ν in microwave so termed µ-wave spectra
Spectra complex since B << kT so many J levels populated  _  Thermometer

Note:  measure DE _ I _ d if know µ for diatomic that is the molec geometry
– due to µ-wave technology this can be done with very high precision

Note:  polyatomic non-linear molecule has another dimension (rotation of linear about
axis  _  no moment)
thus need another quantum number (K-momentum about the figure axis) and spectra a bit
more complex
_  vib/rot   ∆J = 1 can lose energy not while gain vib handout.  Check data


