Rotational Motion (Ch. 5, Levine; Ch. 4 Atkins)
Previous example - particle constrained to a ring:
INSERT PICTURE
$\frac{-\hbar^{2}}{f \mathrm{~m}} \frac{f^{2}}{f \mathrm{x}^{2}}+\frac{f^{2}}{f \mathrm{y}^{2}} \downarrow \Psi \Psi=\mathrm{E} \Psi \quad-\mathrm{x}=\mathrm{R} \cos \phi$
$\frac{-\hbar^{2}}{f \mathrm{mR}^{2}} \frac{f^{2}}{f \phi^{2}} \Psi(\phi)=\mathrm{E} \Psi(\phi) \quad \mathrm{y}=\mathrm{R} \sin \phi$
$\Psi(\phi)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{\mathrm{im} \mathrm{\phi}}$
No dep of Ψ on R since R is const
$\mathrm{m}=0,1,2, \ldots$ from B.C. continuity
$\Psi(0)=\Psi(2 \pi)$
and substituting back: $E=m^{2} h^{2} / 2 I$
$\mathrm{I}=\mathrm{mR}^{2}$
moment of inertia

Meaning from
$L_{z}=x p y-y p x$
$==(-\mathrm{ih}) \overline{\mathrm{x}} \frac{f}{f \mathrm{y}}-\mathrm{y} \frac{f}{f \mathrm{x}} \downarrow$
$\mathrm{L}_{\mathrm{Z}}=(-\mathrm{ih}) \frac{f}{f \phi}$
angular momentum about z
$\mathrm{L}_{\mathrm{z}} \Psi_{\mathrm{m}}(\phi)=\mathrm{mh} \Psi_{\mathrm{m}}(\phi)$
so for this solution eigen fct of ang. mom. and sign of m indicates direction motion

INSERT PICTURES

[NOTE: $\Psi(\phi)=\mathrm{Ae}^{-\mathrm{m} \phi}+\mathrm{Be}^{+\mathrm{im} \mathrm{\phi}}$ perfectly okay but not eigen fct of L_{z}] same for $\sin (m \phi)$ or $\cos (m \phi)$
[NOTE: plotting $\cos \mathrm{m} \phi$ INSERT PICTURE may look like distrib non-uniform but $\Psi * \Psi=1 / 2 \pi \mathrm{e}^{\mathrm{im} \mathrm{\phi} \phi} \mathrm{e}^{-\mathrm{im} \mathrm{\phi}}-1 / 2 \pi \ldots$ const $\&$ uniform]
[NOTE: no zero point motion $\mathrm{m}=0 _\mathrm{p}\left\langle\mathrm{L}_{\mathrm{z}}\right\rangle=0, \phi$ numbers don't need curvature to fulfill bonding coord]

INSERT PICTURES

\# nodes increases $\omega / \mathrm{m}+\mathrm{E}_{\mathrm{m}}$ and so does $\left\langle\mathrm{L}_{\mathrm{z}}\right\rangle$
alternate up - plot amplitude of Ψ as radius at angle ϕ
symmetry $\Psi(\phi+\pi)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{\mathrm{i}(\phi+\pi) \mathrm{m}}=\mathrm{e}^{\mathrm{i} \pi \mathrm{m}} \Psi=(-1)^{\mathrm{m}} \Psi$
Now go to higher dimension - particle confined to sphere
$\mathrm{H} \Psi=\frac{-\hbar^{2}}{f \mathrm{~m}} \frac{f^{2}}{f \mathrm{x}^{2}}+\frac{f^{2}}{f \mathrm{y}^{2}}+\frac{f^{2}}{f \mathrm{z}^{2}} \downarrow \Psi \Psi=\frac{-\hbar^{2}}{f \mathrm{~m}} \quad{ }^{2} \Psi=\mathrm{E} \Psi$
but again since R constant can effectively reduce dimension (2 variables)

INSERT GRAPH

$\mathrm{x}=\mathrm{R} \sin \theta \cos \phi$
$y=R \sin \theta \sin \phi \quad(x, y, z) \quad(R, \theta, \phi)$
$\mathrm{z}=\mathrm{R} \cos \theta$
rearrangement of Laplacia (${ }^{2}$) into (R, θ, ϕ) coordinates

$$
2=\left(\frac{1}{R}\right) \frac{f^{2}}{f R^{2}} \sqrt{ } \mathrm{R}+\frac{-1}{\mathrm{R}^{2}} \sqrt{ } \Lambda^{2}
$$

Legendrian:
$\Lambda^{2}=\frac{1}{\sin ^{2} \theta} \overline{f^{2}} \underset{f \phi^{2}}{ } \downarrow+\frac{1}{(\sin \theta)}\left(\frac{f}{f \theta}\right) \sin \theta\left(\frac{f}{f \theta}\right)$
since R-fixed, terms in $\frac{f}{f \mathrm{R}} \bullet 0$

$$
\begin{aligned}
\mathrm{H} \Psi= & \frac{-\hbar^{2}}{f \mathrm{mR}^{2}} \Lambda^{2} \Psi=\mathrm{E} \Psi \\
& \Lambda^{2} \Psi(\theta, \phi)=-2 \mathrm{EI} / \hbar^{2} \downarrow \Psi(\theta, \phi) \quad \mathrm{I}=\mathrm{mR}^{2}
\end{aligned}
$$

This problem is separable, let $\Psi(\theta, \phi)=\Theta(\theta) \Phi(\phi)$
$\frac{\Theta(\theta)}{\sin ^{2} \theta} \frac{f^{2}}{f \phi^{2}} \Phi(\phi)=\frac{\Theta(\phi)}{\sin \theta} \frac{f}{f \theta} \sin \theta \frac{f}{f \theta} \Theta(\theta)=\frac{-2 \mathrm{EI}}{\hbar^{2}} \Theta(\theta) \Phi(\phi)$
divide by $\Psi(\theta, \phi)$, mult by $\sin ^{2} \theta: \frac{1}{\Phi} \frac{f^{2}}{f \phi^{2}} \Phi(\phi)=\frac{-\sin \theta}{\Theta(\theta)} \frac{f}{f \theta} \sin \theta \frac{f}{f \theta} \Theta(\theta)-\frac{2 \mathrm{EI}}{\hbar^{2}} \sin ^{2} \theta$ solve each independently
since fct of indep variables - set each equal to a const i - m
LHS: $\frac{f^{2}}{f \phi^{2}} \Phi=-\mathrm{m}^{2} \Phi \quad \Phi=\frac{1}{\sqrt{\pi \mathrm{e}}}^{-\mathrm{im} \phi} \quad \mathrm{m}=0,1,2, \ldots$
just like for particle on a ring

RHS - This is more complex and involves another power series solution done Levine pp 95ff

But again this equation is one solved by LeGendre and his solution well-known (at least in $19^{\text {th }}$ cent!)
$\Theta_{\ell \mathrm{m}}(\theta)=\mathrm{p}_{\ell}^{|\mathrm{m}|}(\cos \theta)$
$\mathrm{p}_{\ell}^{|\mathrm{m}|}$ Legendre polynomial
$1=0,1,2, \ldots$
$\mathrm{m}=0,1,2, \ldots, \ell \quad$ limit on m
Normally we write $\Lambda^{2} \mathrm{Y}_{\mathrm{lm}}(\theta, \phi)=-\ell(\ell+1) \mathrm{Y}_{\operatorname{lm}}(\theta, \phi)$
so by combining $\quad \mathrm{Y}_{\mathrm{lm}}(\theta, \phi)=\Theta_{\mathrm{lm}}(\theta) \Phi_{\mathrm{m}}(\phi)$-- spherical harmonics (waves on flooded plat)
and $-\ell(\ell+1)=\frac{-2 \text { EI }}{\hbar^{2}}$
$\mathrm{E}_{\ell}=\frac{\hbar^{2}}{2 \mathrm{I}} \ell(\ell+1) \quad$ only fct of ℓ not m
spacing $\sim\left(\ell^{2}+\ell\right)$
zero E possible $\ell=0$ solution
each ℓ level -- $(2 \ell+1)$ degenerate
plot length of vector $\sim|\Psi|^{2}$

INSERT PICTURES

Solution: $\quad \underline{Y_{m}}(\theta, \phi)$
$\ell \mathrm{m}$
$00 \quad \mathrm{Y} \sqrt{2 \pi}$
$10 \quad \frac{1}{2}(3 / \pi)^{1 / 2} \cos \theta$
$\pm 1 \quad \mp \frac{1}{2}(3 / \pi)^{1 / 2} \sin \theta \mathrm{e}^{ \pm \mathrm{i} \phi}$
$20 \quad \frac{1}{4}(5 / \pi)^{1 / 2}\left(3 \cos ^{2} \theta-1\right)$
$\pm 1 \quad \mp \frac{1}{2}(15 / 2 \pi)^{1 / 2} \cos \theta \sin \theta \mathrm{e}^{ \pm i \phi}$
$\pm 2 \quad \frac{1}{4}(15 / 2 \pi)^{1 / 2} \sin ^{2} \theta \mathrm{e}^{ \pm 2 i \phi}$
Note: $\hat{\mathrm{H}}=\hat{\mathrm{T}},[\hat{\pi}, \hat{\mathrm{H}}]=0$ so expect solution to have parity ?????????

Angular Momentum
Classically $\quad \overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \leftrightarrow \overrightarrow{\mathrm{p}}$
the magnitude $\quad|\mathrm{L}|=\mathrm{I} \omega \quad \omega$ - angular freq
converting to K.E.: $\frac{|\mathrm{I} \omega|^{2}}{2 \mathrm{I}}=|\mathrm{L}|^{2} / 2 \mathrm{I}$
but we got q.m. $\quad \mathrm{E}_{\ell}=\hbar^{2} / 2 \mathrm{I} \quad \ell(\ell+1)$
? $\quad|\mathrm{L}|^{2}=\hbar^{2} \ell(\ell+1)$
on magnitude angular momentum $\quad \hbar \sqrt{\ell(\ell+1)}$
so total ang mom quantized ad operator is
$\hat{\mathrm{L}}^{2} \Psi=-\hbar^{2} \Lambda^{2} \mathrm{Y}_{\ell \mathrm{m}} \quad \hbar^{2} \ell(\ell+1) \mathrm{Y}_{\ell \mathrm{m}}$
from before know $\hat{\mathrm{L}}_{\mathrm{Z}}=-\mathrm{i} \hbar^{2} \frac{f}{f \phi}$
$\hat{\mathrm{L}}_{2} \mathrm{Y}_{\ell \mathrm{m}}=\mathrm{m} \hbar \mathrm{Y}_{\ell \mathrm{m}}$
so both $L^{2} \& L_{z}$ are quantized (consumed) in 2-D particle on sphere problem or $Y_{l m}$ eigen fct of L^{2} and $L_{z}--\left[L^{2}, L_{z}\right]=0$

INSERT GRAPH

-- space quantization know magnitude, direction restricted to core of precession ang momentum vector $\overrightarrow{\mathrm{L}}$ must precess about some axis $\mathrm{z}, \quad\left|\mathrm{L}_{\mathrm{z}}\right|$? $|\mathrm{L}|$ gives uncertainty in L_{x}, L_{y}
-- Clean why value of m restricted by 1
*find $\left[\mathrm{L}_{\mathrm{z}}, \mathrm{L}_{\mathrm{x}}\right] 0$ etc \quad but $\left[\mathrm{L}_{\mathrm{x}}, \mathrm{L}^{2}\right]=0$?
(work it out ihL ${ }_{y}$)
point one can know one component of angular momentum and the total magnitude (not omit)

How about 2 particles

$$
\mathrm{H}_{2}=\frac{-\hbar^{2}}{f \mathrm{~m}_{1}} \frac{f^{2}}{f \mathrm{x}_{1}^{2}}+\frac{f^{2}}{f \mathrm{y}_{1}^{2}}+\frac{f^{2}}{f \mathrm{z}_{1}^{2}} \sqrt[V]{ }-\frac{\hbar^{2}}{f \mathrm{~m}_{2}} \frac{f^{2}}{f \mathrm{x}_{2}^{2}}+\frac{f^{2}}{f \mathrm{y}_{2}^{2}}+\frac{f^{2}}{f \mathrm{z}_{2}^{2}} \sqrt[V]{ }
$$

Clearly this is separable if $\mathrm{V}=0$, no interaction between the particles means solve each independently:
$\Psi=\Psi_{1}\left(\mathrm{R}, \theta_{1}, \phi_{1}\right) \Psi_{2}\left(\mathrm{R}, \theta_{2}, \phi_{2}\right)$
$\mathrm{E}=\varepsilon_{1}+\varepsilon_{2}$

Rigid Rotor

Now what if we have a very high force binding the particles together at specific sep'n d
now only motion of interest is of $m_{1} \mathrm{w} / \mathrm{r} / \mathrm{t} \quad \mathrm{m}_{2}-$ relative motion since d is fixed _ rotation of whole body

INSERT PICTURE

Key change variables
$\mathrm{X}=\mathrm{m}_{1} \mathrm{X}_{1}+\mathrm{m}_{2} \mathrm{X}_{2} / \mathrm{M}$
$Y=m_{1} y_{1}+m_{2} y_{2} / M \quad$ center of mass
$\mathrm{Z}=\mathrm{m}_{1} \mathrm{Z}_{1}+\mathrm{m}_{2} \mathrm{Z}_{2} / \mathrm{M}$
$\mathrm{M}=\mathrm{m}_{1}+\mathrm{m}_{2}$
and $\mathrm{x}=\mathrm{x}_{2}-\mathrm{x}_{1}, \quad \mathrm{y}=\mathrm{y}_{2}-\mathrm{y}_{1}, \quad \mathrm{z}=\mathrm{z}_{2}-\mathrm{z}_{1} \quad \mu=\frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}$

Levine 6.3

Then $\mathrm{H}=\frac{-\hbar^{2}}{f \mathrm{M}} \frac{f^{2}}{f \mathrm{X}^{2}}+\frac{f^{2}}{f \mathrm{Y}^{2}}+\frac{f^{2}}{f \mathrm{Z}^{2}} \sqrt{ } \sqrt{ }-\frac{\hbar^{2}}{f \mu} \frac{f^{2}}{f \mathrm{X}^{2}}+\frac{f^{2}}{f \mathrm{y}^{2}}+\frac{f^{2}}{f \mathrm{Z}^{2}} \sqrt{ } \sqrt{ }$
(Note: Still no potential, $\mathrm{V}=0$ but B.C. $\mathrm{R}=\mathrm{d}$) _ quant
6.4

Since not interested in motion of center of mass _ it is solved by 3-D place were (not quant)

INSERT GRAPH

Transform ($\mathrm{x}, \mathrm{y}, \mathrm{z})_{-}(\mathrm{r}, \theta, \phi)$ but note $\mathrm{r}=\mathrm{d}=\mathrm{const}$
then solution just
$\mathrm{H}_{\mathrm{rr}} \Psi=\frac{-\hbar^{2}}{f \mu \mathrm{~d}^{2}} \Lambda^{2} \Psi=\frac{-\hbar^{2}}{f \mathrm{I}} \Lambda^{2} \mathrm{Y}_{\mathrm{JM}}(\theta, \phi)=\mathrm{E}_{\mathrm{J}} \mathrm{Y}_{\mathrm{JM}}(\theta, \phi)$
this can describe rotation of rigid body $\mathrm{T}=\mu \mathrm{d}^{2}$ (linear only)

INSERT PICTURES

Note: traditional to use J as angular momentum operator for rotation
$\mathrm{E}_{\ell \mathrm{m}}=\frac{\hbar^{2}}{2 \mathrm{I}} \mathrm{J}(\mathrm{J}+1) \quad \mathrm{I}=\mu \mathrm{d}^{2} \quad \mathrm{~g}_{\mathrm{J}}=2 \mathrm{~J}+1$
no dependence on m
$\Delta \mathrm{E}_{\mathrm{J}-\mathrm{J}+1}(\mathrm{~J}+1)\left(\frac{\hbar^{2}}{\mathrm{I}}\right)$
levels expand and spacing between them increase linearly with J
$Y_{J M}$ Ang. Mom. eigen fct Since some problem: $J_{Z} Y_{J M}=M h Y_{J M}, J^{2} Y_{J M}=J(J+1) h^{2} Y_{J M}$
Good model for molecular rotational spectroscopy - molecules with ???
$\Delta \mathrm{E}=\mathrm{h} v=(\mathrm{J}+1) \mathrm{h}^{2} / \mathrm{I} \quad$ for $\mathrm{DJ}=1$ selection rule
$v=(\mathrm{J}+1) \mathrm{h} / 2 \pi \mathrm{I}=2 \mathrm{~B} \quad \mathrm{~B}=\mathrm{h} / 4 \pi \mathrm{I} \quad$ (in cm ${ }^{-1} \quad \mathrm{~B}=\mathrm{h} / 4 \pi \mathrm{cI}$)
increase μ ond _I inc $\quad v$ dec

- for very light molecules (H-containing)
$\mu \sim 1 \mathrm{~cm}, \mathrm{~d} \sim 0.1 \mathrm{~nm}$
gives rise to absorptions in far-ir (10 's cm^{-1})
- heavier molecules _ v in microwave so termed μ-wave spectra

Spectra complex since $\mathrm{B} \ll \mathrm{kT}$ so many J levels populated _ Thermometer
Note: measure $\mathrm{DE}_{-} \mathrm{I} _$d if know μ for diatomic that is the molec geometry - due to μ-wave technology this can be done with very high precision

Note: polyatomic non-linear molecule has another dimension (rotation of linear about axis _ no moment)
thus need another quantum number (K-momentum about the figure axis) and spectra a bit more complex
_ vib/rot $\Delta \mathrm{J}=1$ can lose energy not while gain vib handout. Check data

