```
Particle-no potential
Wave solution-continuous wavelength/Energy
Since only (T=H) KE _ \([\mathrm{H}, \mathrm{p}]=0\)
And particle has conserved momentum (Classical no Force)
INSERT EQN
```

Add potential - E, λ no longer continuous quantization from B.C. (restrict motion)
1.
$\mathrm{V}=$ Const. But restricted in space:
-- ∞ box-artificial but good model to illustrate
E - number of wavelengths in box (curvature)
Must be half integral $\left(_(0)=_(L)=0\right)$ so quantize
-- circular box _ same picture but integer wavelength _ continuous first de??? or no double value _(2π)= _(?????

Becomes eigen function Lz

--multidimensional box _ final degeneracy as a function of symmetry
[if $x=y$ then excitation along x and y must have the same impact]
provides great example of separation of variables summed H, E _ product _ works because coordinates are independent

Now if potential not infinite still have B.C. lent these are ones related to first postulate in that _ must be contiuous etc., and $\int_{-} * y=N$
Also expect continouity between problem with $\mathrm{V}=\infty$ and $\mathrm{V}=$ very large _ steady change as walls???

Atkins 2.3 and 2.5

1. General aspects of Schröedinger's Eqn

INSERT EQN
_ derived to correspond to classical mech, not contain "pure gin" prop such as spin
_ also no relativistic connection
Now looking at time dependence-not a wave eqn
From classical point of view wave equation time/space both second de??? form is diffusion equation
(does tell us what particle does in moving)
for $H \neq H(t)$
Separation: $\phi(\mathrm{x}, \mathrm{t})=\phi(\mathrm{x}) \mathrm{e}^{-\mathrm{iEt} / \mathrm{K}}$
Time indep part: $\mathrm{H} \phi(\mathrm{x})=\mathrm{E} \phi(\mathrm{x})$ _ standing wave equation
i.e. wave equation from spatial point

Time dep part: just a phase 1 _ $\mathrm{i} _1_{-} \mathrm{i} _1_{-} ? ? ? ?$
Trick here is to remember that all measurement use $\phi^{*} \phi($ prob $) \phi^{*} \alpha \phi$ (prob. meas. α)
So phase cancels: $\mathrm{e}^{\mathrm{iEt} / \mathrm{K}} * \mathrm{e}^{-\mathrm{iEt/K}}=1$
So have _ * _ = _ $(\mathrm{x})^{*}$ _ $(\mathrm{x}) \neq \mathrm{f}(\mathrm{t})$ - stationary state
2. Quantization - big difference from classical - Energy not continous (??)
rearrange: INSERT EQN curvature
-- V=E on _= 0 _ no curvature INSERT DRAWING
$--\quad \neq 0$, curvature \sim V-E _ sign change:
all of this makes the function oscillate (wave) so the potential - causes the wave behavior but also leads to the bounds because $\int_{-}{ }_{-} d T=N$
INSERT GRAPH
In order to get the _ _ 0 behavior
Slope at x for V-E ~ must be limited-not all shapes
Only a few will give _ _ 0 both sides potential contains the ???????? particle

Particle in a finite well: INSERT GRAPH
INSERT EQN
at boundary $\Psi(0), \mathrm{E}<\mathrm{V}_{0}$ so have change from $\mathrm{E}>\mathrm{V}$ to $\mathrm{E}<\mathrm{V}$

- curvature must change at wall from (-) to (+) from $\Psi(+)$
- Restriction to be finite $\mathrm{e}^{+\mathrm{kx}} \quad(\mathrm{x}<0)$ damp
- in II - $\Psi(+),(\mathrm{V}-\mathrm{E})$ _ curvature

INSERT GRAPH
Now at $\Psi(\mathrm{L})$ _ change sign curvature again to (+) quantization _ only contain $\Psi(\mathrm{L})$ values lead to proper damping _ other integral \# λ 's fit $\mathrm{Y}=0$ _ zero curve so opp curve $\Psi(+)$ and $\Psi(-)$

Putting together the sides of I II, and II III requires finding the amplitude of the function at $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{L}_{\mathrm{Z}} \mathrm{x}=0: \mathrm{C}=\mathrm{A}$
INSERT EQN

Now what is unusual is that the constants are functions of the energy levels - pib _ only of L
so ratioing INSERT EQN
give a complex function that could be solved for E
INSERT EQN
Point: this solved only for certain values of E

Handout

Kangman, p. 191, figure plot both sides find intersection

- regular spacing violated - pib - expand $\sim \mathrm{k}^{2}$, have \sim const (amide)
- number of levels limited: INSERT EQN (max level)
$-\mathrm{E}>\mathrm{V}$ get continuum, unbound states

What about inverting the problem - tunnelling?
INSERT GRAPH
so now particle in Region I can approach II and see a wall $\left(\mathrm{V}_{0}\right)$

INSERT EQN
INSERT EQN
so have plane wave solution in each part:
$\Psi_{\mathrm{p}}=\mathrm{A}_{\mathrm{p}} \mathrm{e}^{+\mathrm{ikx}}+\mathrm{B}_{\mathrm{p}} \mathrm{e}^{-\mathrm{ikx}} \quad \mathrm{p}=\mathrm{I}$, II, III

INSERT EQN

INSERT EQN
now if $\mathrm{E}<\mathrm{V}_{0}$ _ classically particle bounces back and does not penetrate barrier (stays on one side)
but $\mathrm{k}_{\text {II }}=$ imagine $=\mathrm{iK} \quad$ INSERT EQN
$\Psi_{\text {II }}=\mathrm{A}_{\mathrm{II}} \mathrm{e}^{-\mathrm{Kx}}+\mathrm{B}_{\mathrm{II}} \mathrm{e}^{+\mathrm{Kx}}$
so in barrier _ function decays and grows exp but does not oscillate
as width on height increases $-\mathrm{B}_{\mathrm{II}-} 0$ since clearly $\mathrm{Y}_{\mathrm{II}-} 0$ (inside barrier)
but _ thin barrier not yet zero and if thin enough will be some probability on other side (tunnel)
ex 1 eV electron in 2 V barrier
decays $\sim \mathrm{e}^{-5.12(\mathrm{X} / \mathrm{mm})}$ so decays $\sim 1 / \mathrm{e}$ in 0.2 nm
Thin barrier $B_{\text {II }} \neq 0$ since rising function stays finite inside
$X=0: \quad A_{I}+B_{I}=A_{I I}+B_{I I}$
$A e^{i k l}+B e^{-i k l}=A_{E} e^{-k l}+B_{I I} e^{-k l}$
now have 4 eqn and 6 unknowns _ if assume specific case of particle approaching barrier from left (momentum right)

Then know $B_{\text {III }}=0$ (i.e. particles right of barrier only to risk) but cannot set $B_{I}=0$ since could reflect.

Now: INSERT EQN _ probability of reflection
INSERT EQN _ probability of penetration (tunnel)

Transmission probi/Ag INSERT EQN turns out

Correspondence with classical:
How work:

1. as \underline{V} increase $\quad G \sim V e$ INSERT EQN ${ }_{-} \infty$, and $P_{-} 0$

So high barrier _ no transmission
2. as L increase $^{G} \sim \mathrm{e}^{\mathrm{KL}}{ }_{-} \infty, \mathrm{P}_{-} 0$, so wide barrier _ no transmission
3. note: as \underline{m} increase, G inc we ${ }^{t \mathrm{tm}_{-}}$and $\mathrm{P}_{-} 0$
4. as E increases _ $G \sim$ INSERT EQN _ 0 , so very high energy $P_{\text {_ }}$ non zero (eg. Like bullet on better β particle)
so if E suff and V,L small oscillary (line mom.) mave/ part ????? strike wall from left, part penetrate damp, rearrange with reduced amplitude $\mathrm{A}_{\mathrm{III}}$
antitunnelling (analogy to reflection when change indep)
for $\mathrm{E}>\mathrm{V}$ classically $\mathrm{P}=1$ but with $\mathrm{QM} \mathrm{P}<1$, some reflection due to V

