Review Model Problems

Particle—no potential Wave solution—continuous wavelength/Energy Since only (T=H) KE $_{[H,p]} = 0$ And particle has conserved momentum (Classical no Force) **INSERT EQN**

Add potential – E, no longer continuous quantization from B.C. (restrict motion)

- 1.
- V = Const. But restricted in space:
- -- box-artificial but good model to illustrate
- E number of wavelengths in box (curvature)
- Must be half integral ((0)=(L)=0) so quantize

-- circular box _ same picture but integer wavelength _ continuous first de??? or no double value _(2)= _(????

Becomes eigen function Lz

--multidimensional box _ final degeneracy as a function of symmetry

[if x=y then excitation along x and y must have the same impact]

provides great example of separation of variables summed H, E _ product _ works because coordinates are independent

Now if potential not infinite still have B.C. lent these are ones related to first postulate in that _ must be continuous etc., and $_*y = N$ Also expect continuouty between problem with V = and V = very large _ steady change as walls???

Atkins 2.3 and 2.5 1. General aspects of Schröedinger's Eqn **INSERT EQN**

_ derived to correspond to classical mech, not contain "pure gin" prop such as spin

_ also no relativistic connection

Now looking at time dependence-not a wave eqn

From classical point of view wave equation time/space both second de??? form is diffusion equation

(does tell us what particle does in moving)

for H = H(t)

Separation: $(x,t) = (x)e^{-iEt/K}$ Time indep part: H(x) = E(x) standing wave equation i.e. wave equation from spatial point Time dep part: just a phase $1_i 1_i 1_i 1_i 2???$ Trick here is to remember that all measurement use * (prob) * (prob. meas.) So phase cancels: $e^{iEt/K} * e^{-iEt/K} = 1$ So have $_* = (x)*_(x)$ f(t) – stationary state

2. Quantization – big difference from classical – Energy not continous (??) rearrange: **INSERT EQN** curvature

-- V=E on _ = 0 _ no curvature **INSERT DRAWING**

-- _ 0, curvature ~ V-E _ sign change: all of this makes the function oscillate (wave) so the potential – causes the wave behavior but also leads to the bounds because $_*_dT = N$

INSERT GRAPH

In order to get the _ _ 0 behavior

Slope at x for V-E ~ must be limited—not all shapes

Only a few will give _ _ 0 both sides potential contains the ???????? particle

Particle in a finite well: **INSERT GRAPH INSERT EQN**

at boundary (0), $E < V_0$ so have <u>change</u> from E > V to E < V

- curvature must change at wall from (-) to (+) from (+)

- Restriction to be finite e^{+kx} (x < 0) <u>damp</u>

- in II - (+), (V - E) _ curvature

INSERT GRAPH

Now at (L) _ change sign curvature again to (+) quantization _ only contain (L) values lead to proper damping _ other integral # 's fit Y = 0 _ zero curve so opp curve (+) and (-)

Putting together the sides of I II, and II III requires finding the <u>amplitude</u> of the function at x = 0 and $x = L_x = 0$: C = A**INSERT EQN** Now what is unusual is that the constants are functions of the <u>energy levels</u> – pib _ only of L

so ratioing **INSERT EQN**

give a complex function that could be solved for E

INSERT EQN

Point: this solved only for certain values of E

Handout

Kangman, p. 191, figure plot both sides find intersection

- regular spacing violated - pib - expand $\sim k^2$, have \sim const (amide)

- number of levels limited: **INSERT EQN** (max level)

-E > V get continuum, <u>unbound</u> states

What about inverting the problem – tunnelling? INSERT GRAPH

so now particle in Region I can approach II and see a wall (V₀)

INSERT EQN INSERT EQN

so have plane wave solution in each part:

$$_{p} = A_{p}e^{+ikx} + B_{p}e^{-ikx}$$
 $p = I, II, III$
INSERT EQN
INSERT EQN

now if $E < V_0$ _ classically particle bounces back and does not penetrate barrier (stays on one side)

but $k_{II} = imagine = iK$ **INSERT EQN**

 $\mathbf{II} = \mathbf{A}_{\mathbf{II}}\mathbf{e}^{\mathbf{K}\mathbf{X}} + \mathbf{B}_{\mathbf{II}}\mathbf{e}^{\mathbf{K}\mathbf{X}}$

so in barrier _ function decays and grows exp but does not oscillate

as width on height increases $-B_{II} = 0$ since clearly $Y_{II} = 0$ (inside barrier)

<u>but</u> _ thin barrier not yet zero and if thin enough will be some probability on other side (tunnel)

ex 1eV electron in 2V barrier decays ~ $e^{-5.12(x/nm)}$ so decays ~1/e in 0.2 nm Thin barrier B_{II} 0 since rising function stays finite inside X = 0: $A_I + B_I = A_{II} + B_{II}$ $Ae^{ikl} + Be^{-ikl} = A_E e^{-kl} + B_{II} e^{-kl}$ now have 4 eqn and 6 unknowns _ if assume specific case of particle approaching barrier from left (momentum right)

Then know $B_{III} = 0$ (i.e. particles right of barrier only to risk) but cannot set $B_I = 0$ since <u>could reflect</u>.

Now: **INSERT EQN** _ probability of <u>reflection</u> **INSERT EQN** _ probability of penetration (tunnel)

Transmission probi/Ag INSERT EQN turns out

Correspondence with classical:

How work:

1. as <u>V increase</u> _ G ~ Ve **INSERT EQN** _ , and P _ 0

So <u>high barrier</u> _____ no transmission

2. as <u>L increase</u> $G \sim e^{KL}$ _ , P _ 0, so wide barrier _ no transmission

3. note: as <u>m increase</u>, G inc wetm and P $_ 0$

4. as <u>E increases</u> $G \sim INSERT EQN _ 0$, so very <u>high energy</u> P _ non zero (as Like bullet on better _ particle)

(eg. Like bullet on better particle)

so if E suff and V,L small oscillary (line mom.) mave/ part ????? strike wall from left, part penetrate damp, rearrange with reduced amplitude A_{III}

antitunnelling (analogy to reflection when change indep) for E > V classically P = 1 but with QM P<1, some reflection due to V