Harmonic Oscillator - Levine Ch 4/Atkins 3.5/R\&S 5.1/Dykstra 2.2

Talked about ∞ potential wells and finite ones now ∞ well with sloping sides:
$\mathbf{V}=(\mathbf{1} / \mathbf{2}) \mathbf{k x ^ { 2 }}$ so $\mathrm{V}=\infty$ only at $\mathrm{x}=\infty$, since $\mathrm{V}(\mathrm{x})$ is finite expect:
a. $\Psi(\mathrm{x})$ penetrate walls but then damp to zero on both sides (finite)
b. in between walls $\Psi(\mathrm{x})$ must be nonzero for some x ,
so $\Psi(\mathrm{x})$ must have curvature $\rightarrow \mathrm{T} \neq 0 \rightarrow$ zero point E
c. solutions must oscillate with \# nodes increasing with increasing E
d. as k inc $\boldsymbol{\rightarrow} \mathrm{V}$ and T inc \rightarrow zero point E will increase
as k decrease $\rightarrow \Psi(\mathrm{x})$ becomes continuum state ($\mathrm{V} \sim$ const., flat)
e. as v n (q.n.) increase \rightarrow nodes inc $\rightarrow \mathrm{T}$ inc $\rightarrow \mathrm{V}$ inc, results in more time at turning points, contrast to particle in box, more like classic harmonic oscillator. Insert Graph
Solution-can read about details in text (Levine 4.2)
$==>H \Psi(\mathbf{x})=(\mathbf{T}+\mathbf{V}) \Psi(\mathbf{x})=\left[-\left(\mathbf{h}^{2} / 2 \mathrm{~m}\right) \mathbf{d}^{2} / \mathbf{d x}^{2}+\mathrm{kx}^{2} / 2\right] \Psi(\mathbf{x})=\mathbf{E} \Psi(\mathbf{x})$
$-\left(\underline{h}^{2} / 2 \mathrm{~m}\right)\left[\mathrm{d}^{2} / \mathrm{dx}^{2}+\alpha^{2} \mathrm{x}^{2}\right] \Psi(\mathrm{x})=\mathrm{E} \Psi(\mathrm{x})$ where $\alpha^{2}=\mathrm{mk} / \underline{h}^{2}$
$\left[\mathrm{d}^{2} / \mathrm{dx}^{2}+\left(2 \mathrm{mE} / \underline{h}^{2}-\alpha^{2} \mathrm{x}^{2}\right)\right] \Psi(\mathrm{x})=0 \quad$ again recall $\underline{\mathrm{h}}=\mathrm{h} / 2 \pi$
Recall that solutions $\Psi(x)$ must damp to zero as x increase (pass barrier)
One way to do this is multiply oscillating function by $\exp \left(-\alpha x^{2} / 2\right)$
form $\mathbf{e}^{-\mathrm{cx}}-$ would damp, but need x^{2} for $\pm \mathrm{x}$ sym. (even) ($\mathrm{c}=\alpha / 2$ arbitrary)

If $\Psi(x)=e^{-\alpha x 2 / 2} f(x)$ then second derivative above reduces to: $\left[\mathbf{d}^{2} / \mathbf{d} \mathbf{x}^{2}\right] \Psi(x)=$

$$
\exp \left(-\alpha x^{2} / 2\right)\left[\left(\alpha^{2} x^{2}\right) f(x)+2(-\alpha x) f(x)(d f / d x)-\alpha f(x)+\left(d^{2} f / d x^{2}\right)\right]
$$

Now could eliminate $\exp \left(-\alpha x^{2} / 2\right)$ from Schroedinger Eqn since in each term: $\left(\alpha x^{2}\right) f(x)+2(-\alpha x) f(x)[d f / d x]-\alpha f(x)+\left[d^{2} f / d x^{2}\right]+\left(2 m E / \underline{h}^{2}-\alpha^{2} \mathbf{x}^{2}\right) f(x)=0$ Results in $2^{\text {nd }}$ order eqn: $\left[\mathbf{d}^{2} \mathbf{f} / \mathbf{d x}^{2}\right]-\mathbf{2}(\alpha \mathbf{x}) \mathbf{f}(\mathbf{x})[\mathbf{d f} / \mathbf{d x}]+\left(2 \mathrm{mE} / \underline{\mathbf{h}}^{2}-\alpha\right) \mathbf{f}(\mathbf{x})=\mathbf{0}$

This can be solved with a power series solution : $\mathrm{f}(\mathrm{x})=\Sigma \mathrm{c}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}$

Solution has parity $\Psi(x)=e^{-a x 2 / 2}\left[c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots\right]$
As it must, $[\Pi, H]=0 \quad$ since $V=(1 / 2) \mathrm{kx}^{2} \rightarrow$ even

Oscillation will develop from the relative signs of c's for powers of x Solution known as Hermite polynomials to this form differential eqn $\Psi_{v}(x)=N_{v} \exp \left(-\alpha x^{2} / 2\right) H_{v}(x)=N_{v} \exp \left(-y^{2} / 2\right) H_{v}(y) \quad-$ where $y=\alpha^{1 / 2} \mathbf{x}$ $\mathrm{H}_{0}(\mathrm{y})=1 \quad \mathrm{H}_{4}(\mathrm{y})=16 \mathrm{y}^{4}-48 \mathrm{y}^{2}+12$
$\mathrm{H}_{1}(\mathrm{y})=2 \mathrm{y} \quad \mathrm{H}_{5}(\mathrm{y})=32 \mathrm{y}^{5}-160 \mathrm{y}^{3}+120 \mathrm{y}$

> even
$\mathrm{H}_{2}(\mathrm{y})=4 \mathrm{y}^{2}-2 \quad \mathrm{H}_{6}(\mathrm{y})=64 \mathrm{y}^{6}-480 \mathrm{y}^{4}+720 \mathrm{y}^{2}-120$ odd
$\mathrm{H}_{3}(\mathrm{y})=8 \mathrm{y}^{3}-12 \mathrm{y}$
$\mathrm{H}_{7}(\mathrm{y})=128 \mathrm{y}^{7}-1344 \mathrm{y}^{5}+3360 \mathrm{y}^{3}-1680 \mathrm{y}$
even
INSERT GRAPH
See term oscillate in sign-causes oscillation of $\Psi_{v}(x)$
$\mathrm{v}=0$ just exponential decay from 1 at $\mathrm{x}=0$
$\mathrm{v}=1$ odd, $\Psi=0$ at $\mathrm{x}=0$ then inc + and - and damp with opposite sign curvature $v=2$ even $-\Psi=-2$ at $x=0$, then curve positive $(E>V)$, but as x inc. $4 y^{2}>|-2|$ so Ψ becomes (+), opposite curvature then needed for decay--oscillation INSERT GRAPH
As v inc amplitude grows when $\mathrm{E} \sim \mathrm{V}$ (i.e. $\mathrm{T} \sim 0$) called turning point, classically, in q.m. this is due to higher powers increasing faster than lower ones.

Solving the equation: $\mathrm{E}_{\mathrm{u}}=(\mathrm{v}+1 / 2) \mathrm{h} \nu \rightarrow v=(1 / 2 \pi) \sqrt{ } \mathrm{k} / \mathrm{m}$ or $\alpha=2 \pi \nu \mathrm{~m} / \underline{h}$

INSERT GRAPH

So see steady, uniform increase of E with v
With $\Delta \mathrm{E}=\mathrm{E}_{\mathrm{v}+1}-\mathbf{E}_{\mathrm{v}}=\mathbf{h} v$, where v is the frequency of the oscilllator $\mathrm{v}=0 \rightarrow \mathrm{E}_{0}=\mathrm{h} v / 2$ - zero point energy, continually oscillating or $\mathrm{T} \neq 0$ so $\langle | \mathrm{p}^{2} \mid>\neq 0$ so need $\langle | \mathrm{x}^{2} \mid>\neq 0$ which fits the uncertainty principle

Balls on springs or pendulums are nice, but can we use this for chemistry?
Harmonic Oscillator is a good model for vibration of molecules

INSERT GRAPH

Potential energy, diatomic: $\mathrm{U}(\mathrm{R})=<\mathrm{H}_{\mathrm{el}}(\mathrm{R})>+\mathrm{Vnn}(\mathrm{R})$ where Vnn nuclear repulse
Electrons hold atoms together nuclei repell $(+\leftarrow \rightarrow+$) keep atoms from collapse
At long distance this approaches Energy of 2 atoms- arbitrary zero At short distance, repulsion dominate $-\mathrm{U}_{\mathrm{eq}} \rightarrow$ lowest energy at R_{eq} Approximate bottom of well as parabola $\mathbf{U}(\mathbf{R}) \sim(\mathbf{1} / \mathbf{2}) \mathbf{k}(\Delta \mathbf{R})^{2}$ where $\Delta R=R-R_{\mathrm{eg}}$ "harmonic approximation" -- (note power series expansion):
$\mathbf{U}(\mathbf{R})=\mathbf{U}(\mathbf{R})+\mathbf{d U} /\left.\mathbf{d R}\right|_{\mathbf{R e}}\left(\mathbf{R}-\mathbf{R}_{\mathrm{e}}\right)+(\mathbf{1} / \mathbf{2}) \mathbf{d}^{\mathbf{2}} \mathbf{U} /\left.\mathbf{d R} \mathbf{R}^{2}\right|_{\mathbf{R e}}\left(\mathbf{R}-\mathbf{R}_{\mathrm{e}}\right)^{\mathbf{2}}+\ldots$
First term const, second zero at minimum, so the third tem is lowest order non-zero, non-constant term gives rise to harmonic motion

Higher terms eg. $\mathrm{d}^{3} \mathrm{U} /\left.\mathrm{dR}^{3}\right|_{\mathrm{Re}}\left(\mathrm{R}-\mathrm{R}_{\mathrm{e}}\right)^{3}$ etc --Anharmonic corrections
Kinetic energy must be modified since vibration is relative motion not interested in translation so reduce coordinates to $\mathbf{q}=\Delta R=R-R_{e_{-}}$1-D

And mass term modifies to: $\mu=\left(\mathbf{m}_{1} \mathbf{m}_{2} / \mathbf{m}_{1}+\mathbf{m}_{2}\right)-$ which is reduced mass

$$
\mathbf{H}_{\mathrm{vib}} \Psi_{\mathrm{v}}(\mathbf{q})=\left[-\left(\underline{h}^{2} / 2 \mu\right) \mathbf{d}^{2} / \mathbf{d q}^{2}+\mathrm{kq} \mathbf{q}^{2} / 2 \Psi_{\mathrm{v}}(\mathbf{q})=\mathbf{E} \Psi_{\mathrm{v}}(\mathbf{q})\right.
$$

Solution just as before $\mathrm{E}_{\mathrm{o}}(\mathrm{v}+1 / 2) \mathrm{h} \nu$
extent $\mathrm{U}(\mathrm{R}) \sim \mathrm{kq}^{2} / 2$ get even spacing of levels $\Delta \mathrm{E}=\mathrm{h} v$, where v freq vib If differ from this, get anharmonic correction, $\Delta \mathrm{E}<\mathrm{h} \nu$, spacings collapse This happens at top of potential where curve bends to allow dissociation

IR spectroscopy (handwaving insight only - details Chem 543) electric field of light leads to a resonant oscillator when $v_{\text {light }}=v_{\text {vib }}$ if molecule has a change $(\mathbf{d} \mu / \mathbf{d q} \neq \mathbf{0})$ in electric dipole moment (μ)
classically this causes molecule to have larger amplitude

- in q.m. this leads to a change in quantum number, v , and energy E_{v}

Harmonic oscillator: $\Delta \mathbf{v}= \pm \mathbf{1}=\mathbf{v}-\mathbf{v}^{\mathbf{\prime}}$ only $+\rightarrow$ absorption, $-\rightarrow$ emission

$$
\Delta \mathbf{E}=(\mathbf{v}+\mathbf{1} / \mathbf{2}) \mathbf{h} v-\left(\mathbf{v}^{\prime}+\mathbf{1} / \mathbf{2}\right) \mathbf{h} v=\mathbf{h} v-- \text { all allowed transitions overlap }
$$

IR spectrum $\mathrm{v}=0 \rightarrow \mathrm{v}^{\prime}=1$ (fundamental) yields the frequency of vibration for dipolar oscillator -- frequency vary like $\quad \sqrt{\mathbf{k}} / \mu$
-- strong bonds higher freq $\mathrm{C}-\mathrm{C} \sim 1000 \mathrm{~cm}^{-1}, \mathrm{C}=\mathrm{C} \sim 1600 \mathrm{~cm}^{-1}$, $\mathrm{C} \equiv \mathrm{C} \sim 2200 \mathrm{~cm}^{-1}$
-- higher mass lower freq $\mathrm{HCl} \sim 2800 \mathrm{~cm}^{-1}, \mathrm{DCl} \sim 2000 \mathrm{~cm}^{-1}$
*Also responsible for kinetic isotope effects: deuterate a position and if H-motion involved in reaction coordinate, the rate will decrease due to difference in zero point energy of ground and excited (transition) state INSERT GRAPH
*Also affect thermodynamics: Boltzmann $\quad \mathbf{N}_{\mathbf{i}} / \mathbf{N}_{\mathrm{j}}=\mathbf{g}_{\mathrm{i}} / \mathbf{g}_{\mathbf{j}} \exp \left[-\left(\mathbf{E}_{\mathbf{i}}-\mathbf{E}_{\mathbf{j}}\right) / \mathbf{k T}\right]$ this gives the relative population $\left(N_{i} / N_{j}\right)$ of $E_{i}+E_{i}$ energy levels, so changing (eg. lowering) frequency changes (increases) population of (higher quantum number) E- levels and increases entropy (corresponds to the \# states populated)

