Harmonic Oscillator – Levine Ch 4/Atkins 3.5/R&S 5.1/Dykstra 2.2

Talked about potential wells and finite ones now well with sloping sides: $\mathbf{V} = (\mathbf{1/2}) \mathbf{kx}^2$ so $\mathbf{V} =$ only at $\mathbf{x} =$, since $\mathbf{V}(\mathbf{x})$ is <u>finite</u> expect: a. (x) <u>penetrate walls</u> but then damp to zero on both sides (finite) b. in between walls (x) must be nonzero for some x, so (x) must have curvature $\rightarrow \mathbf{T} \quad 0 \rightarrow \underline{\text{zero point E}}$ c. solutions must oscillate with # nodes increasing with increasing E d. as k inc $\rightarrow \underline{V}$ and \underline{T} inc \rightarrow zero point E will increase as k decrease \rightarrow (x) becomes continuum state (V~ const., flat) e. as v n(q.n.) increase \rightarrow nodes inc \rightarrow T inc \rightarrow V inc, results in more time at turning points, contrast to particle in box, more like classic harmonic oscillator. Insert Graph Solution—can read about details in text (Levine 4.2) ==> $\mathbf{H}\Psi(\mathbf{x}) = (\mathbf{T} + \mathbf{V}) \Psi(\mathbf{x}) = [-(\underline{\mathbf{h}^2/2\mathbf{m}}) \mathbf{d}^2/\mathbf{dx}^2 + \mathbf{kx}^2/2]\Psi(\mathbf{x}) = \mathbf{E} \Psi(\mathbf{x})$

 $-(\underline{h}^{2}/2m) [d^{2}/dx^{2} + {}^{2}x^{2}] (x) = E (x) \text{ where } {}^{2} = mk/\underline{h}^{2}$ $[d^{2}/dx^{2} + (2mE/\underline{h}^{2} - {}^{2}x^{2})] (x) = 0 \text{ again recall } \underline{h} = \underline{h}/2\pi$

Recall that solutions (x) must damp to zero as x increase (pass barrier) One way to do this is multiply oscillating function by exp(- $x^2/2$) form e^{-cx_-} would damp, but need x^2 for $\pm x$ sym. (even) (c= /2 arbitrary)

If $(x) = e^{-x^{2/2}} f(x)$ then second derivative above reduces to: $[d^2/dx^2]\Psi(x) = exp(-x^2/2) [(-x^2/2)f(x) + 2(-x)f(x) (df/dx) - f(x) + (d^2f/dx^2)]$

Now could eliminate exp(- $x^2/2$) from Schroedinger Eqn since in each term: $(\alpha x^2)f(x) + 2(-\alpha x)f(x) [df/dx] - \alpha f(x) + [d^2f/dx^2] + (2mE/\underline{h}^2 - \alpha^2 x^2) f(x) = 0$ Results in 2nd order eqn: $[d^2f/dx^2] - 2(\alpha x)f(x) [df/dx] + (2mE/\underline{h}^2 - \alpha) f(x) = 0$

This can be solved with a power series solution : $f(x) = c_n x^n$

Solution has parity (x) = $e^{-ax^2/2} [c_0 + c_1x + c_2x^2 + c_3x^3 + ...]$ As it must, [, H] = 0 since V = (1/2) kx² \rightarrow even <u>Oscillation</u> will develop from the relative signs of c's for powers of x Solution known as Hermite polynomials to this form differential eqn $\Psi_v(\mathbf{x}) = \mathbf{N}_v \exp(-\alpha \mathbf{x}^2/2) \mathbf{H}_v(\mathbf{x}) = \mathbf{N}_v \exp(-\mathbf{y}^2/2) \mathbf{H}_v(\mathbf{y})$ --where $\mathbf{y} = \alpha^{1/2} \mathbf{x}$

$$\begin{array}{ll} H_0(y) = 1 & H_4(y) = 16y^4 - 48y^2 + 12 & \text{even} \\ H_1(y) = 2y & H_5(y) = 32y^5 - 160y^3 + 120y & \text{odd} \\ H_4(y) = 4y^2 - 2 & H_5(y) = 64y^6 - 480y^4 + 720y^2 - 120 & \text{odd} \\ \end{array}$$

$$\begin{split} H_2(y) &= 4y^2 - 2 & H_6(y) = 64y^6 - 480y^4 + 720y^2 - 120 & \text{even} \\ H_3(y) &= 8y^3 - 12y & H_7(y) = 128y^7 - 1344\ y^5 + 3360y^3 - 1680y & \text{odd} \end{split}$$

See term oscillate in sign—causes oscillation of $_{v}(x)$

v = 0 just exponential decay from 1 at x=0

v = 1 odd, = 0 at x = 0 then inc + and - and damp with opposite sign curvature

v = 2 even - = -2 at x = 0, then curve positive (E>V), but as x inc. $4y^2 > |-2|$

so becomes (+), opposite curvature then needed for decay--oscillation INSERT GRAPH

As v inc amplitude grows when $E \sim V$ (i.e. $T\sim0$) called turning point, classically,

in q.m. this is due to higher powers increasing faster than lower ones.

Solving the equation: $E_u = (v+1/2)h \rightarrow = (1/2) k/m \text{ or } = 2 m/\underline{h}$

INSERT GRAPH

So see steady, uniform increase of E with v

With $\Delta E = E_{v+1} - E_v = hv$, where is the frequency of the oscillator $v=0 \rightarrow E_0=h/2 - \underline{\text{zero point energy}}$, continually oscillating or T 0 so $|p^2|> 0$ so need $|x^2|> 0$ which fits the uncertainty principle

Balls on springs or pendulums are nice, but can we use this for **chemistry**?

Harmonic Oscillator is a good model for vibration of molecules

INSERT GRAPH

Potential energy, diatomic: $U(R) = \langle H_{el}(R) \rangle + Vnn(R)$ where Vnn nuclear repulse Electrons hold atoms together nuclei repell (+ $\leftarrow \rightarrow$ +) keep atoms from collapse

At long distance this approaches Energy of 2 atoms- arbitrary zero

At short distance, repulsion dominate - $U_{eq} \rightarrow lowest$ energy at R_{eq} Approximate bottom of well as parabola $U(\mathbf{R}) \sim (1/2)k(\Delta \mathbf{R})^2$ where $R=R-R_{eg}$

"harmonic approximation" -- (note power series expansion):

$U(R) = U(R) + \frac{dU}{dR}|_{Re}(R-R_e) + (1/2) \frac{d^2U}{dR^2}|_{Re}(R-R_e)^2 + \dots$

First term const, second zero at minimum, so the third tem is lowest order non-zero, non-constant term gives rise to <u>harmonic motion</u> Higher terms eg. $d^{3}U/dR^{3}|_{Re}(R-R_{e})^{3}$ etc --<u>Anharmonic corrections</u>

Kinetic energy must be modified since vibration is relative motion not interested in translation so reduce coordinates to $\underline{\mathbf{q}} = \underline{\mathbf{R}} = \underline{\mathbf{R}} - \underline{\mathbf{R}}_{e}$ 1-D

And mass term modifies to: $\mu = (\mathbf{m}_1 \mathbf{m}_2 / \mathbf{m}_1 + \mathbf{m}_2)$ -- which is reduced mass $\mathbf{H}_{vib} \Psi_v(\mathbf{q}) = [-(\mathbf{h}^2/2\mu) \mathbf{d}^2/\mathbf{dq}^2 + \mathbf{kq}^2/2 \Psi_v(\mathbf{q}) = \mathbf{E} \Psi_v(\mathbf{q})$

Solution just as before $E_o(v + 1/2)h$

extent U(R)~ $kq^2/2$ get even spacing of levels E = h, where freq vib If differ from this, get anharmonic correction, E < h, spacings collapse This happens at top of potential where curve bends to allow dissociation

IR spectroscopy (handwaving insight only - details Chem 543) electric field of light leads to a <u>resonant oscillator</u> when $_{light} = _{vib}$ if molecule has a change ($d\mu/dq \neq 0$) in electric dipole moment (μ)

classically this causes molecule to have <u>larger amplitude</u>

- in q.m. this leads to a change in quantum number, v, and energy E_v

Harmonic oscillator: $\Delta \mathbf{v} = \pm \mathbf{1} = \mathbf{v} \cdot \mathbf{v}'$ only $+ \rightarrow$ absorption, $- \rightarrow$ emission $\Delta \mathbf{E} = (\mathbf{v} + \mathbf{1/2})\mathbf{h}\mathbf{v} \cdot (\mathbf{v}' + \mathbf{1/2})\mathbf{h}\mathbf{v} = \mathbf{h}\mathbf{v}$ -- all allowed transitions overlap

IR spectrum $v = 0 \rightarrow v' = 1$ (fundamental) yields the frequency of vibration for dipolar oscillator -- frequency vary like $\sqrt{k/\mu}$ -- strong bonds higher freq C-C ~1000 cm⁻¹, C=C ~1600 cm⁻¹, C=C ~2200 cm⁻¹ -- higher mass lower freq HCl ~ 2800 cm⁻¹, DCl ~ 2000 cm⁻¹

*Also responsible for <u>kinetic isotope effects:</u> deuterate a position and if H-motion involved in reaction coordinate, the rate will decrease due to difference in <u>zero</u> <u>point</u> energy of ground and excited (transition) state <u>INSERT GRAPH</u>

*Also affect thermodynamics: Boltzmann $N_i/N_j = g_i/g_j \exp[-(E_i - E_j)/kT]$ this gives the relative population (N_i/N_j) of $E_i + E_i$ energy levels, so changing (eg. lowering) frequency changes (increases) population of (higher quantum number) E- levels and increases entropy (corresponds to the # states populated)