Lecture2A--Model QM Problems with Exact Solutions - (1-D)

(Ch 2.2-Levine, 3-3 Atkins, Ch. 2-R\&S)

1. Free Particle -- If there is no potential then Schroedinger Equation becomes
$\mathbf{T} \Psi(\mathbf{x})=\mathbf{E} \Psi(\mathbf{x})=\Rightarrow-\left(\mathbf{h}^{2} / 2 \mathrm{~m}\right) \mathbf{d}^{2} / \mathbf{d x} \mathbf{x}^{2} \Psi(\mathbf{x})=\mathbf{E} \Psi(\mathbf{x})$ for this section: let underline ' \underline{h} " be " h-bar': $\underline{\mathbf{h}}=\mathbf{h} / 2 \pi$
easiest solution to this has exponential form: $(\mathbf{d} / \mathbf{d x}) \mathbf{e}^{\mathbf{x}}=\mathbf{e}^{\mathbf{x}}$ but this has only one eigen value 1 and can't well cope with eigen value could use $\Psi=\mathbf{e}^{-\mathbf{k x}}$ then $\mathbf{k}=\left(\mathbf{2 m E} / \underline{h}^{2}\right)^{1 / 2}$ but would get wrong sign so need $\mathbf{e}^{-\mathrm{ikx}}$ recall: $\mathbf{e}^{\text {+ikx }}=\boldsymbol{\operatorname { c o s }} \mathbf{k x}+\mathbf{i} \boldsymbol{\operatorname { s i n }} \mathbf{k x}$

These solutions are plane waves INSERT GRAPH
starting point is due to phase (balance between $\sin \& \cos$-arbitrary) but don't measure Ψ just $|\Psi \Psi|$-thus phase not significant (normally)

This describes motion of a free particle no potential \longrightarrow no force $(\mathbf{F}=\mathbf{- d V} / \mathbf{d x})$) - continuous motion
[Note these are eigen functions of momentum $\left.\mathbf{p} \Psi_{ \pm}=(-\mathbf{i h}) \mathbf{d} / \mathbf{d x}\left[\mathbf{e}^{ \pm \mathbf{i k x}}\right]= \pm \underline{\mathbf{h}} \mathbf{k} \Psi_{ \pm}\right]$ What is it doing?
$\mathbf{e}^{ \pm i k x}$--> motion to the pos $\mathrm{x}-\mathrm{-}>\langle\mathrm{p}\rangle=+\mathrm{kh}$
$\mathrm{e}^{-\mathrm{ikx}}$--> motion to the pos x --> <p>=-kh
 momentum but different of energy depend on preparation-initial state
$\cos \mathbf{k x}$ also an eigen function $\mathbf{T} \Psi=\mathbf{T} \cos (\mathbf{k x})=-\mathbf{k}\left(-\underline{h}^{2} / 2 \mathbf{m}\right) \cos (\mathbf{k x})=\mathbf{E} \Psi$ but $\mathbf{p} \boldsymbol{\operatorname { c o s }}(\mathbf{k x})=-\mathbf{k}(-\mathbf{i} \underline{\mathbf{h}}) \sin (\mathbf{k x})$ not eigen function
so real component, $\boldsymbol{\operatorname { c o s }}(\mathbf{k x})$, of $\mathbf{e}^{ \pm \mathbf{i k x}}$ has energy but ill defined momentum - real wave function-represents motion left (-) and right (+)
-- complex wave function-well defined linear momentum (-) or (+)
Note if energy is not well defined - then k varies - means wavelength varies get wave packet -- super position of these with constructive interference -if enough waves interfere see particle with some position, finite Δx

Time evolution:

$$
\Psi(x, t)=A e^{-i k x} e^{-E t / h}=A e^{i[k x+(k 2 L / 2 m) t]}
$$

evaluate at different times - point of constructive interference changes - phase shift
*try it with graphing calculator or program

2. Particle in a box with infinite sides-restrict motion - contain with $V(x)$

$$
\begin{aligned}
& \mathrm{V}=0 \quad \rightarrow 0<\mathrm{x}<\mathrm{L} \\
& \mathrm{~V}=\infty \quad \text { \&all else }(\mathrm{x}<0, \mathrm{x}>\mathrm{L})
\end{aligned}
$$

INSERT GRAPH

Region I, III $\quad \mathbf{H} \Psi=\mathbf{E} \Psi \quad->-\left(\underline{\mathbf{h}}^{2} / 2 \mathbf{m}\right)\left(\mathbf{d}^{2} / \mathbf{d} \mathbf{x}^{2}\right) \Psi=(\mathbf{E}-\infty) \Psi$ so particle of finite energy has no amplitude in this region $\Psi(x)=0$ (outside box) special result due to $\mathrm{V}(\mathrm{x})=\infty$ outside (impenetrable) only need consider Region II hence locally $\mathrm{V}=0$ - just as above for free particle $\mathrm{Ae}^{-\mathrm{ikx}}$
but $\mathrm{V}(\mathrm{x})$ provides restrictions on motion (in box) so that leads to quantized behavior B.C. - boundary conditions, choose : $\Psi=\mathbf{A} \boldsymbol{\operatorname { c o s }} \mathbf{k x}+\mathbf{B} \boldsymbol{\operatorname { s i n }} \mathbf{k x}$

At wall $\Psi(\mathbf{0})=\Psi(\mathbf{L})=\mathbf{0}$ - must be a continuous, finite function
$\Psi(0)=\mathrm{A} \sin \mathrm{kx} \quad(\cos \mathrm{x} \neq 0$ at $0=\mathrm{x})$
$\Psi(\mathrm{L})=0=\Rightarrow \mathrm{k}=(\mathrm{n} \pi / \mathrm{L})$ where $\mathrm{n}=1,2,3 \ldots$. integer, $(\mathrm{n}=0$ not allowed)
Energy is quantized by the B.C. (work it out)
$k=\left(2 \mathrm{mE} / \underline{h}^{2}\right)^{1 / 2}=n \pi / L==\Rightarrow E_{n}=n^{2} \pi^{2} \underline{h}^{2} / L^{2} 2 m$
Note: still need $\mathrm{Ae}^{\mathrm{i} \phi}$, amplitude and phase--
Normalize: $\int \Psi_{n} * \Psi_{n} d x=1 \Rightarrow A=(2 / L)^{1 / 2}==\Rightarrow \Psi_{n}(x)=(2 / L)^{1 / 2} \sin (n \pi x / L)$
Important to see what happens as modify B.C.

- as box enlarges Ψ toward free particle, i.e. the energy levels become continuous
- smaller box more energy goes as $\sim 1 / \mathrm{L}^{2}$ - note box constrains motion more,
Ψ has more curvature, second derivative is curvature, $|T|$ inc. with curvature
- energy level separation expand with n^{2--} property of steep sides

What are they? H-atom--example
more useful for smaller masses--eg. electron
If spectral transition: $\mathbf{h} v=\Delta \mathbf{E}=\mathbf{E}_{\mathbf{n}}-\mathbf{E}_{\mathbf{n}^{\prime}}$ - change between levels
But-lower mass-electron \sim *2000 increase Energy over atom
---lower size-- $1 \AA$ (atomic) $\sim * 100$ inc Energy over $10 \AA$ (molecular)
conversely--> bigger box, heavier particle --> near continuous E --> classical corresp
Where is particle? -- $\int_{0}^{\mathrm{L}} \Psi * \Psi \mathbf{d x}=\mathbf{1}==>$ it's in the box
Also do region probability, eg. $\int_{0}^{\mathrm{L} / 2} \Psi * \Psi \mathbf{d x}=\mathbf{1 / 2}==>$ equal distribute by halves But distribution is peaked $\left(\sin ^{2}\right)$ and this changes with different excited states

Alternate related Problems--Mess around with your box
2.a.. Translate: Box shift to run from $-\mathrm{L} / 2$ to $\mathrm{L} / 2$

INSERT GRAPH

Clearly energies must be the same but B.C. change so form of solution changes
$\Psi_{1}(x)=(2 / L)^{1 / 2} \cos (2 \pi x / L) ~-->~ s y m ~$
$\Psi_{2}(x)=(2 / L)^{1 / 2} \sin (4 \pi x / L) \quad->$ asym
$\Psi_{3}(x)=(2 / L)^{1 / 2} \cos (6 \pi x / L) \quad->$ sym
$\Psi_{4}(x)=(2 / L)^{1 / 2} \sin (8 \pi x / L) \quad->$ asym
Phase shift, but states now have parity
2.b. Tie the ends together-particle on a ring: -- Looks like 2-D -- But really 1-D because particle can't move off the ring so only variable is θ, R is fixed need transform coordinates: $\mathbf{x}=\mathbf{R} \boldsymbol{\operatorname { c o s }} \phi$ and $\mathbf{y}=\mathbf{R} \boldsymbol{\operatorname { s i n }} \phi$
$\mathbf{d}^{2} / \mathbf{d x}^{2}+\mathbf{d}^{2} / \mathbf{d y} \mathbf{y}^{2}=\mathbf{d}^{2} / \mathbf{d R} \mathbf{R}^{2}+(\mathbf{1} / \mathbf{R}) \mathbf{d} / \mathbf{d R}+\left(\mathbf{1} / \mathbf{R}^{2}\right) \mathrm{d}^{2} / \mathbf{d} \phi^{2}$
$-\underline{h}^{2} / 2 \mathbf{m}\left(\mathbf{d}^{2} / \mathbf{d x} \mathbf{x}^{2}+\mathbf{d}^{2} / \mathbf{d} \mathbf{y}^{2}\right) \Psi=\mathbf{E} \Psi$ new variables: $\Psi(\mathbf{R}, \phi)=\mathbf{K}_{\mathbf{R}} \Phi(\phi)$
since R constant only the $\mathrm{d}^{2} / \mathrm{d} \phi^{2}$ term remains, K_{R} of the w / f is constant $-\underline{\mathbf{h}}^{2} / 2 \mathbf{m}\left(\mathbf{d}^{2} / \mathbf{d} \phi^{2}\right) \Phi(\phi)=\mathbf{E} \Phi(\phi) \quad===>\Phi(\phi)=\mathbf{A} \mathbf{e}^{\mathbf{i b} \phi}$
B.C. $-\operatorname{correct} \Phi(0)=\Phi(2 \pi), \Longrightarrow \Phi(\phi)=(1 / \sqrt{ } 2 \pi) \mathbf{e}^{\mathrm{im} \phi}$
2.c. Particle in 3-D box (Levine 3.5) if we go up to 3-D for one particle: $\mathbf{H} \Psi(\mathbf{x y z})=\mathbf{E} \Psi(\mathbf{x y z})$

Now this is the same our simplest problem if we can do one coordinate at a time: $\mathrm{V}=0$ for $0<\mathrm{x}<\mathrm{a}, 0<\mathrm{y}<\mathrm{b}, 0<\mathrm{z}<\mathrm{c}$ and $\mathrm{V}=\infty$ outside the box (rectangular)

Outside the box, it's the same deal: $\Psi(x y z)=0$
Inside must solve
$\mathbf{H} \Psi=-\underline{\mathbf{h}^{2}} / 2 \mathrm{~m}\left(\mathbf{d}^{2} / \mathbf{d x} \mathbf{x}^{2}+\mathbf{d}^{2} / \mathbf{d y} \mathbf{y}^{2}+\mathbf{d}^{2} / \mathbf{d z}^{2}\right) \Psi=-\left(\underline{\mathbf{h}^{2}} / 2 \mathrm{~m}\right) \nabla^{2} \Psi(\mathrm{xyz})=\mathbf{E} \Psi(\mathrm{xyz})$
Problem needs simplification-- Since $\nabla^{2}=\left(\mathbf{d}^{2} / \mathbf{d} \mathbf{x}^{2}+\mathbf{d}^{2} / \mathbf{d y}^{2}+\mathbf{d}^{2} / \mathbf{d z} \mathbf{z}^{2}\right)$
This is additive, no cross terms - can separate variables as for time dep. S.E.

$$
\begin{aligned}
& -2 \mathbf{m E} / \underline{\mathbf{h}}^{2}=(\mathbf{1} / \Psi(\mathbf{x y z})) \nabla^{2} \Psi(\mathbf{x y z})-\mathbf{C h o o s e} \Psi(\mathbf{x y z})=\mathbf{X}(\mathbf{x}) \mathbf{Y}(\mathbf{y}) \mathbf{Z}(\mathbf{z}): \\
& -2 \mathrm{mE} / \underline{h^{2}}=(1 / \mathrm{X}(\mathrm{x})) \mathrm{d}^{2} / \mathrm{dx}^{2} \mathrm{X}(\mathrm{x})+(1 / \mathrm{Y}(\mathrm{y})) \mathrm{d}^{2} / \mathrm{dy}^{2} \mathrm{Y}(\mathrm{y})+(1 / \mathrm{Z}(\mathrm{z})) \mathrm{d}^{2} / \mathrm{dz} \mathrm{z}^{2} \mathrm{Z}(\mathrm{z})
\end{aligned}
$$

Each of these is independent $\operatorname{set}(\mathbf{1} / \mathbf{X}(\mathbf{x})) \mathbf{d}^{2} / \mathbf{d} \mathbf{x}^{2} \mathbf{X}(\mathbf{x})=K_{x}$, etc.
Then $-2 \mathbf{m E} / \underline{\mathbf{h}}^{2}=\mathrm{K}_{\mathrm{x}}+\mathrm{K}_{\mathrm{y}}+\mathrm{K}_{\mathrm{z}}$
Each one is simple 1-D particle in a box solution
$\mathrm{X}(\mathrm{x})=\mathrm{A} \sin \left(\mathrm{K}_{\mathrm{x}} \mathrm{x}\right)=\mathrm{A} \sin \left(\mathrm{n}_{\mathrm{x}} \pi \mathrm{x} / \mathrm{a}\right), \mathbf{E}_{\mathrm{nx}}=\mathbf{n}_{\mathrm{x}}^{2} \pi^{2} \underline{\mathbf{h}}^{2} / \mathbf{a}^{2} \mathbf{2 m}$
Put it together: $\mathbf{E}_{\mathbf{n}}=\left(\mathbf{n}_{\mathrm{x}}{ }^{2} / \mathbf{a}^{2}+\mathbf{n}_{\mathbf{y}}{ }^{2} / \mathbf{b}^{2}+\mathbf{n}_{\mathrm{z}}{ }^{2} / \mathbf{c}^{2}\right) \pi^{2} \underline{\underline{2}}^{2} / 2 \mathrm{~m}$
$\Psi_{\mathrm{nxnynz}}(\mathrm{xyz})=(8 / \mathbf{a b c})^{1 / 2} \sin \left(n_{\mathrm{x}} \pi \mathrm{x} / \mathrm{a}\right) \sin \left(\mathrm{n}_{\mathrm{y}} \pi \mathrm{y} / \mathrm{b}\right) \sin \left(\mathrm{n}_{\mathrm{z}} \pi z / \mathrm{c}\right)$

These basically act independently but create a higher density of energy levels
because we can excite modes (states) in 3 different coordinates
with proper (improper?) selection of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ there could be states accidentally degenerate-e.g. let $b=2 a$, then $E_{411}=E_{271}$
But it is more interesting to have symmetry, e.g. $\mathrm{a}=\mathrm{b}=\mathrm{c}$ now
$\mathrm{E}_{\mathrm{n}}=\left(\mathrm{n}_{\mathrm{x}}^{2}+\mathrm{n}_{\mathrm{y}}^{2}+\mathrm{n}_{\mathrm{z}}^{2}\right) \pi^{2} \underline{h}^{2} / 2 \mathrm{ma} \mathrm{a}^{2}=\left(\mathrm{n}_{\mathrm{x}}^{2}+\mathrm{n}_{\mathrm{y}}{ }^{2}+\mathrm{n}_{\mathrm{z}}^{2}\right) \mathrm{E}_{1}$, where E_{1} is part. box sol' n

Not important which coordinate is excited, just how many Quanta put in $\mathrm{E}_{111}=3 \mathrm{E}_{1}$ and $\mathrm{E}_{211}=\mathrm{E}_{121}=\mathrm{E}_{112}=6 \mathrm{E}_{1}$ and $\mathrm{E}_{121}=\mathrm{E}_{221}=\mathrm{E}_{212}=9 \mathrm{E}_{1}$ etc.
Degenerate

INSERT GRAPH

2.d. Particle in a finite-well, what happens when $\mathrm{V}=00<\mathrm{x}<\mathrm{L}$, but $\mathrm{V}=\mathrm{V}$ outside

INSERT GRAPH

Expect the same form but need modify to account for
a) continuity at $0=x, L=x$ but $\Psi(0) \neq 0$ since V is finite, thus expect penetration as discussed based on curvature
b) also expect E_{n} to converge to continuous states as get higher E, higher n

