Theorems from Postulates:

Now that we have "laws" or better "postulates" we should explore what they imply about working q.m. problems -- Theorems (Levine 7.2, 7.4)

Thm 1 -- eigen values of Hermitian operators are real (clearly this fits well with
Post. 2 restriction \rightarrow we need real observables

$$
\begin{aligned}
& \text { let } A\left|i>=a_{i}\right| i> \\
& \qquad \quad<i|A| i>=<i|A| i>^{*} \\
& \quad a_{i}\left|i>=a_{i}^{*}\right| i> \\
& \left(a_{i}-a_{i}^{*}\right)<i \mid i>=0==>a_{1}=a_{i}^{*}==>a_{i} \text { real since <i|i> is positive definite }
\end{aligned}
$$

Thm 2 -- eigen function of a Hermitian operator can be chosen to be orthogonal
i.e. $\int \mathrm{f}^{*} \mathrm{gd} \tau=0 \quad$ for $\mathrm{f} \neq \mathrm{g}$
$\langle\mathrm{j}| \mathrm{A}|\mathrm{i}\rangle=\langle\mathrm{i}| \mathrm{A}|\mathrm{j}\rangle^{*}$
$\mathrm{a}_{\mathrm{i}}\langle\mathrm{j} \mid \mathrm{i}\rangle=\mathrm{a}_{\mathrm{j}}^{*}\langle\mathrm{i} \mid \mathrm{j}\rangle^{*}=\mathrm{a}_{\mathrm{j}}\langle\mathrm{i} \mid \mathrm{j}\rangle^{*}=\mathrm{a}_{\mathrm{j}}\langle\mathrm{j} \mid \mathrm{i}\rangle, \mathrm{a}_{\mathrm{j}}^{*} \rightarrow \mathrm{a}_{\mathrm{j}}$ since real, $\langle\mathrm{i} \mid \mathrm{j}\rangle$ flip order on complex conj.
$\left(a_{i}-a_{j}\right)\langle j \mid i\rangle=0$
either $\mathrm{a}_{\mathrm{i}}=\mathrm{a}_{\mathrm{j}}$ (same state or degenerate) or orthogonal: <i|j>=0
if $|i\rangle,|j\rangle$ are degenerate can construct $|1\rangle=c_{i}|i\rangle+c_{j}|j\rangle,|2\rangle=c_{j}|i\rangle-c_{i}|j\rangle$
$<1 \mid 2>=0$, orthogonal by construction and still are degenerate eigen functions
i.e. $A\left(c_{i}|i\rangle+c_{j}|i\rangle\right)=a_{i}\left(c_{i}|i\rangle+c_{j}|j\rangle\right)$

Wednesday--August 29

Applications:

The wave function describing the state of a quantum mechanical system can be described as a superposition of in terms of eigen functions of an operator $\hat{\alpha}--\left\{f_{i}\right\}$, since they form a complete set

You have experience with this from
Taylor series: $\quad f(x-a)=\sum_{n} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$ or $f(x)=\left.\sum_{n} \frac{1}{n!} \frac{\partial^{n} f}{\partial n^{n}}\right|_{0} x^{n}$
so $f(x)$ is represented as linear combination of x^{n}-- power series
More general is Fourier series : $\mathrm{f}(\mathrm{x})=\sum_{\mathrm{n}}\left[\mathrm{s}_{\mathrm{n}} \sin (2 \pi \mathrm{nx})+\mathrm{c}_{\mathrm{n}} \cos (2 \pi \mathrm{nx})\right]$
where expand in sine and cosine fcts or exponetials: $\sum b_{n} e^{-i 2 \pi x n}$
in these cases: $x^{n}, \sin (2 \pi n x), e^{-i 2 n \pi x}$ form complete sets (Note \sin is odd, must add cos if parity not odd, eliminate sin if even)

So what are the coefficients? In Taylor: $\frac{f^{(n)}(x)}{n!}$ but
in q.m. expand in a set $\left\{g_{i}\right\}$ of eigen fct of operator $\alpha: f(x)=\sum_{i} c_{i} g_{i}(x)=\sum_{i} c_{i}|i\rangle$
multiply. by $\mathrm{g}_{\mathrm{j}}{ }^{*}$ and integrate : $\mathbf{\{ j | f} \mathbf{i}=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}} \mathbf{\prime} \mathbf{j} \mid \mathbf{i} \mathbf{i}=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}} \mathrm{\delta}_{\mathrm{ij}}=\mathrm{c}_{\mathrm{j}}$
Dirac delta function: <i|j> $=\delta_{i j}=1 \quad i=j \quad=0 \quad i \neq j$
so $\mathrm{c}_{\mathrm{i}}=\langle\mathrm{i} \mid \mathrm{f}\rangle$ or $\left.\mathrm{f}=\Sigma|\mathrm{i}><\mathrm{i}| \mathrm{f}\right\rangle$, , Where $\Sigma|i><i|$ is projection operator picks out (projects)
part of |f> that lies along |i> [analogous to dot (scalar) product from vector algebra]

Thm 3 -- if $\left\{g_{j}\right\}$ is set of eigen fcts of α and f is also an eigen fct so that $\hat{\alpha f}=$ af then if $f=\sum_{i} c_{i} g_{i}$ the only non-zero c_{i} are for g_{i} which have eigen value of a (degen. with f).
(Alternateively, f must be a linear combination of degenerate g_{i} with same eigenvalue) $\hat{\alpha} \mathrm{f}=\hat{\alpha} \sum \mathrm{c}_{\mathrm{i}} \mathrm{g}_{\mathrm{i}}=\sum \mathrm{c}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}} \mathrm{g}_{\mathrm{i}}=\mathrm{af}=\mathrm{a} \sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}} \mathrm{g}_{\mathrm{i}}$
$c_{i}=\mathbf{f}|\mathrm{g}\rangle$ is only non-zero for $\mathrm{f}=\mathrm{gi}$ or f -degenerate with g_{i}, (otherwise $\left\langle\mathrm{f} \mid \mathrm{g}_{\mathrm{i}}\right\rangle=0$, orthog) alternatively: if g_{i} are indep fct, only if $a=a_{i}$ will c_{i} be non-zero: $\sum_{i}\left(a-a_{i}\right) c_{i} g_{i}=0$,

Commutation:

A commutator of operators $\hat{\alpha}, \hat{\beta}$ is $[\hat{\alpha}, \hat{\beta}]=\hat{\alpha} \hat{\beta}-\hat{\beta} \hat{\alpha}$
Note this is familiar: $x p_{x}-p_{x} x=i \hbar$ from Post 2
Simple multiplicative or scalar operators commute -- this is your experience derivative and matrix operators may or may not commute.
if $[\hat{\alpha}, \hat{\beta}]=0 \quad$ we say it commutes

Thm 4 -- if $\hat{\alpha}, \hat{\beta}$ are two operators that share a complete set of eigen fcts, $[\hat{\alpha}, \hat{\beta}]=0$???error \rightarrow simple proof not general: let $\{\mathrm{fi}\}$ be eigen fct $\hat{\alpha}, \hat{\beta}$

$$
\begin{aligned}
& \hat{\alpha} \hat{\beta}_{i}=\hat{\alpha} b_{i} f_{i}=b_{i} \hat{\alpha} f_{i}=b_{i} a_{i} f_{i}=a_{i}\left(b_{i} f_{i}\right)=a_{i} \hat{\beta} f_{i}= \\
& \hat{\beta}\left(a_{i} f_{i}\right)=\hat{\beta} \hat{\alpha} f_{i} \Rightarrow[\hat{\alpha} \hat{\beta}-\hat{\beta} \hat{\alpha}]_{\mathrm{f}}=0
\end{aligned}
$$

book proof a little more general $-\mathrm{g}=\sum \mathrm{c}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}$ uses commutation of constants, $\mathrm{ai}_{\mathrm{i}}, \mathrm{bi}_{\mathrm{i}}$

$$
[\hat{\alpha} \hat{\beta}-\hat{\beta} \alpha] g=\sum_{i} c_{i}[\alpha \beta-\beta \alpha] g_{i}=\sum_{i} c_{i}\left[\hat{\alpha} b_{i}-\beta \mathrm{a}_{\mathrm{i}}\right] \mathrm{g}_{\mathrm{i}}=\sum \mathrm{c}_{\mathrm{i}}\left[\mathrm{~b}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}}-\mathrm{a}_{\mathrm{i}} \mathrm{~b}_{\mathrm{i}}\right] \mathrm{g}_{\mathrm{i}}=0
$$

This theorem very powerful, lets us substitute eigen functions to determine properties.
Also this is uncertainty principle : if $\rightarrow[\hat{\alpha}, \hat{\beta}]=0$
then we can determine observables corresponding to $\hat{\alpha}, \hat{\beta}$ with arbitrary accuracy
if not \rightarrow uncertainty relation tells measurement limitations

$$
\left[x, p_{x}\right]=\left(x \frac{\hbar}{i} \frac{\partial}{\partial x}-\frac{\hbar}{i} \frac{\partial}{\partial x} x\right)=i \hbar \quad \text { recall: operator must act on something: }
$$

$(d / d x) x f(x)=f(x)+x(d f(x) / d x) \quad \rightarrow$ Chain rule differentiation leaves a noncancelling term

Reverse form particularly important
Thm 5 -- if $[\hat{\alpha}, \hat{\beta}]=0$, there exists a common set $\{i\}$ of eigen functions for both $\hat{\alpha}$ and $\hat{\beta}$ let $\hat{\alpha} f_{i}=a_{i} f_{i}$ set of eigen functions operate β on α eigen eqn: $\hat{\beta} \hat{\alpha} f_{i}=\hat{\beta} a_{i} f_{i}=a_{i}\left(\beta f_{i}\right)=\hat{\alpha} \hat{\beta} f_{i}=\hat{\alpha}\left(\hat{\beta} f_{i}\right)$, since commute since equal, (βf_{i}) must be an eigen function $\hat{\alpha}$
since $\left(\beta_{\mathrm{j}}\right)$ and (f_{i}) have same eigen value a , they must be degenerate or relate by const (non-degenerate) i.e. $\beta \mathrm{f}_{\mathrm{i}}=\mathrm{b} \mathrm{f}_{\mathrm{i}} \quad$ or $\quad \mathrm{f}_{\mathrm{i}}$ must be an eigen fct of β

Several general properties that you can prove: (Atkins 5.4)

$$
[\hat{\mathrm{A}}, \hat{\mathrm{~B}}]=-[\hat{\mathrm{B}}, \hat{\mathrm{~A}}]
$$

$$
[\hat{\mathrm{A}}, \mathrm{~b} \hat{\mathrm{~B}}]=\mathrm{b}[\hat{\mathrm{~A}}, \hat{\mathrm{~B}}]
$$

$$
[\hat{\mathrm{A}}, \hat{\mathrm{~B}} \hat{\mathrm{C}}]=[\hat{\mathrm{A}}, \hat{\mathrm{~B}}] \hat{\mathrm{C}}+\hat{\mathrm{B}}[\hat{\mathrm{~A}}, \hat{\mathrm{C}}]
$$

$$
[\hat{\mathrm{A}}, \hat{\mathrm{~B}}+\hat{\mathrm{C}}]=[\hat{\mathrm{A}}, \hat{\mathrm{~B}}]+[\hat{\mathrm{B}}, \hat{\mathrm{C}}]
$$

$$
[\hat{\mathrm{A}},[\hat{\mathrm{~B}}, \hat{\mathrm{C}}]]=\mathrm{A} \mathrm{BC}-\mathrm{BCA}-\mathrm{CB}+\mathrm{CBA}
$$

Commutation has form of uncertainty (recall $\mathrm{xp}_{\mathrm{x}}-\mathrm{p}_{\mathrm{x}} \mathrm{x}=\mathrm{i} \hbar<==>\Delta \mathrm{x} \Delta \mathrm{p} \geq \hbar / 2$) use expectation values $\langle\hat{\alpha}\rangle=\{\psi|\hat{\alpha}| \psi\rangle$ and mean deviation: $\Delta \hat{\alpha}=\hat{\alpha}-\{\alpha\rangle$ since $\{\alpha\rangle$ is a constant: $\quad[\Delta \hat{\mathrm{A}}, \Delta \hat{\mathrm{B}}]=[\hat{\mathrm{A}}, \hat{\mathrm{B}}]=i \hat{C}$
let iC represent result of commutator can be zero, a constant or operator
then $\left\{(\Delta \hat{\mathrm{A}})^{2}\right\rangle\left\langle(\Delta \hat{\beta})^{2}\right\rangle \geq \frac{1}{4}\langle\mathrm{C}\rangle$ from: $\left\{(\Delta \hat{\mathrm{A}})^{2}\right\rangle=\left\langle\hat{\mathrm{A}}^{2}\right\rangle-\langle\mathrm{A}\rangle^{2}$
define root mean square deviation: $\sqrt{\langle\hat{\mathrm{A}}\rangle^{2}-\{\mathrm{A}\rangle^{2}}=\delta \mathrm{A}$

$$
\delta A \delta B \geq \frac{1}{2} k \subset \boldsymbol{l} \quad \hat{C} \geq[\hat{A}, \hat{B}] / i
$$

from : $\left[\mathrm{x}, \mathrm{p}_{\mathrm{x}}\right]=\mathrm{ih} / 2 \pi, \delta \mathrm{x} \delta \mathrm{p}_{\mathrm{x}} \geq \hbar / 2$ (precise form) but $[\mathrm{x}, \mathrm{y}]=\left[\mathrm{x}, \mathrm{p}_{\mathrm{y}}\right]=0 \rightarrow$ no uncertainty Note: $\Delta \mathrm{E} \Delta \mathrm{t} \geq \mathrm{h} / 4 \pi$ not a true uncertainty \rightarrow no true operator, actually from $\left[\mathrm{x}, \mathrm{p}_{\mathrm{x}}\right]$ but a consequence of time dependent Schroedinger Equation

Parity --(Levine 7.5)-- functions can be even or odd or neither.
even: $f(x)=f(-x), f(x, y, z)=f(-x,-y,-z)$
odd: $\quad f(x)=-f(-x)$
if system has parity it is even or odd and that can be represented by parity operator $\hat{\pi}$

$$
\begin{aligned}
& \hat{\pi} \mathrm{gi}_{\mathrm{i}}=\mathrm{c}_{\mathrm{igi}} \quad \mathrm{gi}_{\mathrm{i}} \text { - odd }-\mathrm{c}_{\mathrm{i}}=-1 \quad \mathrm{gi} \text { eigen fct of } \hat{\pi} \\
& =\mathrm{gi}_{\mathrm{i}}(-\mathrm{x},-\mathrm{y},-\mathrm{z}) \quad \mathrm{Ci}_{\mathrm{i}}-\text { even }-\mathrm{Ci}_{\mathrm{i}}=1 \quad \text { all possible even/odd fct } \\
& \text { if } \quad[\hat{\pi}, \hat{H}]=0 \quad \text { these eigen fct of } \hat{H} \text { must be even/odd } \\
& {[\pi, T]=0} \\
& \frac{\partial^{2}}{\partial(-x)^{2}} f(-x)=\frac{\partial^{2}}{\partial x^{2}} f(x)
\end{aligned}
$$

but $[\hat{\pi}, \hat{\mathrm{V}}] \quad$ depends on form of potential
e.g. $V=1 / 2 k x^{2} \quad$ (Hooks law spring) even -- square of coordinate $\mathrm{V}=-\mathrm{e}^{2} / \mathrm{r} \quad$ (electrostatic attraction) even --depends only on distance, not direction $\mathrm{V}=-\mathrm{eE}(\mathrm{x})$ (change in electric field is directional - odd)

Thm 7 -- If potential V is an even fct, can choose stationary states ψ_{i} to be even or odd

$$
\begin{gathered}
{[\hat{\pi}, \hat{H}]=[\hat{\pi}, \hat{T}+\hat{V}]=[\hat{\pi}, \hat{T}]+[\hat{\pi}, \hat{V}]=0+0 \quad V=\text { even }} \\
\text { ex. } 1 \quad \text { let } \quad V=+1 \quad \infty>x>1,-\infty<x<-1 \\
V=-1 \quad 1>x>-1
\end{gathered}
$$

this is even, $\psi_{\mathrm{i}} \rightarrow$ has definite parity, is eigen fct of parity operator

These concepts are central to applications of group theory and symmetry to molecular q.m. problems and spectroscopy.

Test: $\quad[\pi, V] f=\pi(V f)-V(\pi f)=V(-x) f(-x)-V(x) f(x)$

$$
=0 \text { if } \mathrm{V} \text { even } \quad \neq 0 \text { if } \mathrm{V} \text { odd or mixed parity }
$$

Probability amplitudes and superposition of states (Levine 7.6)
recall make a measurement on some normalized state 4

$$
\begin{aligned}
& \langle\alpha\rangle=\{\psi|\hat{\alpha}| \psi\rangle=\sum_{i} \sum_{i} c_{i}^{*} c_{j}\langle i| \alpha|j\rangle=\sum \sum c_{i} * c_{j} a_{j} \hat{i}|j\rangle=\sum_{j}\left|c_{j}\right|^{2} a_{j} \\
& \langle\alpha\rangle=\sum_{\mathrm{i}} \mathrm{p}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}}
\end{aligned}
$$

so measurement is some weighted coverage over several eigen values of α
p_{i} is $\left|c_{i}\right|^{2}$ or probability of measuring each a_{i}

Thm 8 -- Measurement of property corresponding to $\hat{\alpha}$ in ψ has a probability of a_{i} equal to $\left|c_{i}\right|^{2}$ where c_{i} is expansion coeff:

$$
\psi=\sum \mathrm{c}_{\mathrm{i}} \mathrm{~g}_{\mathrm{i}} \text { and } \hat{\alpha} \mathrm{g}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}} \mathrm{~g}_{\mathrm{i}}
$$

[If ai degenerate, probability is sum of $\left|c_{i}\right|^{2}$ for degenerate a_{i}]
recall: $\mathrm{c}_{\mathrm{i}}=\langle i \mid \psi\rangle$--called the probability amplitude (Levine)
Thm 9 Probaliity of observing $a_{i}\left(\right.$ for $\left.\alpha\left|i>=a_{i}\right| i>\right)$ if a_{i} is non-degenerate is $|<i| \psi>\left.\right|^{2}$ for state $\psi-$ thus more similar g_{i} and ψ, the more similar will be $\langle\alpha\rangle$ and a_{i}

Friday--September 1

Time evolution of expectation value: (Atkins, Ch 5.5)

