POSTULATES OF QM -- Levine Ch 7.8, Atkins Ch. 5, R\&S - Ch 2.

Much as in thermodynamics, one can establish a set of "laws" which we have called
"postulates" (since they have non-obvious physical relationship) and then derive all
QM properties from these
point -- value lies in how well they describe nature
if work \rightarrow keep them, if fail \rightarrow devise new theory

Postulate 1.

The state of a system is fully described by the wave function, $\psi\left(r_{1}, r_{2}, \ldots t\right)$
--where r_{1}, r_{2}, \ldots are positional coordinates of each particle $1,2 \ldots$ and t is time.
"fully described" \Rightarrow all that we can know -- is anything we can measure.
Quality of $\psi\left(r_{1}, \ldots t\right)$ as a function (Sch. rep.)
single valued --drawing1
continuous --drawing2
integrable square $--\int \psi^{*} \psi \mathrm{dT}=\mathrm{N}$
Since $\psi\left(r_{1}, \ldots t\right)$ contains all info--could list quantum numbers-"code" values
$\psi_{\text {abc... }}\left(r_{1}, r_{2} \ldots t\right) \mid a, b, c \ldots>=$ state \quad Dirac bra-ket notation $<a, b \ldots .|\ldots| a, b \ldots$
\# of independent q.n. will reflect the dimensionality of problem
e.g. 3-D vector fct require 3 indep. fct $\Rightarrow 3$ quantum num.

Interpretation: $\psi_{\mathrm{a}, \mathrm{b}}^{*} \Psi_{\mathrm{a}, \mathrm{b}} \mathrm{d} \tau=$ probability in area $\mathrm{d} \tau$

$$
\int \psi_{\mathrm{a}, \mathrm{~b}}^{*} \psi_{\mathrm{a}, \mathrm{~b}} \mathrm{~d} \tau=\langle\mathrm{a}, \mathrm{~b} \mid \mathrm{a}, \mathrm{~b}\rangle=1 \quad \text { system is in the state }
$$

Postulate 2.

To every physical observable there corresponds a linear, Hermitian operator.
For any classical observable convert to q.m. operator by:

$$
\left\{\begin{array}{l}
\text { const } \rightarrow \text { const, } \hat{\mathrm{a}} \bullet \\
\text { position, } \mathrm{x} \rightarrow \text { posn, } \hat{\mathrm{x}} \bullet \\
\text { fct.pos, } \mathrm{f}(\mathrm{x}) \rightarrow \mathrm{f}(\mathrm{x}) \bullet \\
\text { momentum, } \mathrm{px} \rightarrow-\mathrm{i} \hbar \frac{2}{2 \mathrm{x}}
\end{array}\right.
$$

these "operate" on wave function:
ex: energy: $T=p^{2} / 2 m, V=V(x), E=$ (const., conserved system)
linear: $\hat{\mathrm{G}}\left(\mathrm{c}_{1} \phi_{1}+\mathrm{c}_{2} \phi_{2}\right)=\mathrm{c}_{1} \hat{\mathrm{G}} \phi_{1}+\mathrm{c}_{2} \hat{\mathrm{G}} \phi_{2}$
This is necessary to probe the probe the properties of systems that one in mixed states on in state representation by superposition of other wave functions

Hermitian (Levine 7.2) -- has to do with observables being real quantum measurement has parallel to probability $\psi^{*} \psi \mathrm{~d} \tau \rightarrow$ probability any value $\quad \psi^{*} \hat{\alpha} \psi \mathrm{~d} \tau \rightarrow$ probability of measured quant
evaluation generally: $\langle\hat{a}\rangle=\int \psi^{*} \hat{\alpha} \psi \mathrm{~d} \tau$
to guarantee real need: $\langle\alpha\rangle=\langle i| \alpha|i\rangle=\langle\alpha\rangle^{*}$
Hermitian more generally: $\int f_{j}^{*} \hat{\alpha} f_{i} d \tau=\int f_{j}\left(\alpha f_{i}\right)^{*} d \tau$
in Dirac symbolism $\int f_{i}^{*} \alpha f_{j} d \tau=\langle i| \alpha|j\rangle=\langle j| \alpha|i\rangle^{*}$. Hermitian
can even compress further as $\alpha_{i j}=\langle i| \alpha|j\rangle$ represent a matrix these evaluate "probability" of system being in a state defined by f_{i} and αf_{j}

Eigen value equations_(Levine 7.3) This is Levine Postulate 4 for every operator there will be a set of functions that fulfill eigen value equation $\alpha f_{j}=a f_{f}$ where $\left\{f_{i j}\right\}$ are set of eigen functions
Dirac notation: $\alpha\left|i>=a_{i}\right| i>\quad a_{i}$-- eigen value is a constant
This set of functions will completely describe the space upon which the operator can operate, so any wave function representing state of system can be expanded as linear combination of set: -- or superposition of eigen functions.

$$
\psi=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}} \quad\left\{\mathrm{f}_{\mathrm{i}}\right\} \text { set of eigen functions }
$$

since set of f_{j}, is complete, in Dirac set of $\mid i>$ is basis for a general vector
Now effect of operator has changed

$$
\hat{\alpha} \psi=\hat{\alpha} \sum \mathrm{c}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}=\sum \mathrm{c}_{\mathrm{i}} \alpha \mathrm{f}_{\mathrm{i}}=\sum \mathrm{c}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}
$$

This is not an eigen value equation relationship since

$$
\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}} \neq \text { const } \psi
$$

[the mixing of f_{i} components to make up ψ is now changed]
or $\alpha \psi=\mathrm{g}$ where g is a new function/state
Degenerate eigen fcts: $\hat{\alpha} \mathrm{f}=$ af and $\hat{\alpha} \mathrm{g}=\mathrm{ag}$
then f and g said to be degenerate (save eigen value)
but also any linear combination of f and g degenerate:

$$
\begin{gathered}
\hat{\alpha}\left(c_{1} f+c_{2} g\right)=c_{1} \hat{\alpha} f+c_{2} \hat{\alpha} g \\
=c_{1} f+c_{2} a g \\
=a\left(c_{1} f+c_{2} g\right)
\end{gathered}
$$

ex. - p orbitals any comb. still a p orbital in absence of magnetic field
ex: Schroedinger eqn. $\hat{\mathrm{H}} \psi=\mathrm{E} \psi, \hat{\mathrm{H}}$ - total energy op., E - const. of motion

$$
\text { classical } \mathrm{H}=\mathrm{T}+\mathrm{V}=1 / 2 \mathrm{~m} v^{2}+\mathrm{V}(\mathrm{x})=\frac{\mathrm{p}^{2}}{2 \mathrm{~m}}+\mathrm{V}(\mathrm{x})
$$

1-D, single point $\left(\frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{x^{2}}+V(x)\right) \psi_{i}(x)=E_{i} \psi_{i}(x)$ or 3-D $\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(x, y, z)\right) \psi=E \psi$

Monday -- August 27

So how do we make measurements?
Postulate 3. (Postulate 3' - Atkins) (deviates a bit from Levine)
Where a system is in a state characterized by φ and ψ is an eigen function of $\hat{\alpha}$ which is the operator representation of some observable, with an eigen value of a,
then measurement of that observable on a system will uniquely yield the eigen value a, every time.
$\alpha \psi=\mathrm{a} \psi \rightarrow$ if the system is in a state ψ, then every measurement of a yields a ex. -- easiest example is energy. If a particle has a well-defined (conserved) energy for state $\psi_{\mathrm{i}}: \hat{\mathrm{H}} \psi_{\mathrm{i}}=\mathrm{E}_{\mathrm{i}} \psi_{\mathrm{i}}$ each measurement yields E_{i} or $\left.\hat{\mathrm{H}}|\mathrm{i}\rangle=\mathrm{E}_{\mathrm{i}} \mathrm{i}\right\rangle$ Clearly if molecule in a superposition of states: $\psi=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}} \phi_{\mathrm{i}} \quad$ where $\hat{\mathrm{H}} \phi_{i}=E_{i} \phi_{i}$ Then measurement of energy would not be well defined -- no eigen value:

$$
\hat{\mathrm{H}} \psi=\hat{\mathrm{H}} \Sigma_{c_{i}} \phi_{i}=\sum_{i} c_{i} E_{i} \phi_{i} \neq(\text { const }) \psi
$$

Postulate 4. (Post 3-Atkins, Post 5-Levine)
The result of measurement of any property, whose operator representation is $\hat{\alpha}$, on a system in a state, ψ_{N}, the average value measure is given by the expectation value

$$
\langle\hat{\alpha}\rangle=\int \psi_{\mathrm{n}}^{*} \hat{\alpha} \psi_{\mathrm{n}} \mathrm{~d} \tau=\langle\mathrm{n}| \hat{\alpha}|\mathrm{n}\rangle \quad \text { assuming } \psi_{\mathrm{n}} \text { normalized or }\langle\mathrm{n} \mid \mathrm{n}\rangle=1
$$

if $\left\{\mathrm{f}_{\mathrm{i}}\right\}=$ set of eigen functions of $\alpha, \psi_{\mathrm{n}}=\Sigma_{\mathrm{c}_{\mathrm{i}}} \mathrm{f}_{\mathrm{i}}$
$\langle\alpha\rangle=\int\left(\Sigma_{c_{i}} f_{i}\right)^{*} \hat{\alpha}\left(\Sigma_{c_{i}} f_{i}\right) d \tau=\int\left(\Sigma_{c_{i}} f_{i}\right)^{*}\left(\Sigma_{c_{i}} a_{i} f_{i}\right) d \tau=\Sigma_{c_{i}}^{*} c_{i} a_{i}--\langle i \mid j\rangle=\delta_{\mathrm{ij}}$ (fiorthogonal)
or average value corresponding to a distribution over possible eigen values.
Difference from Ψ being in an eigen state $\Psi=\mathrm{f}_{\mathrm{l}}--\langle\alpha\rangle=\int \mathrm{f}_{\mathrm{i}}^{*} \hat{\alpha} \mathrm{f}_{\mathrm{i}} \mathrm{d} \tau=\mathrm{a}_{\mathrm{i}} \int \mathrm{f}_{\mathrm{i}}^{*} \mathrm{f}_{\mathrm{i}} \mathrm{d} \tau=\mathrm{a}_{\mathrm{i}}$
All this easiest in Dirac notation

$$
\begin{array}{ll}
\langle\alpha\rangle=\langle\mathrm{i}| \hat{\alpha}|\mathrm{i}\rangle & =<i \mid i>a_{i}=a_{i} \\
\langle\alpha\rangle=\langle\psi| \hat{\alpha}|\psi\rangle=\sum c_{i}^{*} c_{j} a_{j} \underbrace{\langle }_{\delta_{j}} \underbrace{}_{i}|j\rangle=\sum_{i} c_{i}^{*} c_{i} a_{i}
\end{array} \quad \text { 3rd Post }
$$

What about time evolution?

Postulate 5 (Levine 6):

True dependence of a system (development of a state) is described by:

$$
-\frac{\hbar}{i} \frac{\partial \psi(x, t)}{\partial}=\hat{\mathbf{H}}(x, t) \psi(x, t)
$$

\hat{H} is the Hamiltonian, energy operator, which can depend on position and time If $\mathrm{H}=\mathrm{H}(\mathrm{x})$, i.e., is not dependent on time, variables can be separated, $\mathrm{H} \Psi=\mathrm{E} \Psi$
technique -- if both sides equal a constant--solve independently
let $\Psi(\mathrm{x}, \mathrm{t})=\psi(\mathrm{x}) \phi(\mathrm{t})+$ divide through by $\Psi(\mathrm{x}, \mathrm{t})=\psi(\mathrm{x}) \phi(\mathrm{t})$

$$
\left(\frac{1}{\phi(t)}\right)\left[-\hbar / \frac{\partial}{\partial} \phi(t)\right]=E \quad: \quad \frac{1}{\psi(x)} \hat{\mathrm{H}} \psi(x)=E
$$

solve t-depend fct: $\phi(t)=e^{-i E h / \hbar}$ plug in $\Psi(\mathrm{x}, \mathrm{t})=\phi(\mathrm{t}) \psi(\mathrm{x})=\exp (-\mathrm{iEt} / \mathrm{h}) \psi(\mathrm{x})$

