Kinetics with IR for Protein folding or other dynamic processes
Time dependent data with FTIR

Stop-flow methods - msec limits so far

Continuous, micro-flow methods - < 100 μsec

Rapid scan FT-IR - msec

T-jump and Flash photolysis - nsec time scales using step scan methods

2-D IR, pump-probe, and THz laser based IR spectra can sample spectrum on fsec scale

Most T-jump single ν with tunable IR laser for S/N, filtering and . .
a. Stop-flow concepts

b. Micromixer Continuous-Flow IR Characteristic
Scheme of Stop Flow—initialize by rapid mixing

Mix protein and perturbant rapidly to get new state, follow spectra

Time restriction from flow between windows and size

Cell nest

Mixer

Front Plate

Syringe drive system

Cell and mixer blowout

Backplate

Gasket

Cell Window

Cell Window

Spacer

Luer Plug

To Cell

Reagent

Protein

To Cell
Refolding of Ribonuclease A by FTIR

Inverse T-jump: Refolding initiated by injecting Ribo A stored in syringe at 80 °C into IR cell at 25 °C

One single beam spectrum (IF scan) is collected for each time point. Time resolution = 50 ms, but could be faster, if modify. IR resolution 8 cm\(^{-1}\) sufficient to separate increase in sheet, decrease in coil as folds.
Flow mixer to bring reagents together on micro-scale

IR spectra measure through chip, distance is time

Fig. 2 (a) Schematic view of the whole micromixing pattern with a close up view of the microchannels. (b) Scanning electron micrographs to illustrate the sandwich construction of polymer and silver layer.

Design, simulation and application of a new micromixing device for time resolved infrared spectroscopy of chemical reactions in solution

Peter Hinsmann, a Johannes Frank, b Peter Svasek, c Michael Harasek d and Bernhard Lendl e

Lab on a Chip, 2001, 1, 16–21
Continuous flow mixer

Top view:
green: inlet channels,
red: 8μm deep outlet channel

Side view: 2D Fluid dynamics simulation

%TFE

Austin, Gerwert
PNAS 98
2001, 6646
Lifetimes of intermediates in the \(\beta \)-sheet to \(\alpha \)-helix transition of \(\beta \)-lactoglobulin using diffusional IR mixer

E. Kauffmann, N. C. Darntont, R. H. Austin, C. Batts, and K. Gerwert

PNAS 2001 98 6646-6649

a) Spectra along channel: 1.1, 3.4, 5.7, 10.2, 21.6, 103 ms
b) 2\(^{nd}\) deriv. & 3-state fit
c) 3 basic spectra derived
d) Time course of 3 states
2-Dimensional analyses of spectra-(Noda)

• Correlation of peaks due to perturbation

• Identification of structural dependencies (novel development)
 • homospectral -- vary with secondary structure
 • heterospectral -- correlate to well known dependence

• Allow assignment of unknown features
Generalized 2D IR Procedure

External Perturbation

{ temperature, pH, concentration, surface pressure, etc. }

sample

time-resolved spectra

2D correlation maps

IR probe

dynamic spectral variation

cross-correlation analysis

From Rich Dluhy WebSite, Univ. Georgia
2D IR Correlation Maps

Synchronous Plot
- Similar changes at \((v_1, v_2)\)
- In phase signal variations

Asynchronous Plot
- Dissimilar changes at \((v_1, v_2)\)
- Out of phase signal variations

From Rich Dluhy WebSite, Univ. Georgia
IR Spectra of H/D exchange of Rnase A

Time Dependent variation after Stop-Flow insertion

Keiderling/Qi Xu - unpublished
100mg/ml Rnase A in H2o dilute with 4 times d2o pH=4.6

Exponential shows rate for H/D exchange, actually a fast and a slow process, surface and interior amides

This remains an interesting way to categorize folds!

Keiderling/Qi Xu - unpublished
2-D Maps of time correlation of H/D exchange

IR Synchronous Map of RNase A
Diluted with D2O 1:4 pH=4.7 for first 95s

IR Asynchronous Map of RNase A
Diluted with D2O 1:4 pH=4.7 for first 95s

Solid line: Positive
Dotted line: Negative

Keiderling/Qi Xu - unpublished
• Processes that can be repeated many times (thousands) can be studied at very fast (ns) rates using step scan techniques
Step-Scan FTIR based Time-resolved Experiments

At each mirror position, pulse the sample, then collect signal vs. time (nsec resolution). Move to the next step, repeat. When complete, data from same time delay following the pulse at each step can be combined to form an interferogram for that time. FT gives the spectrum. Requires sample to be cyclic, must reversibly relax.

Step-scan is slow, but at each step can measure very fast decay
Bacteriorhodopsin - flash photolysis

time resolved step-scan

700 ns

8 μs

Difference yields spectrum of L intermediate

Terrific sensitivity from measuring the baseline for each pulse by recording the signal just before the strobe—no drift

Systems that can be photo initiated to new state (like BR) and relax back reversibly offer possibility of fast kinetics, specific sites

Weidlich, Siebert, Appl. Spect. 1993
Gerwert co-workers

PNAS mutant bR

Fig. 1. FTIR difference spectra of bacteriorhodopsin. A, BR - L difference spectrum taken in H₂O at 170 K with spectral resolution of 2 cm⁻¹. B, Corresponding difference spectrum of the mutant in which Asp-96 is changed to Asn-96, recorded under the same conditions as A. C, Expansion of the spectral region 1800-1680 cm⁻¹ of A. D, Expansion of the spectral region 1800-1680 cm⁻¹ of B. E, BR - L difference spectrum of the mutant in deuterium oxide (D₂O) at 1800-1680 cm⁻¹. F, BR - K difference spectrum of the wild type at 1800-1680 cm⁻¹ taken at 70 K in H₂O. G, BR - K difference spectrum of the mutant taken in H₂O at 1800-1680 cm⁻¹. H, BR - K difference spectrum of the mutant taken in D₂O at 1800-1680 cm⁻¹.

Fig. 2. BR - M difference spectra of bacteriorhodopsin taken at 272 K in H₂O with 2 cm⁻¹ spectral resolution. The M intermediate is stabilized under photostationary conditions. Thereby small contributions of the N intermediate are present, but in the same ratio in both samples, as indicated in the fingerprint region. A, wild type; B, mutant; C, expansion of A from 1800 to 1680 cm⁻¹; D, expansion of B from 1800 to 1680 cm⁻¹; E, expansion of A from 1450 to 1350 cm⁻¹; F, expansion of B from 1450 to 1350 cm⁻¹.
Fig. 3. A, Subtraction of the BR – L difference spectra of the wild type and the mutant; B, corresponding subtraction of the BR – M difference spectra. For details see text.
Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy

F. Garczarek & K. Gerwert

a) 16O/18O exch. WT (blue), D85N (red), M intermed. (green). OH shift 3644-3633
b) time resolv. Diff. IR K&L
c) time course 2900-2600 (break H-bond <0, make>0
d) asb: M-intermed