
Homework—From--Notes 8 - detectors

Read Chap. 4, transducers, Sect. 4-4, and links below for: PMT and IR detectors

Discuss: Chap 4- #5, 6, 10, 17

a. I have several PMTs. Two nice ones are both cylindrical end-on designs, one has a transparent multi-alkalai photocathode (S-20) which covers most of the diameter of the tube (~50 mm) and the other has an InGaAs solid photocathode with an opening of ~10 x 15 mm. Why would I have two of them? What are the design advantages of each?

b. I have several MCT detectors, one is wide band and detects out to about 16 μ, two are narrow band and cut off at ~8 μ. Most are medium band cutting off at ~12 μ. They all vary in D*, but the narrow band ones are >4 x 10^10 while the wide band is ~5 x 10^9, why is this? All are mounted in liquid N₂ dewars, why? These are photoconductors, why do they need a bias voltage?

c. I have an InSb detector, P-V design. Where would I use this (i.e. what kind of spectroscopy)? What kind of preamp would this need?

d. We have a photodiode array (PDA) and a CCD both based on Si chips and for use in a Raman Spectrometer. The CD can make an image of the spectrum at the exit plane, but the PDA cannot, why is this?

Problems to hand in: Chapter 4: #3, 15, 16

Homework—From Notes 9 – electronics – beyond the book

Discussion: chap 4-# 4,5

To hand in: chap. 4-17, plus below

3.1 It is desired to minimize a 60-Hz line voltage hum in an electronic circuit that will ordinarily carry 1–3 kHz signals. (a) Draw a simple RC filter that can be used. Choose a value for its cutoff frequency f₀ and support your choice. Assume a roll-off of 20 dB per decade of frequency below f₀. (b) Select or calculate values for the filter components. Is there any advantage in picking R = 1 kΩ instead of 10 kΩ? Explain. (c) For strong rejection of a 60-Hz hum what attenuation in decibels would be desirable?
Fig. 3.2 Cutoff filters. (a) High-pass RC filter. (b) Low-pass RC filter. In each circuit the capacitor impedes low frequencies and blocks dc. Thus, low frequencies are attenuated in circuit (a) and passed in circuit (b).

3.3 What is the cut-on frequency f_c for the circuit of Fig. 3.2 if values of components are $C = 0.10$ µF and $R = 1$ kΩ?

4.1 Develop an expression for the output voltage in each of the op-amp circuits of Fig. 4.26 in terms of the input voltage(s).

4.3 Show that the output voltage of the circuit in Fig. 4.27 is given by the expression $V_o = (1 + R_1/R_2)V_{in}$.

Homework Notes#10 – Signal to Noise

Discussion questions: Chap 5 - #5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 19

To hand in: Chap 5 - #2, 4, 10, 17
Homework – Notes #11 -- Statistical sampling (read Chap 6 and Append. A)

Discussion: Chap 6: #4, 5, 7, 8, 11, 12
To hand in: Problems Chap 6: #3, 6

Homework – Notes #12 – Atomic Absorption

Read chap 7. Skim Chaps: 8,9,10,11 to see the various instruments and applications

Discuss: Ch 7 – 3, 4, 13, 14
Hand in: Ch7 - #5, 7, 10, 11

Homework -- From Notes 13 – Molecular Spectroscopy

Discussion: Chap 12: #6, 11, 13
To hand in: Chap 12: # 1, 4, 9,