BioMolecular Optical Spectroscopy:
Part 1: Infrared and Raman
Vibrational Spectra Background

Special Lectures for Chem 344
Fall, 2007

Tim Keiderling
University of Illinois at Chicago
tak@uic.edu
Vibrational Spectroscopy - Biological Applications

There are many purposes for adapting IR or Raman vibrational spectroscopies to the biochemical, biophysical and bioanalytical laboratory

• Prime role has been for determination of structure. We will focus early on secondary structure of peptides and proteins, but there are more – especially DNA and lipids

• Also used for following processes, such as enzyme-substrate interactions, protein folding, DNA unwinding

• More recently for quality control, in pharma and biotech

• New applications in imaging now developing, here sensitivity and discrimination among all tissue/cell components are vital
Spectral Regions and Transitions

- **Infrared radiation** excites molecular vibrations, i.e. stretching of bonds and deformation of bond angles. Molecule has $3N-6$ internal degrees of freedom, N atoms. States characterize the bound ground state.

- Radiation in the **visible (Vis) and ultraviolet (UV) regions**, will excite electrons from the bound (ground) state to more weakly bound and dissociative (excited) states, involving **valence electrons**.
 - Changes in both the vibrational and rotational states of the molecule can be associated with this, causing the spectra to become broadened or have fine structure.

- Radiation in vacuum UV and x-ray correspond to changes in electronic structure to either very high excited states or from core electrons (ionization)
Optical Spectroscopy - Processes Monitored
UV/ Fluorescence/ IR/ Raman/ Circular Dichroism

Analytical Methods

- **UV-vis absorb. & Fluorescence.**
 move e− (change electronic state)
 high freq., intense

- **CD** – circ. polarized absorption, UV or IR

- **Raman** – nuclei,
 inelastic scatter
 very low intensity

- **IR** – move nuclei
 low freq. & inten.

Diatomic Model

- **Absorption**
 \[h\nu = E_{\text{grd}} - E_{\text{ex}} \]

- **Fluorescence**
 \[h\nu = E_{\text{ex}} - E_{\text{grd}} \]

- **Raman**
 \[\Delta E = h\nu_0 - h\nu_s = h\nu_{\text{vib}} \]

- **Infrared**
 \[\Delta E = h\nu_{\text{vib}} \]

Processes Monitored

- UV/ Fluorescence/ IR/ Raman/ Circular Dichroism

Excited State

- (distorted geometry)

Ground State

- (equil. geom.)

molec. coord.

Q
Spectroscopy

• Study of the consequences of the interaction of electromagnetic radiation (light) with molecules.

• Light beam characteristics - wavelength (frequency), intensity, polarization - determine types of transitions and information accessed.

Absorbance:
E-M wave maintain phase, attenuate intensity in sample
Optical Spectroscopy – Electronic, Example Absorption and Fluorescence

Essentially a probe technique sensing changes in the local environment of fluorophores

What do you see?
(typical protein)

Intrinsic fluorophores
eg. Trp, Tyr

Change with tertiary structure, compactness

Amide absorption broad, Intense, featureless, far UV ~200 nm and below
UV absorption of peptides is featureless --except aromatics

![Graph showing UV absorption of a TrpZip peptide in water](image)

- Amide π-π* and n-π*
- Trp – aromatic bands

TrpZip peptide in water
Rong Huang, unpublished
Time out—states and transitions
Review of Vibrational Spectra Theory and Characteristics

Spectroscopy—transitions between energy states of a molecule excited by absorption or emission of a photon

\[h \nu = \Delta E = E_i - E_f \]

Energy levels due to interactions between parts of molecule (atoms, electrons and nucleii) as described by quantum mechanics, and are characteristic of components involved, i.e. electron distributions (orbitals), bond strengths and types plus molecular geometries and atomic masses involved
Spectroscopy

• Study of the consequences of the interaction of electromagnetic radiation (light) with molecules.

• **Light beam characteristics** - wavelength (frequency), intensity, polarization - determine types of transitions and information accessed.

\[\nu = \frac{c}{\lambda} \]

\[I \sim |E|^2 \]

Intensity

\(E \parallel z \)

\(B \parallel x \)

Polarization

\(k \parallel y \)
Properties of light – probes of structure

- **Frequency** matches change in energy, type of motion
 \[E = h \nu, \quad \text{where} \quad \nu = c/\lambda \quad \text{(in sec}^{-1}\text{)} \]

- **Intensity** increases the transition probability—
 \[I \sim \varepsilon^2 \quad \text{where} \quad \varepsilon \text{ is the radiation Electric Field strength} \]

 Linear Polarization (absorption) aligns with direction of dipole change—
 \(\text{(scattering to the polarizability)} \)
 \[I \sim \delta \mu / \delta Q \]
 where \(Q \) is the coordinate of the motion

 Circular Polarization results from an interference:
 \[I \sim \text{Im}(\mu \cdot m) \]
 \(\mu \) and \(m \) are electric and magnetic dipole

Intensity (Absorbance)

IR of vegetable oil
Optical Spectroscopy - IR Spectroscopy

Protein and polypeptide secondary structural obtained from vibrational modes of amide (peptide bond) groups

Aside: Raman is similar, but different amide I, little amide II, intense amide III

What do you see?

Model peptide IR

Amide I
(1700-1600 cm\(^{-1}\))

Amide II
(1580-1480 cm\(^{-1}\))

Amide III
(1300-1230 cm\(^{-1}\))
Vibrational States and Transitions

- The simplest case is a diatomic molecule. Rotations (2) and translations (3) leave only one vibrational degree of freedom, the bond length change, Δr, a one dimensional harmonic oscillator.

- One can solve this problem exactly as a classical Hook’s law problem with:
 - a restoring force: $F = -k\Delta r$ and
 - potential energy: $V=\frac{1}{2} k(\Delta r)^2$

- Quantum mechanically: $E_{\nu} = (\nu+1/2)\hbar\nu$, where ν is the vibration frequency.
Harmonic Oscillator
Model for vibrational spectroscopy

\[E_v = (v + \frac{1}{2})h\nu \]
\[\Delta v = \pm 1 \]
\[\Delta E = h\nu \]
\[v = (1/2\pi)(k/\mu)^{1/2} \]
Vibrational States and Transitions

- for the simplest harmonic oscillator case (diatomic):
 \[\nu = \frac{1}{2\pi} \left(\frac{k}{\mu} \right)^{1/2} \]
 where \(k \) is the force constant \((d^2V/dq^2) \).
 - In practice, stronger bonds have sharper (more curvature) potential energy curves, result: higher \(k \), and higher frequency.

and \(\mu \) is the reduced mass \(\left[\frac{m_1m_2}{m_1+m_2} \right] \).
 - In practice, heavier atom moving, have lower frequency.

Thus vibrational frequencies reflect structure, bonds and atoms
Vibrational States and Transitions

• Summary: high mass \implies low frequency
 strong bond \implies high frequency

• Some simple examples (stretches in polyatomics):
 -C-C- \sim1000 cm$^{-1}$ C-H \sim2800 cm$^{-1}$
 -C=C- \sim1600 cm$^{-1}$ C-D \sim2200 cm$^{-1}$
 -C≡C- \sim2200 cm$^{-1}$ C---N \sim1300 cm$^{-1}$
Polyatomic Vibrational States

- For a molecule of \(N \) atoms, there are \((3N-6) \) vibrational degrees of freedom. This complex problem can be solved the harmonic approximation by transforming to a new set of normal coordinates (combinations of the internal coordinates, \(q_i \)) to simplify the potential energy \(V \)—method unimportant for this course

\[
V = V_0 + \sum (dV/dq_i)_0 q_i + (\frac{1}{2}) \sum (d^2V/dq_iq_j)_0 q_i q_j + \ldots
\]

- This results in a molecular energy that is just the sum of the individual vibrational energies of each normal mode:

\[
E = \sum E_i = \sum (\nu_i + \frac{1}{2}) h\nu_i
\]

- As a result we have characteristic IR and Raman frequencies, \(\nu_i \), which are reflect bond types in the molecule. The frequency pattern forms a “fingerprint” for the molecule and its structure.

- Variations due to conformation and environment give structural insight and are the prime tools for Protein - Peptide IR and Raman.
In the **Harmonic approximation** it is possible to define:

- **normal coordinates**: \(Q_j = \sum c_{ji} q_i \)

- **simplify potential**: \(V_{\text{harm}} = \frac{1}{2} \sum (\frac{d^2V}{dQ_j^2}) Q_j^2 \)

This summed potential is solved by a simple product wavefunction:

\[\Phi = \prod \phi_i(Q_i) \]

This results in an energy that is just the sum of the individual vibrational energies of each normal mode:

\[E = \sum E_i = \sum (\nu_i + 1/2) \hbar \nu_i \]
Vibrational States and Transitions

• Each $\phi_i(Q_i)$ gives a unique frequency, ν_i. The general mass and bond strength characteristics still come through.

• As a result we have IR and Raman group frequencies, ν_i, which are characteristic of bond types in the molecule. The frequency pattern forms a “fingerprint” for the molecule and its structure.

• The variations due to its conformational and environmental conditions can give added structural insight and are the prime tools of IR and Raman spectra of Proteins and Peptides.
Vibrational Transition Selection Rules

Harmonic oscillator: only one quantum can change on each excitation

\[\Delta v_i = \pm 1, \quad \Delta v_j = 0; \quad i \neq j. \]

These are *fundamental* vibrations

Anharmonicity permits overtones and combinations

Normally transitions will be seen from only \(v_i = 0 \), since most excited states have little population.

Population, \(n_i \), is determined by thermal equilibrium, from the Boltzman relationship:

\[n_i = n_0 \exp\left[-\frac{(E_i-E_0)}{kT}\right], \]

where \(T \) is the temperature (°K) – (note: \(kT \) at room temp \(\sim 200 \text{ cm}^{-1} \))
Dipole Moment

• Interaction of light with matter can be described as the induction of dipoles, μ_{ind}, by the light electric field, E:

$$\mu_{\text{ind}} = \alpha \cdot E$$

where α is the polarizability

• IR absorption strength is proportional to

$$A \sim |\langle \Psi_f | \mu | \Psi_i \rangle|^2$$

transition moment between $\Psi_i \rightarrow \Psi_f$

• To be observed in the IR, the molecule must change its electric dipole moment, μ, in the transition—leads to selection rules

$$d\mu / dQ_i \neq 0$$

• Raman intensity is related to the polarizability,

$$I \sim \langle \Psi_b | \alpha | \Psi_a \rangle^2$$

similarly $d\alpha / dQ_i \neq 0$ for Raman observation
Raman Selection Rules

Any mode which expands the molecule, particularly any delocalized bonds, will be intense.

Aromatic groups and disulfides in protein side chains have strong Raman bands and the C=O and C-N stretches in a peptide are relatively strong, O-H and N-H and water are weak (strong IR).

Bases in DNA are strong Raman scatterers
IR vs. Raman Selection Rules

- At its core, Raman also depends on dipolar interaction, but it is a two-photon process, excite with ν_0 and detect ν_s, where $\nu_{\text{vib}} = \nu_0 - \nu_s$, so there are two μ's.

$$<\Psi_0|\mu|\Psi_i> \cdot <\Psi_i|\mu|\Psi_n> \sim \alpha$$

\Rightarrow need a change in POLARIZABILITY for Raman effect

$$\nu_{\text{vib}} = \nu_n - \nu_0 = \Delta E / h$$

$$\nu_{\text{vib}} = \nu_0 - \nu_s$$
Symmetry Selection Rules (Dipole, etc.)

Example:

symmetric stretch \(\leftrightarrow O=C=O \quad \text{Infrared inactive} \quad \delta \mu/\delta Q = 0 \)

Raman Intense \(\delta \alpha/\delta Q \neq 0 \)

asymmetric stretch \(\rightarrow O=C=O \quad \text{Infrared active} \quad \delta \mu/\delta Q \neq 0 \)

Raman \text{ inactive} \quad \delta \alpha/\delta Q = 0 \)

bending \(O=C=O \quad \text{Infrared active} \quad \delta \mu/\delta Q \neq 0 \)

Raman \text{ inactive} \quad \delta \alpha/\delta Q = 0 \)

Note: in biomolecules generally there is little symmetry, however, the residual, approximate symmetry has an impact. Raman and IR intensities often are complementary, for example amide II and III
Anharmonic Transitions

Real molecules are anharmonic to some degree so other transitions do occur but are weak. These are termed *overtones* \((\Delta v_i = \pm 2, \pm 3, \ldots)\) or *combination bands* \((\Delta v_i = \pm 1, \Delta v_j = \pm 1, \ldots)\). [Diatomic model]
Complementarity: IR and Raman

If molecule is centrosymmetric, no overlap of IR and Raman
Comparison of Raman and IR Intensities

Table 1.1. Characteristic Wavenumbers and Raman and Infrared Intensities of Groups in Organic Compounds

<table>
<thead>
<tr>
<th>Vibration(^a)</th>
<th>Region (cm(^{-1}))</th>
<th>Raman</th>
<th>Infrared</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v(O-H))</td>
<td>3650–3000</td>
<td>w</td>
<td>s</td>
</tr>
<tr>
<td>(v(N-H))</td>
<td>3500–3300</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>(v(=C-H))</td>
<td>3300</td>
<td>w</td>
<td>s</td>
</tr>
<tr>
<td>(v(=C-H))</td>
<td>3100–3000</td>
<td>s</td>
<td>m</td>
</tr>
<tr>
<td>(v(-C-H))</td>
<td>3000–2800</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>(v(-S-H))</td>
<td>2600–2550</td>
<td>s</td>
<td>w</td>
</tr>
<tr>
<td>(v(C\equiv N))</td>
<td>2255–2220</td>
<td>m–s</td>
<td>s–0</td>
</tr>
<tr>
<td>(v(C\equiv C))</td>
<td>2250–2100</td>
<td>vs</td>
<td>w–0</td>
</tr>
<tr>
<td>(v(C=O))</td>
<td>1820–1680</td>
<td>s–w</td>
<td>vs</td>
</tr>
<tr>
<td>(v(C=C))</td>
<td>1900–1500</td>
<td>vs–m</td>
<td>0–w</td>
</tr>
<tr>
<td>(v(C=N))</td>
<td>1680–1610</td>
<td>s</td>
<td>m</td>
</tr>
<tr>
<td>(v(N=N)), aliphatic substituent</td>
<td>1580–1550</td>
<td>m</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 1.1. (Continued)

<table>
<thead>
<tr>
<th>Vibration(^a)</th>
<th>Region (\text{cm}^{-1})</th>
<th>Raman</th>
<th>Infrared</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu(N=\text{N})), aromatic substituent</td>
<td>1440–1410</td>
<td>m</td>
<td>0</td>
</tr>
<tr>
<td>(\nu_a((\text{C} \rightarrow \text{ })\text{NO}_2))</td>
<td>1590–1530</td>
<td>m</td>
<td>s</td>
</tr>
<tr>
<td>(\nu_s((\text{C} \rightarrow \text{ })\text{NO}_2))</td>
<td>1380–1340</td>
<td>vs</td>
<td>m</td>
</tr>
<tr>
<td>(\nu_a((\text{C} \rightarrow \text{ })\text{SO}_2(-\text{C})))</td>
<td>1350–1310</td>
<td>w–0</td>
<td>s</td>
</tr>
<tr>
<td>(\nu_s((\text{C} \rightarrow \text{ })\text{SO}_2(-\text{C})))</td>
<td>1160–1120</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>(\nu((\text{C} \rightarrow \text{ })\text{SO}(-\text{C})))</td>
<td>1070–1020</td>
<td>m</td>
<td>s</td>
</tr>
<tr>
<td>(\nu(\text{C} \equiv \text{S}))</td>
<td>1250–1000</td>
<td>s</td>
<td>w</td>
</tr>
<tr>
<td>(\delta(\text{CH}_2), \delta_a(\text{CH}_3))</td>
<td>1470–1400</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>(\delta_s(\text{CH}_3))</td>
<td>1380</td>
<td>m–w, s, if at C=\text{C}</td>
<td>s–m</td>
</tr>
<tr>
<td>(\nu(\text{CC}),) aromatics</td>
<td>1600, 1580</td>
<td>s–m</td>
<td>m–s</td>
</tr>
<tr>
<td></td>
<td>1500, 1450</td>
<td>m–w</td>
<td>m–s</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>s (in mono-; m-; 1,3,5-derivatives)</td>
<td>0–w</td>
</tr>
<tr>
<td>(\nu(\text{CC}),) alicyclics, and aliphatic chains</td>
<td>1300–600</td>
<td>s–m</td>
<td>m–w</td>
</tr>
</tbody>
</table>
\[
\begin{array}{llll}
\nu_a(C-O-C) & 1150-1060 & w & s \\
\nu_s(C-O-C) & 970-800 & s-m & w-0 \\
\nu_a(Si-O-Si) & 1110-1000 & w-0 & vs \\
\nu_s(Si-O-Si) & 550-450 & vs & w-0 \\
\nu(O-O) & 900-845 & s & 0-w \\
\nu(S-S) & 550-430 & s & 0-w \\
\nu(Se-Se) & 330-290 & s & 0-w \\
\nu(C(aromatic)-S) & 1100-1080 & s & s-m \\
\nu(C(aliphatic)-S) & 790-630 & s & s-m \\
\nu(C-Cl) & 800-550 & s & s \\
\nu(C-Br) & 700-500 & s & s \\
\nu(C-I) & 660-480 & s & s \\
\delta_s(CC), \text{ aliphatic chains} & 400-250 & s-m & w-0 \\
\text{C}_{m, n = 3, \ldots, 12} & 2495/n & \text{Lattice vibrations in} & \\
\text{molecular crystals} & & \nu_s & s-0 \\
\text{(liberations and translational} & & & \\
\text{vibrations)} & & & \\
\end{array}
\]

Source: Reprinted from B. Schrader, Angew. Chem. 12, 882 (1973), with permission of Verlag Chemie, GMBH, Weirheim, Germany.

\(^a\nu, \text{stretching vibration; } \delta, \text{bending vibration; } \nu_s, \text{symmetric vibration; } \nu_a, \text{antisymmetric vibration.}\)

\(^b\nu_s, \text{very strong; } s, \text{strong; } m, \text{medium; } w, \text{weak; } 0, \text{very weak or inactive.}\)
IR & Raman Instrumentation - Outline

• Principles of infrared spectroscopy
• FT advantages
• Elements of FTIR spectrometer
• Acquisition of a spectrum
• Useful Terminology
• Mid-IR sampling techniques
 – Transmission
 – Solids
• Raman instrumentation comparison
• (Note—more on sampling variations later)
Techniques of Infrared Spectroscopy

Infrared spectroscopy deals with absorption of radiation--detect attenuation of beam by sample at detector

Dispersive spectrometers (old) measure transmission as a function of frequency (wavelength) - sequentially--same as typical UV-vis

Interferometric spectrometers measure intensity as a function of mirror position, all frequencies simultaneously--Multiplex advantage
Major Fourier Transform Advantages

• **Multiplex Advantage**
 - All spectral elements are measured at the same time, simultaneous data acquisition.
 Felgett’s advantage.

• **Throughput Advantage**
 - Circular aperture typically large area compared to dispersive spectrometer slit for same resolution, increases throughput.
 Jacquinot advantage

• **Wavenumber Precision**
 - The wavenumber scale is locked to the frequency of an internal He-Ne reference laser, +/- 0.1 cm\(^{-1}\).
 Conne’s advantage
Typical Elements of FT-IR

IR Source (with input collimator)
- Mid-IR: Silicon Carbide glowbar element, $T_c > 1000^\circ$C; 200 - 5000 cm$^{-1}$
- Near IR: Tungsten Quartz Halogen lamp, $T_c > 2400^\circ$C; 2500 - 12000 cm$^{-1}$

IR Detectors:
- DTGS: deuterated triglycine sulfate - *pyroelectric bolometer (thermal)*
 - Slow response, broad wavenumber detection
- MCT: mercury cadmium telluride - *photo conducting diode (quantum)*
 - must be cooled to liquid N$_2$ temperatures (77 K)
 - mirror velocity (scan speed) should be high (20Khz)

Sample Compartment
- IR beam focused (< 6 mm), permits measurement of small samples.
- Enclosed with space in compartment for sampling accessories
Interference - Moving Mirror Encodes Wavenumber

Paths equal \Rightarrow all ν in phase
Paths vary \Rightarrow interfere vary for different ν
Interferograms for different light sources
Acquisition of an Infrared Spectrum

• The light coming from the source goes through the interferometer; the movement of the mirrors causes an interference pattern which is called the Interferogram

• Next the light passes through the sample; the Interferogram of the source is modified as the light is absorbed by the sample

• The Interferogram is measured by the detector

• The Interferogram is transformed into a spectrum by a mathematical operation called the Fourier Transform algorithm

• Measurements are Single Beam: To get useful spectrum must correct for the light throughput, divide Sample response by Background response (better by blank, cell plus solvent)

• Take log of transmission, $A = - \log_{10}(I/I_0)$
Acquisition of an Infrared Spectrum

Interferogram of the source

Spectrum of the source (blank)

Interferogram of the source & sample

Spectrum of the source & sample

Fast Fourier transform done in computer
Convert Interferogram to Spectrum (single beam)
Acquisition of an Infrared Spectrum

Single beam sample

Spectrum of source & sample

Transmittance

transmittance spectrum of the sample
(polystyrene film)

-abs log T

Transmittance old (negative peak), Absorbance (positive) ~ concentration

Single beam background

Spectrum of source only
(no sample present)

Absorbance

Absorbance spectrum

I

I/I₀

gives

i.e.

Divide by:

I₀
Going beyond normal IR spectra – FT variations
Synchrotron Light Sources – the next big thing

Brookhaven National Light Source

Broad band, polarized well-collimated and very intense
(and fixed in space!)

Light beam output
Where e-beam turns
Synchrotron advantage – high brightness

Signal through 10 micron pinhole at f/1

NSLS U10
40 mrad Vert. X 40 mrad Hor.

1200K Black Body

Detector "noise"

Watts into 2 cm^-1 bandwidth

Wavenumbers
Advantages of Raman Spectroscopy--Comparison

- Non-destructive
- Flexible sampling - any phase or size - no preparation
- 1µm sample area - Raman microscopy possible
- Glass cells - good medium for cell design, low cost
- Fiber optics - up to 100m, routine
- Water - weak scatterer - excellent solvent
- Enhanced by resonance, surface interactions
Raman and IR Spectra - Complementary

Raman and IR are Complementary - similar transitions, different sensitivities
Raman and IR both provide chemical bond information.

Raman uses visible or uv light, so optics and cells can be glass, detectors can be high sensitivity.

Frequently, Strong IR Absorbers are Weak Raman Scatterers, and Vice Versa - Analysis of biological molecules in water becomes easier.

Variants of Raman, especially resonance and surface enhanced Raman are very sensitive.
Raman spectra are result of scattering

Typically a laser (intense at v_0) is focussed onto sample and scattered light is collected, often at 90 degree angle

Like fluorescence, but no real state is excited by the laser

$$\Delta v = v_0 +/-(+/-)$$

$\nu_{scat} = \nu_{vib}$

Intensity less in anti-Stokes due to less population in excited states

Normally only collect Stokes scatter

At v_0 the Rayleigh scatter is intense
Raman Shift

• IR absorption frequency = Raman shift from laser
• Reported as Raman shift, $\Delta \nu_{\text{Raman}}$ with units of cm$^{-1}$

$$\Delta \nu_{\text{Raman Shift}} = \nu_{\text{laser}} - \nu_{\text{scattered}}$$

- The **absolute wavenumber** of the Raman scattered light depends on the laser wavelength.

- It’s the **Raman Shift**, the Change in Photon Energy, that is Sensitive to Molecular Structure

Slide Courtesy Renishaw Inc.
Dispersive Raman - Single or Multi-channel

Eliminate the intense Rayleigh scattered & reflected light
- use filter or double monochromator
 – Typically 10^8 stronger than the Raman light

• Disperse the light onto a detector to generate a spectrum

Sample

Laser – ν_0

Polarizer

Lens

Filter

Scattered Raman - ν_s

Detector: PMT or CCD for multiplex

Single, double or triple monochromator
Excitation Sources

• CW gas lasers
 (Ar, Kr, Ne, N₂ (337.1 nm UV, pulsed), CO₂ (9-11 µm IR, CS/pulsed), excimer XeCl, 308 nm UV, pulsed)

• Dye lasers

• Solid-state lasers
 Ruby (694.3 nm, pulsed), Nd:YAG (1064-nm near-IR, CW/pulsed), Diode (3500-380 cm⁻¹ IR, CW/pulsed)

• Pulsed Nd:YAG
 laser harmonics (532 nm, 355 nm, 266 nm) for time-resolved and UV resonance Raman applications