Chem 340 - Lecture Notes 4 — Fall 2013 — State function manipulations

Properties of State Functions

State variables are interrelated by equation of state, so they are not independent,

express relationship mathematically as a partial derivative, and only need two of T,V, P

Example: Consider ideal gas: PV =nRT so P =f(V,T) = nRT/V, let n=1

Can now do derivatives: (6P/6V)r = -RT/V? and : (6P/T)e = RIV

Full differential show variation with respect to one variable at a time, sum for both:
(equations all taken from Engel, © Pearson)
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Example, on hill and want to know how far down (dz) you
will go if move some amount in x and another in y. contour
map can tell, or if knew function could compute dz, from
dz/dx for motion in x and dz, from dz/dy for motion in y total sk
change in z is just sum: dz = (dz/dx),dx + (dz/dy),dy ‘ Sea level
Note: for dz, small change (big ones need higher derivative)  ...cman -

Can of course keep going with 2" and 3" derivatives or mixed ones
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For state functions the order of taking the derivative is not important, or

(o = G )
oT Y Jalw BV T  luly

The corollary works, reversed derivative equal - determine if property is state function
as above, state function has an exact differential: Af = [df = f; - f;
good examples are AU and AH, but, g and w are not state functions



Some handy calculus things:
If z = f(x,y) can rearrange to x = g(y,X) or y = h(x,z) [e.g.P=nRT/V, V=nRT/P, T=PV/nR]
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cyclic rule:

Inversion:
So we can evaluate (6P/oV)r or (0P/0T)y for real system, use cyclic rule and inverse:

(E) <ﬂ> (g) . divide both sides by
oV Jr \oT ) p \oP v (0T/oP)y get

1/(aTI8P)=(8P/aT)y
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© 2013 Pearson Education, Inc.

Where: = volumetric thermal

'3 - _1_ (QK) and Kk = — __1_(?_\{) expansion coefficient (Atkins = o)
V\oT /p VNOP /T and «x = isothermal compressibility
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Point: We can measure both of these properties and solve relationships, for any system
Sign chosen so « is positive (i.e. as P inc., expect V dec., (6V/0P)r negative)

Back to start, total derivative, dP: integrate:
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Example: temperature in experiment has risen so ethanol thermometer is at the top of
capillary, filled. If you increase another 10°C, how much will pressure increase?

AP = [(Be/)dT - J(1/<V)AV ~ BeeAThc — (L)IN(VAV)  Ve=Vi(1+BgAT)  In(1-x)~X, x<<1
AP = BetAT/K — (Bg|AT /K) In(Vf/Vi) = In(1+Bg|AT) ~ Bg|AT
AP = (AT/x ) (Ber— Bg) By = 2.0x10° °C! B =11.2x10"°C™* « = 11.0x10” bar™
AP = (10°C /11.0x10 bar*)(11.2-0.2)x10™“ °C™* = 100 bar  (goodbye thermometer!)



k and B (a-Atkins) values for selected solids and liquids:
TABLE 3.1 Volumetric Thermal Expansion Coefficient for Solids and Liquids

at 298 K

Element 10 B/(K™1) Element or Compound 10* B/(K™")
Ag(s) 57.6 Hg(l) 1.81
Al(s) 69.3 CCly () 11.4
Au(s) 42.6 CH;COCH;(1) 14.6
Cu(s) 49.5 CH;0H(/) 14.9
Fe(s) 36.9 C,H50H(/) 112
Mg(s) 783 C¢HsCH;(0) 10.5
Si(s) 75 CeHe(l) 114
W(s) 13.8 H,0() 2.04
Zn(s) 90.6 H,0(s) 1.66

Sources: Benenson, W., Harris, J. W., Stocker, H., and Lutz, H. Handbook of Physics. New York: Springer,
2002; Lide, D. R., ed. Handbook of Chemistry and Physics. 83rd ed. Boca Raton, FL: CRC Press, 2002;
Blachnik, R., ed. D’Ans Lax Taschenbuch fiir Chemiker und Physiker. 4th ed. Berlin: Springer, 1998.

Liquid B (o) values generally much larger than for solids, see example above
Note: water will be different close to 273 K, max density ~4 C

TABLE 3.2 Isothermal Compressibility at 298 K

Substance 10° k/bar™! Substance 108 k/bar !
Al(s) 1.33 Bry(l) 64
SiO4(s) 2.57 C,HsOH(!) 110
Ni(s) 0.513 C¢HsOH(!) 61
TiO,(s) 0.56 CeHe(l) 94
Na(s) 13.4 CCl(0) 103
Cu(s) 0.702 CH;COCH;(/) 125
C(graphite) 0.156 CH;OH(/) 120
Mn(s) 0.716 CS,(D) 92.7
Co(s) 0.525 H,O(/) 459
Au(s) 0.563 Hg(l) 3.91
Pb(s) 2.37 SiCly(l) 165
Fe(s) 0.56 TiCly() 89
Ge(s) 1.38

Sources: Benenson, W., Harris, J. W., Stocker, H., and Lutz, H. Handbook of Physics. New York: Springer,
2002; Lide, D. R., ed. Handbook of Chemistry and Physics. 83rd ed. Boca Raton FL: CRC Press, 2002;
Blachnik, R., ed. D’Ans Lax Taschenbuch fiir Chemiker und Physiker. 4th ed. Berlin: Springer, 1998.
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Now look at how U varies with V. and T, since state function can do same things

oU ou
dU = <—> af & (—) dv
oT )y vV /)t but AU = q + w and differential: dU = &q + dw

U U
So dU= dq — PyyprnadV = (—) dT + (—) dv
oT )y v )y
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Adqy ((’)U ) s
- =Cy
o Jy like state fct, if V const 2path

dqy = (—) dT -
IfdV = 0, Ty g dT

Already discuss Cy: positive, extensive, Cym = Cy/n intensive, vary with substance and T
Microscopic picture: due to the variation in accessible energy states, so more

degrees of freedom (rotations, vibrations) for polyatomics as opposed to atoms
T, h g

¥ i
oU
AUy = /CvdT = n/ Cy,mdT /qu = /(?T) dT or gy = AU

dq is inexact but if path defined has unique value, here constant V, so qy eval, Cy fixed

that was one part of complete differential, what about: (6U/6V)r = 1t - internal pressure

oUu opP d d
(), = (i), - aw=(5),a+ (5),
I v put it into ok dv i

Ideal gas, nr = 0, no interaction

dU = dUy + dUy = Cy dT + |:T<f)£> == P:|dV work out: T[O(NRT/V)/OT]y-P =
aT )y T(NRNV)-P=P-P=0

Can show that

soidealgas dU=CydT (butdo notneed const V!) A
V. T - Vi Ty
Each part of dU above is experimentally observable
Alternatively: If have a process can break up into simpler
steps and evaluate state functions, sum for state change:
e.g.constT -~ 1 1
dU = dUt = [T(0P/oT)y — P]
constV
du = dUV = CvdT
total is sum, path independent (do red or blue path)-> . - o

Y



Comparing dependence of Uon T and V
Ideal gas, U = U(T), but real gas interaction - U(T,V)

Joule experiment — expand gas into a vacuum,

heat from system to bath should be (0U/0V)
since vacuum: pext = 0, w = 0, so dU = dq = dUy + dUy /
Joule result - no change in T, so assume dTsys = dTs, = 0 or

Hilgh pressure \I/acuum
gas

dg =0 - (AU/AV)rdV = 0 since dV # 0 >(0U/dV); = 0

Joule experiment not sensitive enough, but observation does fit ideal behavior (above),
later with Thomson they got more sensitive - (0U/dV)t # 0 but very small

Example: For van der Waals gas: P=RT/(V-b) — a/V,,? calculate <ﬂ> _ T<@> B
And determine AUy, = [(6U/6V)1dVy, from Vi, to Vi v /)r aT Jy
a. mr = T(OU/IOV)y - P = T[R/(Vm-b)] = P = RT/(Vm-b) = [RT/(Vm-b) — a/Vin?] = a/Vi?
b. AUtm =[(0U/0V)1dVy, = [alVm2dV = -a(1/V-1/V) > expansion, 1/V' >1/V', AU (+)
So change in U depends on a, the interaction term in van der Waals model

Relative size of dUr = (6U/oV)r and dUy = (6U/0T)y

Example: expand N, from (T=200K, P=5.0 bar) to (T=400 K, P= 20 bar),

a =0.137 Pam®mol?, b = 3.87x10°m®*mol™, Cym =(22.5 -1.2x102T+2.4x10°T?)JIK mol™
solution can be done by breaking into const V step and const T step, find:

AUt = -132 Jmol™ and AUy = 4.17 kdmol™* > dUr = (8U/8V)r much smaller (~3%)
Good approximation for gasses assume: AU ~AU(T) or AU+ = [(8U/6V)dV ~ 0

Solids and liquids, moderate conditions, V,, = 1/p ~ const, or dV,~0
S0 AU = [(8U/eV)rdV ~ (8U/8V)TAV ~ 0, which is independent of (U/aV)r

Result means in most cases: AU = U'(T,V)-U(T,V) =/CydT (but not only const.V/)
Note: assumes no phase changes, no chemical reactions (these come later!)

Enthalpy and constant Pressure processes

Let P = Pey (const) : dU = dgp — PdV integrate U-U' = gp-P(V-V) >
(U-PV") = (U-PV') = gp soif H=U + PV then AH = gp > independent
=>» any process, const P, closed system, only P-V work

Fusion and vaporization, need heat to overcome molecular interaction, form new phase
AH = qP > O, AUVap = AHvap = PAVVap > 0 === AVVap >>0, SO AUVap < AHvap
By contrast, AVy,s small, so AUss ~ AHgys



oH oH oH
dH = |{—) al + | — | dP Adgp = | — ) dT
like before: T /p IPJ)r forconstP, dP =0, o /p

SO we again get heat capacity at const P: Cp = (8H/aT)p
extensive, so use Cpm, H state variable, so evaluate by AHp = [CpdT
relationship works for all systems, if there is no reaction or phase change

U

Relate Cy and Cp —from dH =dU + d(PV) = dgp = Cy dT + (:—V> dV + PdV
Const P: =

but dgp = CpdT, so “divide t

s in (oV/IdT)p

: ] ) U P
o) e [(), ), e (92,
P aT /) p T

wy (v

Cp = CV I = ) ( - o
aV Jr\oT aV N9/ p _
" v then cyclic rule
=Cy + T<d—> (d—) (@P/ET)v= -1/(aVIoP)(8TIoV)p
oT Jy \aT /) p = -(aVIaT)p I(0VIoP)r
- 2
o (ﬂ) and definitions of B (a.— Atkins) and «:
ChsE +T<ﬁ> <ﬂ> =g =l
P * aT /y \oT / p ’ <ﬂ ) So Cp and Cy, for any substance or
P ) phase, can be related by knowing only
2 B2 Vm, k and

Cp=Cy +TV ’87 or Cpm=Cym+TVy ?
Ideal gas, (6U/oV)r = 0, and P(oV/oT)r
=P(nR/P) =nR, so Cp - Cy =nR
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For solids and liquids (6V/aT)e = VB and is much smaller, so V/r o /p
Cp ~ Cy = solid and liquid heat capacities measure at const P, not easy to control V

Enthalpy with pressure at const T

Same as above for dU, full variation for d(PV):
dH = dU + d(PV) = CydT+(oU/6V)r dV + VdP + VdP

dH= :Cydr + [(ﬂ) + P]dv + V dP Often (oH/oT)p dT >> (6H/0P)dP so ignore
v )y .
P dependence, but need for refrigerator
divide through above by dP , then (6H/6P)t = isothermal, dT = 0, 1% term (CydT) =0,

(5 )= 1Go), 7 Go), +v

Rearrange using (oU/oV)r = T(oP/dT)y-P , so two P’s cancel in bracket,
and then use cyclic rule: (6P/oT)y(0VIOP)t = -1/(0T/oV)e = (0VIoT)p = BV




(28), (), (3, v =v-1(2), oo

So P dependence of His V, corrected by B expansion coefficient, ideal is (6H/oP)r =0
Recall ideal: B = (6V/IoT)p/V = (O(RT/P)/OT)p/V = RIPV =1/T

Real gases (6H/oP)r # 0, and important for heat transfer (refrigerator — expand gas,
extract heat from “system” and then recompress, dump heat to “surrounding”->kitchen!)
Solids and liquids, (0V/oP)+ very small, so (0H/oP)t ~ V, and dH = CpdT + VdP

Example: Calculate AH for 124 g liquid MeOH at 1.0 bar and 298 K
change to 2.5 bar and 425 K, p = 0.79 gcm™ and Cpy, = 81 JK*mol™
Choose const T path follow with const V path, use above result for dH liquid
AH = n|CpndT +[VdP ~ NCpmAT + VAP
= 81JK*mol (124 g/32 gmol™)127 K + (124 g/0.79 gcm>)10° m3*cm>x1.5x10° Pa
=39.9 x10%J + 23.5J~40 kJ - first term, heat capacity, dominates, P depend. small

Joule Thomson Effect
Expand a gas, e.g. open an N, cylinder, AP >>0, see nozzle get cold (typical)

Model system: Gas transferred from high to low pressure through porous plug,
isolated cylinder, piston moves to keep P values const, AP=0, V and T both changing

Pressure gauges

Enthalpy, H

Porous plug

Temperature,
T

Pressure,
p

Changes are determined by gas property, e.g. N, cools as expands, P1>P, and T:<T,
Wiot = Wit + Wy = - [P1dV - [PodV = P1Vy — P,V (recall start V10 and other side 0->V,)

adiabatic, q-= 0,AU=w=U;-U, =PV1-PyV,, rearrange: Ui+ PiVi=Us+ PV,
- H; = H, isoenthalpic, here dP and dT negative, so (6T/oP)y> 0



e (20,2
=P = 1m e - g
Ki-1 AP—0\ AP H JP H

oH
dH = CpdT + (—) dP =0
For isenthalpic: P /1 divide by dP, rearrange:

co(Z) +(2) -0 gune () - ¢
P\op P ), giving 0P ) PMj—T

So (¢H/oP)r can be measured knowing Cp and iyt both of which depend on material
Define: ur = (0H/oP)t = -Cpuyr as isothermal Joule-Thomson coefficient
As before iyt = 0 for ideal gas, but for van der Waals, as P=>0, pu;r = (2a/RT — b)/Cpn,

Joule Thomson coefficient:

Some example values and temperature variation from Web

0.5
g From above pyr=(oH/0P)+/Cp
= ™ | Which can be shown to be:
g 03 : aT 1%
=
e HiT = (—) :—(LTT—].)
= 0.2
E 01 where o — thermal expansion
5 0 1 [orB=(aVIeT)p/V)]
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Temperature (k)
Example: solve p;r for van der Waals gas Take limit of large molecular volume:
RT  «a [a,n] Expansion tricky, find common denom.
P=—— E— 1 ﬁ r S
V—b VZ Iun.:C—P _T[ﬁj -V [ R ]
- - - - 8‘7 T . ]- . ?_b rr
evaluate (dP/dT)y and (OP/dV)y : - - Lm jt,, =C—1u11 -T RT P -V
\ R o P 2=
EAPN I Ea
8T,'.7 V-b N TR T ( 2 i 72 723
| (V-p) | 1 o {_—Zab +4abV —2aV* +bRTV?)
(a_f) ___ R S22 | 1 T BT T 2ab + 4abV 24V + RTV
Vv V — | A S S
ro (V-p) o 1 _vba | _1f[2a
[(V-b) " RT V' _C_ RT




