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Chem 340 - Lecture Notes 4 – Fall 2013 – State function manipulations 

 

Properties of State Functions 

State variables are interrelated by equation of state, so they are not independent,  

express relationship mathematically as a partial derivative, and only need two of T,V, P 

Example: Consider ideal gas:  PV = nRT so P = f(V,T) = nRT/V, let  n=1 

Can now do derivatives:   (P/V)T = -RT/V2  and :   (P/T)P = R/V   

Full differential show variation with respect to one variable at a time, sum for both: 

(equations all taken from Engel, © Pearson) 

 

 

 

 

shows total change in P if have some change in V and in T 
 

Example, on hill and want to know how far down (dz) you 

will go if move some amount in x and another in y. contour 

map can tell, or if knew function could compute dzx from 

dz/dx for motion in x and dzy from dz/dy for motion in y total 

change in z is just sum: dz = (dz/dx)ydx + (dz/dy)xdy 

Note: for dz, small change (big ones need higher derivative) 
 

Can of course keep going with 2nd and 3rd derivatives or mixed ones 

 
 

For state functions the order of taking the derivative is not important, or 

 
 

The corollary works, reversed derivative equal  determine if property is state function 

 as above, state function has an exact differential: f = ∫df = ff - fi 

 good examples are U and H, but, q and w are not state functions 
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Some handy calculus things: 

If z = f(x,y) can rearrange to x = g(y,x) or y = h(x,z)  [e.g.P=nRT/V, V=nRT/P, T=PV/nR] 

Inversion:   cyclic rule:  

 

So we can evaluate (P/V)T or (P/T)V for real system, use cyclic rule and inverse: 

 

divide both sides by 

(T/P)V get 

1/(T/P)V=(P/T)V 
 

similarly 

(P/V)T=1/(V/P)T 

so get ratio of two 

volume changes 
 

cancel (V/T)P = V 

const. , norm to V 

 

Where:   = volumetric thermal 

expansion coefficient (Atkins  ) 

and   = isothermal compressibility 

 

Point: We can measure both of these properties and solve relationships, for any system 

 Sign chosen so is positive (i.e. as P inc., expect V dec., (V/P)T negative) 
 

Back to start, total derivative, dP:  integrate: 

   
 

Example: temperature in experiment has risen so ethanol thermometer is at the top of 

capillary, filled. If you increase another 10oC, how much will pressure increase? 

P = ∫(et/)dT - ∫(1/V)dV ~ etT/ – (1/)ln(Vf/Vi) Vf =Vi(1+glT)    ln(1-x)~x, x<<1 

P =etT/  – (glT /)     ln(Vf/Vi) = ln(1+glT) ~ glT 

P =T/ ) (et– gl)  gl = 2.0x10-5 oC-1
 et = 11.2x10-4 oC-1 

 = 11.0x10-5 bar-1 

P = oC11.0x10-5 bar-1)(11.2-0.2)x10-4 oC-1 = 100 bar    (goodbye thermometer!) 
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 and  (-Atkins) values for selected solids and liquids: 

 
Liquid  values generally much larger than for solids, see example above 

 Note: water will be different close to 273 K, max density ~4 C 
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Now look at how U varies with V and T, since state function can do same things 

  but U = q + w and differential: dU = ᵭq + ᵭw 
 

 

So     dU = 

 

 

If dV = 0,   so  like state fct, if V constpath 
 

Already discuss CV: positive, extensive, CVm = CV/n intensive, vary with substance and T  

     Microscopic picture: due to the variation in accessible energy states, so more 

degrees of freedom (rotations, vibrations) for polyatomics as opposed to atoms 

 or   

ᵭq is inexact but if path defined has unique value, here constant V, so qV eval, CV fixed 
 

that was one part of complete differential, what about: (U/V)T = T - internal pressure 

Can show that  put it into  

Ideal gas, T = 0, no interaction 

work out: T[(nRT/V)/T]V-P = 

T(nR/V)-P = P-P = 0 
 

so ideal gas     dU = CVdT    (but do not need const V!) 

 

Each part of dU above is experimentally observable 
 

Alternatively:  If have a process can break up into simpler 

steps and evaluate state functions, sum for state change:  

e.g. const T 

 dU = dUT = [T(P/T)V – P] 

const V 

 dU = dUV = CVdT 

total is sum, path independent (do red or blue path) 

 



5 
 

Comparing dependence of U on T and V 
 

Ideal gas, U = U(T), but real gas interaction  U(T,V)  
 

Joule experiment – expand gas into a vacuum,  

 heat from system to bath should be (U/V) 

since vacuum: pext = 0, w = 0, so dU = dq = dUV + dUT 

Joule result - no change in T, so assume dTsys = dTsur = 0 or  

dq = 0  (U/V)TdV = 0 since dV ≠ 0 (U/V)T = 0 
 

Joule experiment not sensitive enough, but observation does fit ideal behavior (above),  

 later with Thomson they got more sensitive (U/V)T ≠ 0 but very small 

 

Example: For van der Waals gas: P=RT/(Vm-b) – a/Vm
2 calculate  

 And determine UTm = ∫(U/V)TdVm  from Vm
i to Vm

f 

a. T = T(U/V)V - P = T[R/(Vm-b)] – P = RT/(Vm-b) – [RT/(Vm-b) – a/Vm
2] = a/Vm

2 

b. UTm =∫(U/V)TdVm = ∫a/Vm
2dV = -a(1/Vf-1/Vi)   expansion, 1/Vi >1/Vf, UTm (+) 

So change in U depends on a, the interaction term in van der Waals model 
 

Relative size of dUT = (U/V)T and dUV = (U/T)V 

 

Example: expand N2 from (T=200K, P= 5.0 bar) to (T=400 K, P= 20 bar),     

a = 0.137 Pa.m6mol-2, b = 3.87x10-5m3mol-1, CVm =(22.5 -1.2x10-2T+2.4x10-5T2)JK-1mol-1  

solution can be done by breaking into const V step and const T step, find: 

UT = -132 Jmol-1 
andUV = 4.17 kJmol-1    dUT = (U/V)T much smaller (~3%) 

Good approximation for gasses assume: U ~U(T) or UT = ∫(U/V)TdV ~ 0 
 

Solids and liquids, moderate conditions, Vm = 1/ ~ const, or dVm~0 

So UTm = ∫(U/V)TdV ~ (U/V)TV ~ 0, which is independent of (U/V)T 

 

Result means in most cases:   U = Uf(T,V)-Ui(T,V) =∫CVdT    (but not only const.V) 

 Note: assumes no phase changes, no chemical reactions (these come later!) 

 

Enthalpy and constant Pressure processes 
 

 Let P = Pext (const) : dU = dqP – PdV integrate Uf-Ui = qP-P(Vf-Vi)   

 (Uf-PVf ) – (Ui-PVi ) = qP  so if H = U + PV then H = qP  independent  

 any process, const P, closed system, only P-V work 
 

Fusion and vaporization, need heat to overcome molecular interaction, form new phase 

 H = qP > 0, Uvap = Hvap - PVvap > 0  ---- Vvap >>0,  so Uvap < Hvap 

 By contrast, Vfus small, so Ufus ~ Hfus 
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like before:  for const P,  dP = 0,  
  

so we again get heat capacity at const P: CP = (H/T)P 

 extensive, so use CPm, H state variable, so evaluate by HP = ∫CPdT 

 relationship works for all systems, if there is no reaction or phase change 

 

Relate CV and CP – from dH = dU + d(PV) =  

Const P:                  

but dqP = CPdT, so “divide through” by dT, combine terms in (V/T)P 
 

Use  
 

then cyclic rule 
(P/T)V= -1/(V/P)T(T/V)P  

= -(V/T)P /(V/P)T 

 

and definitions of Atkins and : 
 

So CP and CV for any substance or 

phase, can be related by knowing only 

Vm,  and  
 

Ideal gas, (U/V)T = 0, and P(V/T)T 

= P(nR/P) = nR, so CP - CV = nR 

For solids and liquids (V/T)P = V and is much smaller, so  

CP ~ CV
 
 solid and liquid heat capacities measure at const P, not easy to control V 

 

Enthalpy with pressure at const T 
 

Same as above for dU, full variation for d(PV): 

dH = dU + d(PV) = CVdT+(U/V)T dV + VdP + VdP 

 

dH =   Often (H/T)P dT >> (H/P)TdP so ignore   

      P dependence, but need for refrigerator 

divide through above by dP , then (H/P)T  isothermal, dT = 0, 1st term (CVdT) =0,  

 
Rearrange using  (U/V)T = T(P/T)V-P , so two P’s cancel in bracket,  

and then use cyclic rule: (P/T)V(V/P)T = -1/(T/V)P = (V/T)P = V 
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So P dependence of H is V, corrected by  expansion coefficient, ideal is (H/P)T = 0 

 Recall ideal:  = (V/T)P/V = ((RT/P)/T)P/V = R/PV =1/T  

 

Real gases (H/P)T ≠ 0, and important for heat transfer (refrigerator – expand gas, 

extract heat from “system” and then recompress, dump heat to “surrounding”kitchen!) 

Solids and liquids, (V/P)T very small, so (H/P)T ~ V, and dH = CPdT + VdP 
 

Example: Calculate H for 124 g liquid MeOH at 1.0 bar and 298 K  

change to 2.5 bar and 425 K,  = 0.79 gcm-3 and CPm = 81 JK-1mol-1 

Choose const T path follow with const V path, use above result for dH liquid 

H = n∫CPmdT +∫VdP ~ nCPmT + VP  

    = 81JK-1mol-1(124 g/32 gmol-1)127 K + (124 g/0.79 gcm-3)10-6 m3cm-3x1.5x105 Pa 

    = 39.9 x103 J + 23.5 J ~40 kJ    - first term, heat capacity, dominates, P depend. small 

 

Joule Thomson Effect 

Expand a gas, e.g. open an N2 cylinder, P >>0, see nozzle get cold (typical) 

 Model system: Gas transferred from high to low pressure through porous plug, 

isolated cylinder, piston moves to keep P values const, P=0,  V and T both changing  

 

 
 

Changes are determined by gas property, e.g. N2 cools as expands, P1>P2 and T1<T2 

wtot = wlt + wrt = - ∫P1dV - ∫P2dV =  P1V1 – P2V2    (recall start V10 and other side 0V2) 
 

adiabatic, q = 0, U = w = U1 – U2    = P1V1 – P2V2 , rearrange: U1+ P1V1 = U2 + P2V2     

  H1 = H2    isoenthalpic,  here dP and dT negative, so (T/P)H > 0 
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Joule Thomson coefficient:  

For isenthalpic:  divide by dP, rearrange: 

 

So (H/P)T can be measured knowing CP and JT both of which depend on material 

 Define: T = (H/P)T = -CPJT as isothermal Joule-Thomson coefficient 

As before JT = 0 for ideal gas, but for van der Waals, as P0, JT = (2a/RT – b)/CPm 

 

Some example values  and temperature variation from Web 
 

From above JT=(H/P)T/CP  

Which can be shown to be: 

where  – thermal expansion  

[or (V/T)P/V)] 
 

Note: JT (+) cools on expand 

  

 

Example: solve JT for van der Waals gas                Take limit of large molecular volume: 

Expansion tricky, find common denom. 

 

 


