Chem 340 - Lecture Notes 4 – Fall 2013 – State function manipulations

Properties of State Functions

State variables are interrelated by equation of state, so they are not independent, express relationship mathematically as a partial derivative, and only need two of T,V, P **Example:** Consider ideal gas: PV = nRT so P = f(V,T) = nRT/V, let n=1Can now do derivatives: $(\partial P/\partial V)_T = -RT/V^2$ and : $(\partial P/\partial T)_P = R/V$

Full differential show variation with respect to one variable at a time, sum for both:

(equations all taken from Engel, © Pearson)

$$dP = \left(\frac{\partial P}{\partial T}\right)_V dT + \left(\frac{\partial P}{\partial V}\right)_T dV$$

© 2013 Pearson Education, Inc.

shows total change in P if have some change in V and in T

Example, on hill and want to know how far down (dz) you will go if move some amount in x and another in y. contour map can tell, or if knew function could compute dz_x from dz/dx for motion in x and dz_y from dz/dy for motion in y total change in z is just sum: $dz = (dz/dx)_y dx + (dz/dy)_x dy$ Note: for dz, small change (big ones need higher derivative)

Can of course keep going with 2nd and 3rd derivatives or mixed ones

$$\left(\frac{\partial}{\partial T} \left(\frac{\partial P}{\partial V} \right)_T \right)_V = \frac{\partial^2 P}{\partial T \partial V} = \left(\partial \left(\frac{\partial \left[\frac{RT}{V} \right]}{\partial V} \right)_T \middle/ \partial T \right)_V = \left(\partial \left[-\frac{RT}{V^2} \right] \middle/ \partial T \right)_V = -\frac{R}{V^2}$$

$$\left(\frac{\partial}{\partial V} \left(\frac{\partial P}{\partial T} \right)_V \right)_T = \frac{\partial^2 P}{\partial V \partial T} = \left(\partial \left(\frac{\partial \left[\frac{RT}{V} \right]}{\partial T} \right)_V \middle/ \partial V \right)_T = \left(\partial \left[\frac{R}{V} \right] \middle/ \partial V \right)_T = -\frac{R}{V^2}$$

For state functions the order of taking the derivative is not important, or

$$\left(\frac{\partial}{\partial T} \left(\frac{\partial f(V,T)}{\partial V}\right)_T\right)_V = \left(\frac{\partial}{\partial V} \left(\frac{\partial f(V,T)}{\partial T}\right)_V\right)_T$$

© 2013 Pearson Education, Inc.

The corollary works, reversed derivative equal \rightarrow determine if property is state function as above, state function has an *exact differential*: $\Delta \mathbf{f} = \int d\mathbf{f} = \mathbf{f}_f - \mathbf{f}_i$ good examples are ΔU and ΔH , but, q and w are not state functions

Some handy calculus things:

If z = f(x,y) can rearrange to x = g(y,x) or y = h(x,z) [e.g.P=nRT/V, V=nRT/P, T=PV/nR]

$$\left(\frac{\partial x}{\partial y}\right)_{z} = \frac{1}{\left(\frac{\partial y}{\partial x}\right)_{z}} \quad \text{cyclic rule:} \quad \left(\frac{\partial x}{\partial y}\right)_{z} \left(\frac{\partial y}{\partial z}\right)_{x} \left(\frac{\partial z}{\partial x}\right)_{y} = -1$$

Inversion:

So we can evaluate $(\partial P/\partial V)_T$ or $(\partial P/\partial T)_V$ for real system, use cyclic rule and inverse:

$$\begin{pmatrix} \frac{\partial P}{\partial V} \end{pmatrix}_{T} \begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix}_{P} \begin{pmatrix} \frac{\partial T}{\partial P} \end{pmatrix}_{V} = -1$$

$$\begin{pmatrix} \frac{\partial P}{\partial T} \end{pmatrix}_{V} = -\left(\frac{\partial P}{\partial V}\right)_{T} \begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix}_{P} = -\frac{\left(\frac{\partial V}{\partial T}\right)_{P}}{\left(\frac{\partial V}{\partial P}\right)_{T}} = \frac{\beta}{\kappa} \quad \text{and} \quad \begin{array}{l} \frac{(\partial P/\partial V)_{T}}{(\partial P/\partial V)_{T}} = 1/(\partial V/\partial P)_{T} \\ \frac{\partial P}{\partial V} \end{pmatrix}_{T} = -\frac{1}{\kappa V} \\ \begin{pmatrix} \frac{\partial P}{\partial V} \end{pmatrix}_{T} = -\frac{1}{\kappa V} \\ \end{array}$$

© 2013 Pearson Education, Inc.

$$\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P$$
 and $\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T$

Where: β = volumetric thermal expansion coefficient (Atkins $\rightarrow \alpha$) and κ = isothermal compressibility

V

© 2013 Pearson Education, Inc.

Point: We can measure both of these properties and solve relationships, for any system Sign chosen so κ is positive (i.e. as P inc., expect V dec., $(\partial V / \partial P)_T$ negative)

Back to start, total derivative, dP:

integrate:

$$dP = \frac{\beta}{\kappa} dT - \frac{1}{\kappa V} dV \qquad \Delta P = \int_{T_i}^{T_f} \frac{\beta}{\kappa} dT - \int_{V_i}^{V_f} \frac{1}{\kappa V} dV \approx \frac{\beta}{\kappa} (T_f - T_i) - \frac{1}{\kappa} \ln \frac{V_f}{V_i}$$

© 2013 Pearson Education, Inc.

Example: temperature in experiment has risen so ethanol thermometer is at the top of capillary, filled. If you increase another 10°C, how much will pressure increase? $\Delta P = \int (\beta_{et}/\kappa) dT - \int (1/\kappa V) dV \sim \beta_{et} \Delta T/\kappa - (1/\kappa) \ln(V_f/V_i) \qquad V_f = V_i (1 + \beta_{ol} \Delta T) \qquad \ln(1 - x) \sim x, \ x <<1$ $\Delta \mathsf{P} = \beta_{\mathsf{et}} \Delta \mathsf{T} / \kappa - (\beta_{\mathsf{ql}} \Delta \mathsf{T} / \kappa)$ $\ln(V_f/V_i) = \ln(1 + \beta_{al}\Delta T) \sim \beta_{al}\Delta T$ $\Delta P = \rho_{et} \Delta T/\kappa - (\rho_{gl} \Delta T/\kappa)$ $\Delta P = (\Delta T/\kappa) (\beta_{et} - \beta_{gl}) \qquad \beta_{gl} = 2.0 \times 10^{-5} \text{ }^{\circ}\text{C}^{-1} \quad \beta_{et} = 11.2 \times 10^{-4} \text{ }^{\circ}\text{C}^{-1} \quad \kappa = 11.0 \times 10^{-5} \text{ bar}^{-1}$ $\Delta P = (10 \,{}^{\circ}C \,/ 11.0 \times 10^{-5} \,\text{bar}^{-1})(11.2 \cdot 0.2) \times 10^{-4} \,{}^{\circ}C^{-1} = 100 \,\text{bar} \quad (goodbye \,thermometer!)$

TABLE 3.1	Volumetric Thern at 298 K	nal Expansion Coefficient fo	or Solids and Liquids
Element	$10^6meta/(\mathrm{K}^{-1})$	Element or Compound	$10^4 eta/(\mathrm{K}^{-1})$
Ag(s)	57.6	Hg(l)	1.81
Al(s)	69.3	$\text{CCl}_4(l)$	11.4
Au(s)	42.6	$CH_3COCH_3(l)$	14.6
Cu(s)	49.5	$CH_3OH(l)$	14.9
Fe(s)	36.9	$C_2H_5OH(l)$	11.2
Mg(s)	78.3	$C_6H_5CH_3(l)$	10.5
Si(s)	7.5	$C_6H_6(l)$	11.4
W(s)	13.8	$H_2O(l)$	2.04
Zn(s)	90.6	$H_2O(s)$	1.66

κ and β (α -Atkins) values for selected solids and liquids:

Sources: Benenson, W., Harris, J. W., Stocker, H., and Lutz, H. Handbook of Physics. New York: Springer, 2002; Lide, D. R., ed. Handbook of Chemistry and Physics. 83rd ed. Boca Raton, FL: CRC Press, 2002; Blachnik, R., ed. D'Ans Lax Taschenbuch für Chemiker und Physiker. 4th ed. Berlin: Springer, 1998.

Liquid β (α) values generally much larger than for solids, see example above Note: water will be different close to 273 K, max density ~4 C

TABLE 3.2	Isothermal Compressibility at 298 K		
Substance	$10^6 \kappa/\mathrm{bar}^{-1}$	Substance	$10^6 \kappa/\mathrm{bar}^{-1}$
Al(s)	1.33	$\operatorname{Br}_2(l)$	64
$SiO_2(s)$	2.57	$C_2H_5OH(l)$	110
Ni(s)	0.513	$C_6H_5OH(l)$	61
$TiO_2(s)$	0.56	$C_6H_6(l)$	94
Na(s)	13.4	$\text{CCl}_4(l)$	103
Cu(s)	0.702	$CH_3COCH_3(l)$	125
C(graphite)	0.156	$CH_3OH(l)$	120
Mn(s)	0.716	$CS_2(l)$	92.7
Co(s)	0.525	$H_2O(l)$	45.9
Au(s)	0.563	Hg(l)	3.91
Pb(s)	2.37	$SiCl_4(l)$	165
Fe(s)	0.56	$TiCl_4(l)$	89
Ge(s)	1.38		

Sources: Benenson, W., Harris, J. W., Stocker, H., and Lutz, H. Handbook of Physics. New York: Springer, 2002; Lide, D. R., ed. Handbook of Chemistry and Physics. 83rd ed. Boca Raton FL: CRC Press, 2002; Blachnik, R., ed. D'Ans Lax Taschenbuch für Chemiker und Physiker. 4th ed. Berlin: Springer, 1998.

Now look at how U varies with V and T, since state function can do same things

$$dU = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV$$
 but $\Delta U = q + w$ and differential: $dU = dq + dw$

So
$$dU = dq - P_{external}dV = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV$$

2013 Pearson Education, Inc.

If dV = 0,
$$\mathcal{A}q_V = \left(\frac{\partial U}{\partial T}\right)_V dT$$
 so $\frac{\mathcal{A}q_V}{dT} = \left(\frac{\partial U}{\partial T}\right)_V = C_V$ like state fct, if V const \rightarrow path

Already discuss C_V : positive, extensive, $C_{Vm} = C_V/n$ intensive, vary with substance and T

Microscopic picture: due to the variation in accessible energy states, so more degrees of freedom (rotations, vibrations) for polyatomics as opposed to atoms

$$\Delta U_V = \int_{T_1}^{T_2} C_V dT = n \int_{T_1}^{T_2} C_{V,m} dT \qquad \int_{i}^{J} \mathcal{A} q_V = \int_{i}^{J} \left(\frac{\partial U}{\partial T}\right)_V dT \text{ or } q_V = \Delta U$$

that was one part of complete differential, what about: $(\partial U/\partial V)_T = \pi_T - internal pressure$

Can show that
$$\left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial P}{\partial T}\right)_V - P$$
 put it into $dU = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV$

$$dU = dU_V + dU_T = C_V dT + \left[T\left(\frac{\partial P}{\partial T}\right)_V - P\right] dV$$

Ideal gas, $\pi_T = 0$, no interaction work out: $T[\partial(nRT/V)/\partial T]_V - P = T(nR/V) - P = P - P = 0$

so *ideal gas* $dU = C_V dT$ (but do *not* need const V!)

Each part of dU above is experimentally observable

Alternatively: If have a process can break up into simpler steps and evaluate state functions, sum for state change: e.g. const T

 $dU = dU_T = [T(\partial P / \partial T)_V - P]$

const V

$$dU = dU_V = C_V dT$$

total is sum, path independent (do red or blue path)→

Comparing dependence of U on T and V

Ideal gas, U = U(T), but real gas interaction $\rightarrow U(T, V)$

Joule experiment – expand gas into a vacuum, heat from system to bath should be (∂U/∂V) since vacuum: p_{ext} = 0, w = 0, so dU = dq = dU_V + dU_T Joule result - no change in T, so assume dT_{sys} = dT_{sur} = 0 or dq = 0 → (∂U/∂V)_TdV = 0 since dV ≠ 0 → (∂U/∂V)_T = 0

Joule experiment not sensitive enough, but observation does fit ideal behavior (above), later with Thomson they got more sensitive $\rightarrow (\partial U/\partial V)_T \neq 0$ but very small

Example: For van der Waals gas: $P=RT/(V_m-b) - a/V_m^2$ calculate $\left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial P}{\partial T}\right)_V - P$ And determine $\Delta U_{Tm} = \int (\partial U/\partial V)_T dV_m$ from V_m^i to V_m^f

- a. $\pi_{T} = T(\partial U/\partial V)_{V} P = T[R/(V_{m}-b)] P = RT/(V_{m}-b) [RT/(V_{m}-b) a/V_{m}^{2}] = a/V_{m}^{2}$
- b. $\Delta U_{Tm} = \int (\partial U / \partial V)_T dV_m = \int a / V_m^2 dV = -a (1/V^f 1/V^i) \rightarrow expansion, 1/V^i > 1/V^f, \Delta U_{Tm} (+)$

So change in U depends on a, the interaction term in van der Waals model

Relative size of $dU_T = (\partial U/\partial V)_T$ and $dU_V = (\partial U/\partial T)_V$

Example: expand N₂ from (T=200K, P= 5.0 bar) to (T=400 K, P= 20 bar), a = 0.137 Pa·m⁶mol⁻², b = $3.87 \times 10^{-5} m^3 mol^{-1}$, C_{Vm} =($22.5 - 1.2 \times 10^{-2} T + 2.4 \times 10^{-5} T^2$)JK⁻¹mol⁻¹ solution can be done by breaking into const V step and const T step, find: $\Delta U_T = -132 \text{ Jmol}^{-1}$ and $\Delta U_V = 4.17 \text{ kJmol}^{-1} \rightarrow dU_T = (\partial U/\partial V)_T$ much smaller (~3%) Good *approximation* for gasses assume: $\Delta U \sim \Delta U(T)$ or $\Delta U_T = \int (\partial U/\partial V)_T dV \sim 0$

Solids and liquids, moderate conditions, $V_m = 1/\rho \sim const$, or $dV_m \sim 0$ So $\Delta U_{Tm} = \int (\partial U/\partial V)_T dV \sim (\partial U/\partial V)_T \Delta V \sim 0$, which is independent of $(\partial U/\partial V)_T$

Result means in most cases: $\Delta U = U^{f}(T,V)-U^{i}(T,V) = \int C_{V} dT$ (but not only const.V) Note: assumes no phase changes, no chemical reactions (these come later!)

Enthalpy and constant Pressure processes

Let $P = P_{ext}$ (const) : $dU = dq_P - PdV$ integrate $U^f - U^i = q_P - P(V^f - V^i) \rightarrow (U^f - PV^f) - (U^i - PV^i) = q_P$ so if H = U + PV then $\Delta H = q_P \rightarrow$ independent \rightarrow any process, const P, closed system, only P-V work

Fusion and vaporization, need heat to overcome molecular interaction, form new phase $\Delta H = q_P > 0$, $\Delta U_{vap} = \Delta H_{vap} - P\Delta V_{vap} > 0$ ---- $\Delta V_{vap} >>0$, so $\Delta U_{vap} < \Delta H_{vap}$ By contrast, ΔV_{fus} small, so $\Delta U_{fus} \sim \Delta H_{fus}$

$$dH = \left(\frac{\partial H}{\partial T}\right)_P dT + \left(\frac{\partial H}{\partial P}\right)_T dP \quad \text{for const P, } dP = 0, \quad \mathcal{A}q_P = \left(\frac{\partial H}{\partial T}\right)_P dT$$

like before:

so we again get heat capacity at const P: $C_P = (\partial H/\partial T)_P$ extensive, so use C_{Pm} , H state variable, so evaluate by $\Delta H_P = \int C_P dT$ relationship works for all systems, if there is no reaction or phase change

Relate C_V and C_P – from dH = dU + d(PV) = $\mathcal{A}q_P = C_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV + P dV$ Const P:

but dq_P = C_PdT, so "divide through" by dT, combine terms in $(\partial V/\partial T)_P$

$$C_{P} = C_{V} + \left(\frac{\partial U}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{P} + P\left(\frac{\partial V}{\partial T}\right)_{P} = C_{V} + \left[\left(\frac{\partial U}{\partial V}\right)_{T} + P\right] \left(\frac{\partial V}{\partial T}\right)_{P} \quad \text{Use} \quad \left(\frac{\partial U}{\partial V}\right)_{T} = T\left(\frac{\partial P}{\partial T}\right)_{V} - P$$

$$= C_{V} + T\left(\frac{\partial P}{\partial T}\right)_{V} \left(\frac{\partial V}{\partial T}\right)_{P} \quad \text{then cyclic rule} \quad (\partial P/\partial T)_{V} = -1/(\partial V/\partial P)_{T} (\partial T/\partial V)_{P}$$

$$= T(\partial V/\partial P)_{V} \left(\frac{\partial V}{\partial T}\right)_{P} \quad \text{then cyclic rule} \quad (\partial P/\partial T)_{V} = -1/(\partial V/\partial P)_{T} (\partial T/\partial V)_{P}$$

1

$$C_P = C_V + T \left(\frac{\partial P}{\partial T}\right)_V \left(\frac{\partial V}{\partial T}\right)_P = C_V - T \frac{\left(\frac{\partial V}{\partial T}\right)_P^2}{\left(\frac{\partial V}{\partial P}\right)_T}$$

$$C_P = C_V + TV \frac{\beta^2}{\kappa}$$
 or $C_{P,m} = C_{V,m} + TV_m \frac{\beta^2}{\kappa}$

 $= -(\partial V/\partial T)_P /(\partial V/\partial P)_T$

and definitions of β (α – Atkins) and κ :

So C_P and C_V for any substance or phase, can be related by knowing only V_m , κ and β

Ideal gas, $(\partial U/\partial V)_T = 0$, and $P(\partial V/\partial T)_T$ = P(nR/P) = nR, so $C_P - C_V = nR$

$$C_V \gg \left[\left(\frac{\partial U}{\partial V} \right)_T + P \right] \left(\frac{\partial V}{\partial T} \right)_P$$

For solids and liquids $(\partial V/\partial T)_P = V\beta$ and is much smaller, so $C_P \sim C_V \rightarrow$ solid and liquid heat capacities measure at const P, not easy to control V

Enthalpy with pressure at const T

Same as above for dU, full variation for d(PV): $dH = dU + d(PV) = C_V dT + (\partial U / \partial V)_T dV + V dP + V dP$

$$\mathsf{dH} = C_V \, dT \, + \left[\left(\frac{\partial U}{\partial V} \right)_T \, + \, P \right] dV \, + \, V \, dP$$

Often $(\partial H/\partial T)_P dT >> (\partial H/\partial P)_T dP$ so ignore P dependence, but need for refrigerator

divide through above by dP, then $(\partial H/\partial P)_T \rightarrow$ isothermal, dT = 0, 1st term (C_VdT) =0.

$$\left(\frac{\partial H}{\partial P}\right)_T = \left[\left(\frac{\partial U}{\partial V}\right)_T + P\right] \left(\frac{\partial V}{\partial P}\right)_T + V$$

Rearrange using $(\partial U/\partial V)_T = T(\partial P/\partial T)_V P$, so two P's cancel in bracket, and then use cyclic rule: $(\partial P/\partial T)_V (\partial V/\partial P)_T = -1/(\partial T/\partial V)_P = (\partial V/\partial T)_P = \beta V$

$$\left(\frac{\partial H}{\partial P}\right)_T = T\left(\frac{\partial P}{\partial T}\right)_V \left(\frac{\partial V}{\partial P}\right)_T + V = V - T\left(\frac{\partial V}{\partial T}\right)_P = V(1 - T\beta)$$

So *P* dependence of *H* is *V*, corrected by β expansion coefficient, ideal is $(\partial H/\partial P)_T = 0$ Recall ideal: $\beta = (\partial V/\partial T)_P/V = (\partial (RT/P)/\partial T)_P/V = R/PV = 1/T$

*Real gas*es $(\partial H/\partial P)_T \neq 0$, and important for heat transfer (*refrigerator* – expand gas, extract heat from "system" and then recompress, dump heat to "surrounding" \rightarrow kitchen!) *Solids and liquids,* $(\partial V/\partial P)_T$ very small, so $(\partial H/\partial P)_T \sim V$, and $dH = C_P dT + V dP$

Example: Calculate ∆H for 124 g liquid MeOH at 1.0 bar and 298 K

change to 2.5 bar and 425 K, ρ = 0.79 gcm⁻³ and C_{Pm} = 81 JK⁻¹mol⁻¹ Choose const T path follow with const V path, use above result for dH liquid ΔH = nJC_{Pm}dT +JVdP ~ nC_{Pm}\DeltaT + V\DeltaP

= $81 J K^{-1} mol^{-1} (124 g/32 gmol^{-1}) 127 K + (124 g/0.79 gcm^{-3}) 10^{-6} m^3 cm^{-3} x 1.5 x 10^5 Pa$ = $39.9 x 10^3 J + 23.5 J \sim 40 kJ$ - first term, heat capacity, dominates, P depend. small

Joule Thomson Effect

Expand a gas, e.g. open an N₂ cylinder, $\Delta P >>0$, see nozzle get cold (typical) **Model system:** Gas transferred from high to low pressure through porous plug, isolated cylinder, piston moves to keep P values const, $\Delta P=0$, V and T both changing

Changes are determined by gas property, e.g. N₂ cools as expands, $P_1 > P_2$ and $T_1 < T_2$ $w_{tot} = w_{lt} + w_{rt} = -\int P_1 dV - \int P_2 dV = P_1 V_1 - P_2 V_2$ (recall start $V_1 \rightarrow 0$ and other side $0 \rightarrow V_2$)

adiabatic, q = 0, $\Delta U = w = U_1 - U_2 = P_1V_1 - P_2V_2$, rearrange: $U_1 + P_1V_1 = U_2 + P_2V_2$ $\rightarrow H_1 = H_2$ isoenthalpic, here dP and dT negative, so $(\partial T/\partial P)_H > 0$

$$\mu_{J-T} = \lim_{\Delta P \to 0} \left(\frac{\Delta T}{\Delta P} \right)_H = \left(\frac{\partial T}{\partial P} \right)_H$$

Joule Thomson coefficient:

For isenthalpic: $dH = C_P dT + \left(\frac{\partial H}{\partial P}\right)_T dP = 0$ divide by dP, rearrange:

$$C_P \left(\frac{\partial T}{\partial P}\right)_H + \left(\frac{\partial H}{\partial P}\right)_T = 0 \text{ giving } \left(\frac{\partial H}{\partial P}\right)_T = -C_P \mu_{J-T}$$

So $(\partial H/\partial P)_T$ can be measured knowing C_P and μ_{JT} both of which depend on material

Define: $\mu_T = (\partial H / \partial P)_T = -C_P \mu_{JT}$ as isothermal Joule-Thomson coefficient

As before $\mu_{JT} = 0$ for ideal gas, but for van der Waals, as P $\rightarrow 0$, $\mu_{JT} = (2a/RT - b)/C_{Pm}$

Some example values and temperature variation from Web

From above $\mu_{JT}=(\partial H/\partial P)_T/C_P$ Which can be shown to be:

$$\mu_{\rm JT} = \left(\frac{\partial T}{\partial P}\right)_H = \frac{V}{C_{\rm p}} \left(\alpha T - 1\right)$$

where α – thermal expansion [or $\beta = (\partial V / \partial T)_P / V$)]

Note: μ_{JT} (+) cools on expand

Example: solve μ_{JT} for van der Waals gas

 $P = \frac{RT}{\overline{V} - b} - \frac{a}{\overline{V}^2} \qquad \mu_{T} = \frac{1}{C_p} \left[-T \frac{\left(\frac{\partial P}{\partial T}\right)_{\overline{V}}}{\left(\frac{\partial P}{\partial \overline{V}}\right)_{T}} - \overline{V}} \right]$ evaluate $(\partial P/\partial T)_V$ and $(\partial P/\partial V)_T$: $\left(\frac{\partial P}{\partial T}\right)_{\overline{V}} = \frac{R}{\overline{V} - b} \qquad = \frac{1}{C_p} \left[-T \frac{\left(\frac{R}{\overline{V} - b}\right)}{-\frac{RT}{(\overline{V} - b)^2} + 2\frac{a}{\overline{V}^3}} - \overline{V} \right]$ $\left(\frac{\partial P}{\partial \overline{V}}\right)_T = -\frac{RT}{\left(\overline{V} - b\right)^2} + 2\frac{a}{\overline{V}^3} \qquad = \frac{1}{C_p} \left[\frac{1}{\left(\frac{1}{\overline{V} - b}\right) - 2\frac{\overline{V} - b}{RT}\frac{a}{\overline{V}^3}} - \overline{V} \right]$ Take limit of large molecular volume: Expansion tricky, find common denom.

$$\begin{split} \lim_{\overline{V}\to\infty} \mu_{JT} &= \frac{1}{C_p} \lim_{\overline{V}\to\infty} \left[-T \frac{\left(\frac{R}{\overline{V}-b}\right)}{-\frac{RT}{\left(\overline{V}-b\right)^2} + 2\frac{a}{\overline{V}^3}} - \overline{V} \right] \\ &= \frac{1}{C_p} \lim_{\overline{V}\to\infty} \left[-\overline{V} \frac{\left(-2ab^2 + 4ab\overline{V} - 2a\overline{V}^2 + bRT\overline{V}^2\right)}{-2ab^2 + 4ab\overline{V} - 2a\overline{V}^2 + RT\overline{V}^3} \right] \\ &= \frac{1}{C_p} \left[\frac{2a}{RT} - b \right] \end{split}$$