Chem 340 - Lecture Notes 4 - Fall 2013 - State function manipulations

Properties of State Functions

State variables are interrelated by equation of state, so they are not independent, express relationship mathematically as a partial derivative, and only need two of T, V, P
Example: Consider ideal gas: $P V=n R T$ so $P=f(V, T)=n R T / V$, let $n=1$
Can now do derivatives: $(\partial \mathrm{P} / \partial \mathrm{V})_{\mathrm{T}}=-\mathrm{RT} / \mathrm{V}^{2}$ and : $(\partial \mathrm{P} / \partial \mathrm{T})_{\mathrm{P}}=\mathrm{R} / \mathrm{V}$
Full differential show variation with respect to one variable at a time, sum for both:

$$
d P=\left(\frac{\partial P}{\partial T}\right)_{V} d T+\left(\frac{\partial P}{\partial V}\right)_{T} d V
$$

© 2013 Pearson Education, Inc.

shows total change in P if have some change in V and in T
Example, on hill and want to know how far down (dz) you will go if move some amount in x and another in y . contour map can tell, or if knew function could compute $\mathrm{dz} \mathrm{z}_{\mathrm{x}}$ from $\mathrm{dz} / \mathrm{dx}$ for motion in x and dzy from dz/dy for motion in y total change in z is just sum: $\mathrm{dz}=(\mathrm{dz} / \mathrm{dx})_{y} \mathrm{dx}+(\mathrm{dz} / \mathrm{dy}) \mathrm{x} \mathrm{dy}$ Note: for dz, small change (big ones need higher derivative)

Can of course keep going with $2^{\text {nd }}$ and $3^{\text {rd }}$ derivatives or mixed ones

$$
\begin{aligned}
& \left(\frac{\partial}{\partial T}\left(\frac{\partial P}{\partial V}\right)_{T}\right)_{V}=\frac{\partial^{2} P}{\partial T \partial V}=\left(\partial\left(\frac{\partial\left[\frac{R T}{V}\right]}{\partial V}\right)_{T} / \partial T\right)_{V}=\left(\partial\left[-\frac{R T}{V^{2}}\right] / \partial T\right)_{V}=-\frac{R}{V^{2}} \\
& \left(\frac{\partial}{\partial V}\left(\frac{\partial P}{\partial T}\right)_{V}\right)_{T}=\frac{\partial^{2} P}{\partial V \partial T}=\left(\partial\left(\frac{\partial\left[\frac{R T}{V}\right]}{\partial T}\right)_{V} / \partial V\right)_{T}=\left(\partial\left[\frac{R}{V}\right] / \partial V\right)_{T}=-\frac{R}{V^{2}}
\end{aligned}
$$

For state functions the order of taking the derivative is not important, or

$$
\left(\frac{\partial}{\partial T}\left(\frac{\partial f(V, T)}{\partial V}\right)_{T}\right)_{V}=\left(\frac{\partial}{\partial V}\left(\frac{\partial f(V, T)}{\partial T}\right)_{V}\right)_{T}
$$

The corollary works, reversed derivative equal \rightarrow determine if property is state function as above, state function has an exact differential: $\Delta \mathrm{f}=\int \mathrm{df}=\mathrm{f}_{\mathrm{f}}-\mathrm{f}_{\mathrm{i}}$ good examples are $\Delta \mathrm{U}$ and $\Delta \mathrm{H}$, but, q and w are not state functions

Some handy calculus things:

If $z=f(x, y)$ can rearrange to $x=g(y, x)$ or $y=h(x, z) \quad[e . g . P=n R T / V, V=n R T / P, T=P V / n R]$

$$
\left(\frac{\partial x}{\partial y}\right)_{z}=\frac{1}{\left(\frac{\partial y}{\partial x}\right)_{z}} \text { cyclic rule: }\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial y}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{y}=-1
$$

Inversion:

So we can evaluate $(\partial \mathrm{P} / \partial \mathrm{V})_{\mathrm{T}}$ or $(\partial \mathrm{P} / \partial \mathrm{T})_{\mathrm{V}}$ for real system, use cyclic rule and inverse:
$\left(\frac{\partial P}{\partial V}\right)(\underline{\partial V})\left(\frac{\partial T}{\partial P}\right)=-1 \quad$ divide both sides by
$\left(\frac{\partial P}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial P}\right)_{V}=-1$
$\left(\frac{\partial P}{\partial T}\right)_{V}=-\left(\frac{\partial P}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P}=-\frac{\left(\frac{\partial V}{\partial T}\right)_{P}}{\left(\frac{\partial V}{\partial P}\right)_{T}}=\frac{\beta}{\kappa}$
$\left(\frac{\partial P}{\partial V}\right)_{T}=-\frac{1}{\kappa V}$
$(\partial \mathrm{T} / \partial \mathrm{P})$ v get
$1 /(\partial \mathrm{T} / \partial \mathrm{P})_{\mathrm{V}}=(\partial \mathrm{P} / \partial \mathrm{T})_{\mathrm{V}}$
similarly
and $\quad(\partial \mathrm{P} / \partial \mathrm{V})_{T}=1 /(\partial \mathrm{V} / \partial \mathrm{P})_{\mathrm{T}}$
so get ratio of two volume changes
cancel $(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{P}}=\beta \mathrm{V}$ const. β, κ norm to V
© 2013 Pearson Education, Inc.
$\beta=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P} \quad$ and $\quad \kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{\mathrm{T}}$

Where: $\beta=$ volumetric thermal expansion coefficient (Atkins $\rightarrow \alpha$) and $\kappa=$ isothermal compressibility
© 2013 Pearson Education, Inc.
Point: We can measure both of these properties and solve relationships, for any system Sign chosen so κ is positive (i.e. as P inc., expect V dec., $(\partial \mathrm{V} / \partial \mathrm{P})_{\mathrm{T}}$ negative)

Back to start, total derivative, dP: integrate:

$$
d P=\frac{\beta}{\kappa} d T-\frac{1}{\kappa V} d V \quad \Delta P=\int_{T_{i}}^{T_{f}} \frac{\beta}{\kappa} d T-\int_{V_{i}}^{V_{f}} \frac{1}{\kappa V} d V \approx \frac{\beta}{\kappa}\left(T_{f}-T_{i}\right)-\frac{1}{\kappa} \ln \frac{V_{f}}{V_{i}}
$$

Example: temperature in experiment has risen so ethanol thermometer is at the top of capillary, filled. If you increase another $10^{\circ} \mathrm{C}$, how much will pressure increase?
$\Delta P=\int\left(\beta_{\mathrm{et}} / \kappa\right) \mathrm{dT}-\int(1 / \kappa V) \mathrm{dV} \sim \beta_{e t} \Delta T / \kappa-(1 / \kappa) \ln \left(\mathrm{V}_{f} / \mathrm{V}_{\mathrm{i}}\right) \quad \mathrm{V}_{\mathrm{f}}=\mathrm{V}_{\mathrm{i}}\left(1+\beta_{\mathrm{g} \mid} \Delta \mathrm{T}\right) \quad \ln (1-\mathrm{x}) \sim \mathrm{x}, \mathrm{x} \ll 1$
$\Delta P=\beta_{\mathrm{et}} \Delta \mathrm{T} / \kappa-\left(\beta_{\mathrm{g} \mid} \Delta \mathrm{T} / \kappa\right) \quad \ln \left(\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{i}}\right)=\ln \left(1+\beta_{\mathrm{g} \mid} \Delta \mathrm{T}\right) \sim \beta_{\mathrm{g} \mid} \Delta \mathrm{T}$
$\Delta \mathrm{P}=(\Delta \mathrm{T} / \kappa)\left(\beta_{\mathrm{et}}-\beta_{\mathrm{gl}}\right) \quad \beta_{\mathrm{gl}}=2.0 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1} \quad \beta_{\mathrm{et}}=11.2 \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1} \kappa=11.0 \times 10^{-5} \mathrm{bar}^{-1}$ $\Delta \mathrm{P}=\left(10^{\circ} \mathrm{C} / 11.0 \times 10^{-5}\right.$ bar $\left.^{-1}\right)(11.2-0.2) \times 10^{-4} \mathrm{C}^{-1}=100$ bar (goodbye thermometer!)
κ and β (α-Atkins) values for selected solids and liquids:

TABLE 3.1	Volumetric Thermal Expansion Coefficient for Solids and Liquids at 298 K		
Element	$10^{6} \beta /\left(\mathrm{K}^{-1}\right)$	Element or Compound	$10^{4} \beta /\left(\mathrm{K}^{-1}\right)$
$\mathrm{Ag}(s)$	57.6	$\mathrm{Hg}(l)$	1.81
$\mathrm{Al}(s)$	69.3	$\mathrm{CCl}_{4}(l)$	11.4
$\mathrm{Au}(s)$	42.6	$\mathrm{CH}_{3} \mathrm{COCH}_{3}(l)$	14.6
$\mathrm{Cu}(s)$	49.5	$\mathrm{CH}_{3} \mathrm{OH}(l)$	14.9
$\mathrm{Fe}(s)$	36.9	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$	11.2
$\mathrm{Mg}(s)$	78.3	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(l)$	10.5
$\mathrm{Si}(s)$	7.5	$\mathrm{C}_{6} \mathrm{H}_{6}(l)$	11.4
$\mathrm{~W}(s)$	13.8	$\mathrm{H}_{2} \mathrm{O}(l)$	2.04
$\mathrm{Zn}(s)$	90.6	$\mathrm{H}_{2} \mathrm{O}(s)$	1.66

Sources: Benenson, W., Harris, J. W., Stocker, H., and Lutz, H. Handbook of Physics. New York: Springer, 2002; Lide, D. R., ed. Handbook of Chemistry and Physics. 83rd ed. Boca Raton, FL: CRC Press, 2002; Blachnik, R., ed. D'Ans Lax Taschenbuch für Chemiker und Physiker. 4th ed. Berlin: Springer, 1998.
Liquid $\beta(\alpha)$ values generally much larger than for solids, see example above Note: water will be different close to 273 K, max density ~4 C
TABLE 3.2 Isothermal Compressibility at 298 K

Substance	$10^{6} \kappa / \mathrm{bar}^{-1}$	Substance	$10^{6} \kappa / \mathrm{bar}^{-1}$
$\mathrm{Al}(s)$	1.33	$\mathrm{Br}_{2}(l)$	64
$\mathrm{SiO}_{2}(s)$	2.57	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$	110
$\mathrm{Ni}(s)$	0.513	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(l)$	61
$\mathrm{TiO}_{2}(s)$	0.56	$\mathrm{C}_{6} \mathrm{H}_{6}(l)$	94
$\mathrm{Na}(s)$	13.4	$\mathrm{CCl}_{4}(l)$	103
$\mathrm{Cu}(s)$	0.702	$\mathrm{CH}_{3} \mathrm{COCH}_{3}(l)$	125
$\mathrm{C}(\mathrm{graphite})$	0.156	$\mathrm{CH}_{3} \mathrm{OH}(l)$	120
$\mathrm{Mn}(s)$	0.716	$\mathrm{CS}_{2}(l)$	92.7
$\mathrm{Co}(s)$	0.525	$\mathrm{H}_{2} \mathrm{O}(l)$	45.9
$\mathrm{Au}(s)$	0.563	$\mathrm{Hg}_{2}(l)$	3.91
$\mathrm{~Pb}(s)$	2.37	$\mathrm{SiCl}_{4}(l)$	165
$\mathrm{Fe}(s)$	0.56	$\mathrm{TiCl}_{4}(l)$	89
$\mathrm{Ge}(s)$	1.38		

Sources: Benenson, W., Harris, J. W., Stocker, H., and Lutz, H. Handbook of Physics. New York: Springer, 2002; Lide, D. R., ed. Handbook of Chemistry and Physics. 83rd ed. Boca Raton FL: CRC Press, 2002; Blachnik, R., ed. D'Ans Lax Taschenbuch für Chemiker und Physiker. 4th ed. Berlin: Springer, 1998.

Now look at how U varies with V and T , since state function can do same things

$$
d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V
$$

$$
\text { but } \Delta \mathrm{U}=\mathrm{q}+\mathrm{w} \text { and differential: } \mathrm{dU}=\AA q+\mathbb{d} \mathrm{w}
$$

So $\quad d U=d q-P_{\text {external }} d V=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V$
2 2013 Pearson Education, Inc.
If $\mathrm{dV}=0, \quad d q_{V}=\left(\frac{\partial U}{\partial T}\right)_{V} d T \quad \frac{\nless q_{V}}{d T}=\left(\frac{\partial U}{\partial T}\right)_{V}=C_{V}$ like state fct, if V const \rightarrow path

Already discuss C_{v} : positive, extensive, $\mathrm{C}_{\mathrm{vm}}=\mathrm{C}_{\mathrm{V}} / \mathrm{n}$ intensive, vary with substance and T
Microscopic picture: due to the variation in accessible energy states, so more degrees of freedom (rotations, vibrations) for polyatomics as opposed to atoms

$$
\Delta U_{V}=\int_{T_{1}}^{T_{2}} C_{V} d T=n \int_{T_{1}}^{T_{2}} C_{V, m} d T \quad \int_{i}^{f} d q_{V}=\int_{i}^{f}\left(\frac{\partial U}{\partial T}\right)_{V} d T \text { or } q_{V}=\Delta U
$$

đq is inexact but if path defined has unique value, here constant V, so q_{v} eval, C_{V} fixed that was one part of complete differential, what about: $(\partial \mathrm{U} / \partial \mathrm{V})_{\mathrm{T}}=\pi_{\mathrm{T}}$ - internal pressure

Can show that

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P \quad \text { put it into } d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V
$$ Ideal gas, $\pi_{T}=0$, no interaction $d U=d U_{V}+d U_{T}=C_{V} d T+\left[T\left(\frac{\partial P}{\partial T}\right)_{V}-P\right] d V \begin{aligned} & \text { work out: } \mathrm{T}[\partial(\mathrm{nRT} / \mathrm{V}) / \partial \mathrm{T}]_{\mathrm{V}}-\mathrm{P}= \\ & \mathrm{T}(\mathrm{nR} / \mathrm{V})-\mathrm{P}=\mathrm{P}-\mathrm{P}=0\end{aligned}$ so ideal gas $\quad \mathrm{dU}=\mathrm{C}_{\mathrm{v}} \mathrm{dT} \quad$ (but do not need const V!)

Each part of dU above is experimentally observable
Alternatively: If have a process can break up into simpler steps and evaluate state functions, sum for state change: e.g. const T

$$
\mathrm{dU}=\mathrm{d} \mathrm{U}_{\mathrm{T}}=\left[\mathrm{T}(\partial \mathrm{P} / \partial \mathrm{T})_{\mathrm{V}}-\mathrm{P}\right]
$$

const V

$$
d U=d U_{V}=C_{V} d T
$$

total is sum, path independent (do red or blue path) \rightarrow

Comparing dependence of U on T and V

Ideal gas, $\mathrm{U}=\mathrm{U}(\mathrm{T})$, but real gas interaction $\rightarrow \mathrm{U}(\mathrm{T}, \mathrm{V})$
Joule experiment - expand gas into a vacuum, heat from system to bath should be $(\partial \mathrm{U} / \partial \mathrm{V})$ since vacuum: $p_{\text {ext }}=0, w=0$, so $d U=d q=d U_{V}+d U_{T}$ Joule result - no change in T , so assume $\mathrm{dT}_{\text {sys }}=\mathrm{dT}_{\text {sur }}=0$ or $\mathrm{dq}=0 \rightarrow(\partial \mathrm{U} / \partial \mathrm{V})_{\mathrm{T}} \mathrm{dV}=0$ since $\mathrm{dV} \neq 0 \rightarrow(\partial \mathrm{U} / \partial \mathrm{V})_{\mathrm{T}}=0$

Joule experiment not sensitive enough, but observation does fit ideal behavior (above), later with Thomson they got more sensitive $\rightarrow(\partial \mathrm{U} / \partial \mathrm{V})_{T} \neq 0$ but very small
$\begin{gathered}\text { Example: For van der Waals gas: } \mathrm{P}=\mathrm{RT} /\left(\mathrm{V}_{\mathrm{m}}-\mathrm{b}\right)-\mathrm{a} / \mathrm{V}_{\mathrm{m}}{ }^{2} \text { calculate } \\ \text { And determine } \Delta \mathrm{U}_{T \mathrm{~m}}=\int(\partial \mathrm{U} / \partial \mathrm{V})_{T} \mathrm{~d} \mathrm{~V}_{\mathrm{m}} \text { from } \mathrm{V}_{\mathrm{m}}{ }^{1} \text { to } \mathrm{V}_{\mathrm{m}}{ }^{\dagger}\end{gathered}\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P$
a. $\pi_{T}=T(\partial U / \partial V)_{V}-P=T\left[R /\left(V_{m}-b\right)\right]-P=R T /\left(V_{m}-b\right)-\left[R T /\left(V_{m}-b\right)-a / V_{m}{ }^{2}\right]=a / V_{m}{ }^{2}$
b. $\Delta \mathrm{U}_{\mathrm{Tm}}=\int(\partial \mathrm{U} / \partial \mathrm{V})_{\mathrm{T}} \mathrm{d} \mathrm{V}_{\mathrm{m}}=\int \mathrm{a} / \mathrm{V}_{\mathrm{m}}{ }^{2} \mathrm{~d} \mathrm{~V}=-\mathrm{a}\left(1 / \mathrm{V}^{\mathrm{f}}-1 / \mathrm{V}^{\mathrm{i}}\right) \rightarrow$ expansion, $1 / \mathrm{V}^{\mathrm{i}}>1 / \mathrm{V}^{\mathrm{f}}, \Delta \mathrm{U}_{\mathrm{Tm}}(+)$

So change in U depends on a, the interaction term in van der Waals model
Relative size of $d U_{T}=(\partial \mathrm{U} / \partial \mathrm{V})_{T}$ and $d \mathrm{U}_{\mathrm{V}}=(\partial \mathrm{U} / \partial \mathrm{T})_{\mathrm{V}}$
Example: expand N_{2} from ($\mathrm{T}=200 \mathrm{~K}, \mathrm{P}=5.0 \mathrm{bar}$) to ($\mathrm{T}=400 \mathrm{~K}, \mathrm{P}=20 \mathrm{bar}$), $\mathrm{a}=0.137 \mathrm{Pam}^{6} \mathrm{~mol}^{-2}, \mathrm{~b}=3.87 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~mol}^{-1}, \mathrm{C}_{\mathrm{Vm}}=\left(22.5-1.2 \times 10^{-2} \mathrm{~T}+2.4 \times 10^{-5} \mathrm{~T}^{2}\right) \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ solution can be done by breaking into const V step and const T step, find:
$\Delta \mathrm{U}_{\mathrm{T}}=-132 \mathrm{Jmol}^{-1}$ and $\Delta \mathrm{U}_{\mathrm{V}}=4.17 \mathrm{kJmol}^{-1} \rightarrow \mathrm{dU}_{T}=(\partial \mathrm{U} / \partial \mathrm{V})_{T}$ much smaller $(\sim 3 \%)$
Good approximation for gasses assume: $\Delta \mathrm{U} \sim \Delta \mathrm{U}(\mathrm{T})$ or $\Delta \mathrm{U}_{\mathrm{T}}=\int(\partial \mathrm{U} / \partial \mathrm{V})_{\mathrm{T}} \mathrm{dV} \sim 0$
Solids and liquids, moderate conditions, $\mathrm{V}_{\mathrm{m}}=1 / \mathrm{p} \sim$ const, or $\mathrm{dV}_{\mathrm{m}} \sim 0$
So $\Delta \mathrm{U}_{T \mathrm{~m}}=\mathrm{\int}(\partial \mathrm{U} / \partial \mathrm{V})_{T} \mathrm{dV} \sim(\partial \mathrm{U} / \partial \mathrm{V})_{T} \Delta \mathrm{~V} \sim 0$, which is independent of $(\partial \mathrm{U} / \partial \mathrm{V})_{T}$
Result means in most cases: $\Delta U=U^{\mathbf{i}}(\mathrm{T}, \mathrm{V})-\mathrm{U}^{\mathrm{i}}(\mathrm{T}, \mathrm{V})=\int \mathrm{C}_{\mathrm{v}} \mathrm{dT} \quad$ (but not only const. V)
Note: assumes no phase changes, no chemical reactions (these come later!)

Enthalpy and constant Pressure processes

Let $P=P_{\text {ext }}$ (const) : $d U=d q_{P}-P d V$ integrate $U^{f}-U^{i}=q_{P}-P\left(V^{f}-V^{i}\right) \rightarrow$ $\left(U^{f}-P V^{\dagger}\right)-\left(U^{i}-P V^{i}\right)=q_{P}$ so if $H=U+P V$ then $\Delta H=q_{P} \rightarrow$ independent
\rightarrow any process, const P , closed system, only $\mathrm{P}-\mathrm{V}$ work
Fusion and vaporization, need heat to overcome molecular interaction, form new phase $\Delta \mathrm{H}=\mathrm{q}_{\mathrm{p}}>0, \Delta \mathrm{U}_{\text {vap }}=\Delta \mathrm{H}_{\text {vap }}-\mathrm{P} \Delta \mathrm{V}_{\text {vap }}>0----\Delta \mathrm{V}_{\text {vap }} \gg 0$, so $\Delta \mathrm{U}_{\text {vap }}<\Delta \mathrm{H}_{\text {vap }}$ By contrast, $\Delta \mathrm{V}_{\text {fus }}$ small, so $\Delta \mathrm{U}_{\text {fus }} \sim \Delta \mathrm{H}_{\text {fus }}$
like before: $d H=\left(\frac{\partial H}{\partial T}\right)_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P$ for const $\mathrm{P}, \mathrm{dP}=0, \quad \lambda q_{P}=\left(\frac{\partial H}{\partial T}\right)_{P} d T$
so we again get heat capacity at const $P: C_{P}=(\partial H / \partial T)_{P}$ extensive, so use $\mathrm{C}_{\mathrm{Pm}}, \mathrm{H}$ state variable, so evaluate by $\Delta H_{P}=\int \mathrm{C}_{P} d T$ relationship works for all systems, if there is no reaction or phase change

Relate C_{V} and $\mathrm{C}_{\mathrm{P}}-$ from $\mathrm{dH}=\mathrm{dU}+\mathrm{d}(\mathrm{PV})=\not \partial q_{P}=C_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V+P d V$
Const P :
but dqP $=C_{P} d T$, so "divide through" by dT, combine terms in $(\partial V / \partial T)_{P}$

$$
\begin{array}{rll}
C_{P} & =C_{V}+\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P}+P\left(\frac{\partial V}{\partial T}\right)_{P}=C_{V}+\left[\left(\frac{\partial U}{\partial V}\right)_{\bar{T}}+P\right]\left(\frac{\partial V}{\partial T}\right)_{P} & \text { Use }\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P \\
& \text { then cyclic rule } \\
& =C_{V}+T\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial V}{\partial T}\right)_{P} & (\partial \mathrm{P} / \partial \mathrm{T})_{\mathrm{V}=}=-1 /(\partial \mathrm{V} / \partial \mathrm{P})_{T}(\partial \mathrm{~T} / \partial \mathrm{V})_{P} \\
& =-(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{P}} /(\partial \mathrm{V} / \partial \mathrm{P})_{T}
\end{array}
$$

$$
C_{P}=C_{V}+T\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial V}{\partial T}\right)_{P}=C_{V}-T \frac{\left(\frac{\partial V}{\partial T}\right)_{P}^{2}}{\left(\frac{\partial V}{\partial P}\right)_{T}} \quad \begin{aligned}
& \text { and definitions of } \beta \text { (} \alpha-\text { Atkins) and } \kappa: \\
& \text { So } C_{P} \text { and } C_{V} \text { for any substance or } \\
& \text { phase, can be related by knowing only }
\end{aligned}
$$

$$
C_{P}=C_{V}+T V \frac{\beta^{2}}{\kappa} \quad \text { or } \quad C_{P, m}=C_{V, m}+T V_{m} \frac{\beta^{2}}{\kappa}
$$

$$
\mathrm{V}_{\mathrm{m}}, \kappa \text { and } \beta
$$

$$
\text { Ideal gas, }(\partial \mathrm{U} / \partial \mathrm{V})_{\mathrm{T}}=0 \text {, and } \mathrm{P}(\partial \mathrm{~V} / \partial \mathrm{T})_{\mathrm{T}}
$$

$$
=P(n R / P)=n R \text {, so } C_{P}-C_{V}=n R
$$

For solids and liquids $(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{P}}=\mathrm{V} \beta$ and is much smaller, so $C_{V} \gg\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right]\left(\frac{\partial V}{\partial T}\right)_{P}$ $C_{P} \sim C_{V} \rightarrow$ solid and liquid heat capacities measure at const P, not easy to control V

Enthalpy with pressure at const T

Same as above for dU, full variation for $d(P V)$:
$d H=d U+d(P V)=C_{V} d T+(\partial U / \partial V)_{T} d V+V d P+V d P$
$\mathrm{dH}=C_{V} d T+\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right] d V+V d P \quad$ Often $(\partial \mathrm{H} / \partial \mathrm{T})_{\mathrm{P}} \mathrm{dT} \gg(\partial \mathrm{H} / \partial \mathrm{P})_{T} \mathrm{dP}$ so ignore P dependence, but need for refrigerator
divide through above by dP , then $(\partial \mathrm{H} / \partial \mathrm{P})_{\mathrm{T}} \rightarrow$ isothermal, $\mathrm{dT}=0,1^{\text {st }}$ term $\left(\mathrm{C}_{\mathrm{V}} \mathrm{dT}\right)=0$,

$$
\left(\frac{\partial H}{\partial P}\right)_{T}=\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right]\left(\frac{\partial V}{\partial P}\right)_{T}+V
$$

Rearrange using $(\partial \mathrm{U} / \partial \mathrm{V})_{\mathrm{T}}=\mathrm{T}(\partial \mathrm{P} / \partial \mathrm{T})_{\mathrm{V}}-\mathrm{P}$, so two P 's cancel in bracket, and then use cyclic rule: $(\partial \mathrm{P} / \partial \mathrm{T})_{\mathrm{V}}(\partial \mathrm{V} / \partial \mathrm{P})_{\mathrm{T}}=-1 /(\partial \mathrm{T} / \partial \mathrm{V})_{\mathrm{P}}=(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{P}}=\beta \mathrm{V}$

$$
\left(\frac{\partial H}{\partial P}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial V}{\partial P}\right)_{T}+V=V-T\left(\frac{\partial V}{\partial T}\right)_{P}=V(1-T \beta)
$$

So P dependence of H is V, corrected by β expansion coefficient, ideal is $(\partial \mathrm{H} / \partial \mathrm{P})_{T}=0$
Recall ideal: $\beta=(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{P}} / \mathrm{V}=(\partial(\mathrm{RT} / \mathrm{P}) / \partial \mathrm{T})_{\mathrm{P}} / \mathrm{V}=\mathrm{R} / \mathrm{PV}=1 / \mathrm{T}$
Real gases $(\partial \mathrm{H} / \partial \mathrm{P})_{\top} \neq 0$, and important for heat transfer (refrigerator - expand gas, extract heat from "system" and then recompress, dump heat to "surrounding" \rightarrow kitchen!)
Solids and liquids, $(\partial \mathrm{V} / \partial \mathrm{P})_{\mathrm{T}}$ very small, so $(\partial \mathrm{H} / \partial \mathrm{P})_{\mathrm{T}} \sim \mathrm{V}$, and $\mathrm{dH}=\mathrm{C}_{\mathrm{P}} \mathrm{dT}+\mathrm{VdP}$
Example: Calculate $\Delta \mathrm{H}$ for 124 g liquid MeOH at 1.0 bar and 298 K
change to 2.5 bar and $425 \mathrm{~K}, \rho=0.79 \mathrm{gcm}^{-3}$ and $\mathrm{C}_{\mathrm{Pm}}=81 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Choose const T path follow with const V path, use above result for dH liquid
$\Delta H=n \int C_{P m} d T+\int V d P \sim n C_{p m} \Delta T+V \Delta P$
$=81 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\left(124 \mathrm{~g} / 32 \mathrm{gmol}^{-1}\right) 127 \mathrm{~K}+\left(124 \mathrm{~g} / 0.79 \mathrm{gcm}^{-3}\right) 10^{-6} \mathrm{~m}^{3} \mathrm{~cm}^{-3} \times 1.5 \times 10^{5} \mathrm{~Pa}$
$=39.9 \times 10^{3} \mathrm{~J}+23.5 \mathrm{~J} \sim 40 \mathrm{~kJ} \quad$ - first term, heat capacity, dominates, P depend. small

Joule Thomson Effect

Expand a gas, e.g. open an N_{2} cylinder, $\Delta \mathrm{P} \gg 0$, see nozzle get cold (typical)
Model system: Gas transferred from high to low pressure through porous plug,
isolated cylinder, piston moves to keep P values const, $\Delta \mathrm{P}=0, \mathrm{~V}$ and T both changing

Changes are determined by gas property, e.g. N_{2} cools as expands, $\mathrm{P}_{1}>\mathrm{P}_{2}$ and $\mathrm{T}_{1}<\mathrm{T}_{2}$ $\mathrm{w}_{\text {tot }}=\mathrm{w}_{1 \mathrm{t}}+\mathrm{w}_{\text {tt }}=-\int \mathrm{P}_{1} \mathrm{dV}-\int \mathrm{P}_{2} \mathrm{dV}=\mathrm{P}_{1} \mathrm{~V}_{1}-\mathrm{P}_{2} \mathrm{~V}_{2} \quad$ (recall start $\mathrm{V}_{1} \rightarrow 0$ and other side $0 \rightarrow \mathrm{~V}_{2}$)
adiabatic, $\mathrm{q}=0, \Delta \mathrm{U}=\mathrm{w}=\mathrm{U}_{1}-\mathrm{U}_{2}=\mathrm{P}_{1} \mathrm{~V}_{1}-\mathrm{P}_{2} \mathrm{~V}_{2}$, rearrange: $\mathrm{U}_{1}+\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{U}_{2}+\mathrm{P}_{2} \mathrm{~V}_{2}$
$\rightarrow \mathrm{H}_{1}=\mathrm{H}_{2}$ isoenthalpic, here dP and dT negative, so $(\partial \mathrm{T} / \partial \mathrm{P})_{\mathrm{H}}>0$

Joule Thomson coefficient:

$$
\mu_{J-T}=\lim _{\Delta P \rightarrow 0}\left(\frac{\Delta T}{\Delta P}\right)_{H}=\left(\frac{\partial T}{\partial P}\right)_{H}
$$

For isenthalpic: $\left\lvert\, d H=C_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P=0\right.$ divide by dP, rearrange:

$$
C_{P}\left(\frac{\partial T}{\partial P}\right)_{H}+\left(\frac{\partial H}{\partial P}\right)_{T}=0 \text { giving }\left(\frac{\partial H}{\partial P}\right)_{T}=-C_{P} \mu_{J-T}
$$

So $(\partial \mathrm{H} / \partial \mathrm{P})_{T}$ can be measured knowing C_{P} and μ_{J} both of which depend on material Define: $\mu_{\mathrm{T}}=(\partial \mathrm{H} / \partial \mathrm{P})_{\mathrm{T}}=-\mathrm{C}_{\mathrm{P}} \mu_{\mathrm{J}}$ as isothermal Joule-Thomson coefficient
As before $\mu_{J T}=0$ for ideal gas, but for van der Waals, as $\mathrm{P} \rightarrow 0, \mu_{J T}=(2 \mathrm{a} / \mathrm{RT}-\mathrm{b}) / C_{\text {Pm }}$
Some example values and temperature variation from Web

From above $\mu_{J T}=(\partial \mathrm{H} / \partial \mathrm{P})_{T} / \mathrm{C}_{\mathrm{P}}$ Which can be shown to be:

$$
\mu_{\mathrm{JT}}=\left(\frac{\partial T}{\partial P}\right)_{H}=\frac{V}{C_{\mathrm{p}}}(\alpha T-1)
$$

where α - thermal expansion
[or $\left.\beta=(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}} / \mathrm{V}\right)$]
Note: $\mu_{\mathrm{JT}}(+)$ cools on expand

Example: solve $\mu_{J T}$ for van der Waals gas

$$
\begin{aligned}
& P=\frac{R T}{\bar{V}-b}-\frac{a}{\bar{V}^{2}} \quad \mu_{T}=\frac{1}{C_{P}}\left[-T \frac{\left(\frac{\partial P}{\partial T}\right)_{\bar{V}}}{\left(\frac{\partial P}{\partial \bar{V}}\right)_{T}}-\bar{V}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { evaluate }(\partial P / \partial T)_{V} \text { and }\left(\partial P / \partial V_{T}:\right. \\
& \left.\qquad \begin{array}{cc}
\left(\frac{\partial P}{\partial T}\right)_{\bar{V}}=\frac{R}{\bar{V}-b} & =\frac{1}{C_{P}}\left[-T \frac{\left(\frac{R}{\bar{V}-b}\right)}{-\frac{R T}{(\overline{\bar{V}}-b)^{2}}+2 \frac{a}{\bar{V}^{3}}}-\bar{V}\right.
\end{array}\right] \\
& \left(\frac{\partial P}{\partial \bar{V}}\right)_{T}=-\frac{R T}{(\bar{V}-b)^{2}}+2 \frac{a}{\bar{V}^{3}} \\
& =\frac{1}{C_{P}}\left[\begin{array}{c}
\frac{1}{(\overline{\bar{V}}-b)^{-2}-\frac{\bar{V}-b}{R T}}-\overline{\bar{V}^{3}}
\end{array}\right]
\end{aligned}
$$

Take limit of large molecular volume:
Expansion tricky, find common denom.

$$
\begin{aligned}
& \lim _{\bar{V} \rightarrow \infty} \mu_{\pi T}=\frac{1}{C_{P}} \lim _{V \rightarrow \infty}\left[-T \frac{\left(\frac{R}{\bar{V}-b}\right)}{-\frac{R T}{(\bar{V}-b)^{2}}+2 \frac{a}{\bar{V}^{3}}}-\bar{V}\right] \\
& =\frac{1}{C_{P}} \lim _{V \rightarrow \infty}\left[-\bar{V} \frac{\left(-2 a b^{2}+4 a b \bar{V}-2 a \bar{V}^{2}+b R T \bar{V}^{2}\right)}{-2 a b^{2}+4 a b \bar{V}-2 a \bar{V}^{2}+R T \bar{V}^{3}}\right] \\
& =\frac{1}{C_{P}}\left[\frac{2 a}{R T}-b\right]
\end{aligned}
$$

