Effects of the Gouy Phase on the Coherent Control of Chemical Reactions

Vishal J Barge,1 Zhan Hu,1,2 Robert J Gordon1
1 Department of Chemistry, University of Illinois at Chicago, Chicago IL 60607
2 Institute of Atomic and Molecular Physics, Jilin University, Changchun, P.R. China 130021

Introduction
Various methods have been used to control the outcome of a chemical reaction. The Brumer and Shapiro approach, analogous to the Young's two-slit experiment, is referred to as coherent phase control. In the most commonly studied scenario of coherent phase control, the two excitation paths are the absorption of n photons of frequency ω_n and m photons of frequency ω_m, such that $n \omega_n = m \omega_m$. The overall probability for obtaining a product S for the n vs. m photon excitation can be written as

$$P_n = P^0_n + 2 P^0_m \cos \phi + \delta_{n,m}$$

where P_n is the n-photon reaction probability, P^0_m is the m-photon probability, ϕ is the amplitude of a term arising from interference between the two paths, ϕ is the spatial phase, which is a property of the radiation field, and $\delta_{n,m}$ is the molecular or channel phase, which is a property of the reactant.

The spatial phase can be written as

$$\phi = (m \phi_n - n \phi_m) + (m k_z - n k_z) z + (m - n) \phi(z)$$

where ϕ is the constant phase of the electric field, z is the axial coordinate of the field, k_n is the wave number, $\phi(z) = \tan^{-1}(2k_z R)$ is the Gouy phase, and k_z is the Rayleigh range.

The first term in ϕ is proportional to the difference between the refractive indices at frequencies ω_n and ω_m. The second term is usually assumed to vanish because of momentum conservation. The Gouy phase in the third term describes a phase shift of a focused laser beam as it propagates through the focal point. It has been demonstrated by Chen and Elliot for the one- vs. three-photon excitation of mercury atoms, but this phase shift has never been used to control the branching ratio of a reaction.

We demonstrate here how the Gouy phase can be exploited to control the branching ratio, even in the absence of a molecular phase ϕ. The reactions we have studied include the photodissociation and photoionization of vinyl chloride, acetone, and dimethyl sulfide (DMS).

Experimental setup

Results

A schematic drawing showing the overlap of the laser and molecular beams. A 532 nm visible laser is focused by a lens (f = 76.2 cm) into a mercury oven. Mirrors M1 (f = 7.6 cm) and M2 (f = 7.6 cm) are mounted inside the H$_2$ phase tuning cell (not shown). The two astigmatic foci are separated by 4.5 mm.

Calculations

Control Mechanism

Optimized modulation depth, M_{max}, under typical experimental conditions. Panel (a) shows M_{max} at the center of the molecular beam ($z_m = 0$) as a function of the ratio of the molecular beam radius to the Rayleigh range. Panel (b) shows the variation of M_{max} as the laser focus is scanned across the molecular beam, with $\delta_{lR} = 1.746$.

Conclusions

It is shown that phase control of bound-to-continuum transitions in molecules having large densities of states is achievable with modulation depths as large as 42%. The main finding of this study is that the Gouy phase of a focused laser beam may be used to control the branching ratio of a photo-induced reaction. This phase, which was not included in previous formulations of coherent phase control, adds linearity to the refractive and molecular phases in the interference term. A necessary and sufficient condition for this phase to serve as a control parameter is that the product yields have different intensity dependences.