Nano props to get molecule-sized blades

CHICAGO, July 16 (UPI) -- U.S. scientists have created a theoretical blueprint for assembling a nanoscale propeller that has molecule-sized blades.

University of Illinois-Chicago researchers, led by Assistant Professor Petr Kral, used classical molecular dynamics simulations to learn how such tiny propellers pump liquids.

The researchers found that at the molecular level the chemistry of the propeller's blades and their sensitivity to water play a big role in determining the propeller's efficiency. If the blades have a hydrophobic nature, they pump a lot of water. But if they are hydrophilic, they become clogged with water molecules and pump poorly.

"In principle, we could even attach some biological molecules to the blades and form a propeller that would work only if other molecules bio-compatible with the blades are in the pumped solution," he said.

Kral said such technology probably won't become reality for several years, but he said he believes the 21st century will be about hybrid biological and artificial nanoscale systems and their mutual co-evolution.

The work is featured in the July 12 issue of Nature and was described in the June 28 cover story of the journal Physical Review Letters.

Copyright 2007 by United Press International. All Rights Reserved.
Nano Propellers Pump With Proper Chemistry

(July 17, 2007) -- Chemists at the University of Illinois at Chicago have created a theoretical blueprint for assembling a nanoscale propeller with molecule-sized ... > full story

Compact Tidal Generator Could Reduce The Cost Of Producing Electricity From Flowing Water

(June 14, 2006) -- What happens if you run an electric motor backwards? That is exactly what researchers Dr Steve Turnock and Dr Suleiman Abu-Sharkh from the University of Southampton asked themselves after they had ... > full story

New Technology Enhances MRI

(January 5, 2006) -- Researchers at Barrow Neurological Institute in Phoenix have developed a new method that allows technicians to obtain clearer Magnetic Resonance Imaging (MRI) scans with less sensitivity to patient ... > full story

"Cutting"-Edge Technology To Better Shape Submarine Propellers

(May 16, 2002) -- Super smooth propellers of maximum structural integrity allow submarines to run silently in deep water. These nickel-aluminum-bronze alloy propulsion units take as long as 12 months to manufacturea ... > full story

'Nano-scissors' Make The Cut

(March 26, 2007) -- Researchers in Japan have developed a pair of molecular-scale scissors that open and close in response to light. The tiny scissors are the first example of a molecular machine capable of mechanically ... > full story

Three Sandia Experimental Wind Turbines Spin In Texas Panhandle

(January 21, 2000) -- Three small wind turbines spinning in the Texas Panhandle as part of a series of experiments being conducted by the Department of Energy's Sandia National Laboratories promise to answer some big ... > full story

Bacteria Grown In Simulated Martian Environment

(June 15, 1999) -- A University of Arkansas researcher has become the first scientist to grow methane-producing microorganisms under some of the conditions found on Mars. His work may provide clues for finding similar ... > full story

First Biomolecular Motors With Metal Propellers Can Live Inside Cells, Cornell Nanobiotechnologists Report

(November 28, 2000) -- Nanobiotechnologists at Cornell University have built and pilot-tested the first biomolecular motors with tiny metal propellers. Success in fabricating and operating hybrid organic-inorganic ... > full story

Water Theory Is Watertight, Researchers Say

(January 17,
2007) -- There may be tiny bubbles in the wine, but not at the interface between water and a waxy coating on glass, a new study shows. The behavior of water when placed in contact with hydrophobic ... > full story

Water Flows Like Molasses On The Nanoscale (April 25, 2007) -- A Georgia Tech research team has discovered that water exhibits very different properties when it is confined to channels less than two nanometers wide -- behaving much like a viscous fluid with a ... > full story