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ABSTRACT: Molecular dynamics simulations are used to study
pumping of liquids by flapping graphene nanosheets. Despite the
low Reynolds number conditions, liquids are pumped by the
flapping nanosheets with an irreversible dynamics. Evaluation of
the pumping rates as a function of frequency and amplitude of the
flapping motion revealed that a “flexible oar” pumping mechanism
can act at the nanoscale, where molecular systems behave as a
coarse-grained macroscopic systems. These observations could be
implemented in designing of motile nanoscale machines.

■ INTRODUCTION

Living organisms exploit various mechanisms to gain motility
at different scales.1 For example, bacteria can efficiently swim
through liquids by rotating their flagella (5−20 μm long, 10−
30 nm wide filaments)2 or by beating with their cilia (3−10
μm long, <1 μm wide filaments).3 Bacteria can swim at low
Reynolds numbers, where a Brownian dynamics operates, by
oscillating their microscopic filaments.4 In this “flexible oar”
mechanism, filaments periodically generate deformations
propagating along their length and pulling the liquid.4,5

Analogous pumping mechanisms could be used in synthetic
systems.6−15 For example, a flexible oar formed by a steel wire
(d = 0.6 mm diameter, l = 30 cm length) can pump silicone oil
at low Reynolds numbers of Re = 10−2 − 10−3.16

All of the above systems operate with a continuous fluid,
despite the presence of low Reynolds numbers. Here, we
examine whether the flexible oar mechanism can be transferred
all the way down to the molecular scale, where the assumption
of a continuous fluid is breaking down. We use atomistic
molecular dynamics (MD) simulations to model an oscillating
flexible nanosheet and analyze its ability to pump liquids.

■ METHODS

Figure 1 shows a model graphene sheet covalently bonded to a
carbon nanotube (CNT), which performs oscillatory rotation
around its axis, but is otherwise restrained. Length and
diameter of the selected model CNT are 2.82 and 0.62 nm,
respectively. The studied paddles, containing 290−660 atoms,
are l = 1.5−7.5 nm long, w ≈ 1.4 nm wide, and immersed in
water boxes 62 × 49 × 245 Å3 in volume. The CNT oscillatory
rotation is obtained by applying an oscillatory force of Fy = a0
sin(ωt) in the y-direction (Figure 1, top) to CNT atoms which
are connected to the graphene sheet. Since the CNT is freely
rotating around a shaft, the force can rotate it in a range of

(−π/2,π/2) rad and induce the flapping motion of the
graphene paddle.
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Figure 1. Side and top views of the flexible oscillating graphene sheet
paddle in water. The edges of the graphene sheet are capped by
hydrogen atoms.
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Here, the water pumping induced by the graphene sheet
oscillation is studied by classical nonequilibrium atomistic MD
simulations with the NAMD package17 and the CHARMM
force field.18 Water is described with TIP3P model, and carbon
atoms of CNT and graphene are described as typical aromatic
carbon atoms within the CHARMM force field. The systems
are simulated in NPT ensembles (p = 1 bar at T = 300 K) with
periodic boundary conditions applied. The Langevin dynamics
is used with a small damping coefficient of 0.01 ps−1, in order
to avoid unphysical dissipation of the linear and angular
momenta;19 the simulation time step is 2 fs. The water flow is
calculated by averaging the number of solvent molecule
crossing events at two xy-plane cross sections within the unit
cell, where the upper and lower cross sections are defined at z
= 1 and −2 nm within the unit cell.

■ RESULTS AND DISCUSSION
It might seem obvious that the oscillating nanopaddle from
Figure 1 can pump liquids. However, according to the scallop
theorem, pumping of liquids at low Reynolds numbers is only
possible by paddles performing a time-irreversible motion,4 as
in the flexible oar mechanism, while oscillating rigid paddles
cannot pump liquids. The necessity of some motional
irreversibility emerges from the analysis of the fluid dynamics
at low Reynold numbers. The Reynolds number describes the
nature of fluid flow around constrictions (ratio of inertial and
viscous forces), Re = avρ/η, where a is a linear dimension of
the system, v is a fluid velocity around it, ρ is a fluid density,
and η is a dynamic viscosity of the fluid. For a graphene paddle
in Figure 1, with parameters of a = 10−8 m, v = 1 m/s, ρ = 103

kg/m3, and η = 10−3 Pa s, we obtain Re ≈ 10−2, while for a
macroscopic paddle Re ≈ 106. In low-Re environments, inertia
is negligible (waves do not exist), so viscosity dominates the
motion of objects. Therefore, pumping of liquids by paddles at
low Re is only possible if we introduce some irreversibility in
their dynamics, such as in a corkscrew motion performed by
flagella.
Figures 2a,b shows selected simulation snapshots of y(t)

profiles of selected paddle atoms as a function of their distance
zC from CNT. These snapshots are obtained during one
oscillation cycle of the paddle with parameters of l = 4.1 nm, w
≈ 1.4 nm, and A = 8.4 nN, and frequencies of (a) ω = 0.045
ps−1 and (b) ω = 0.15 ps−1. At smaller oscillation frequencies
(Figure 2a) the paddle seems to bend less. In contrast, at
higher frequencies (Figure 2b) a deformation is clearly seen
propagating along the paddle. We can expect that these more
pronounced and denser deformations should pump more
liquid.
In Figure 2c, we examine in more detail the time-dependent

dynamics of a paddle (l = 6 nm) oscillating with a frequency of
ω = 0.045 ps−1. The blade motion is perfectly periodic at the
CNT surface, but it becomes random with the growing
separation from CNT. Moreover, we can see a phase shift
mounting with the distance from CNT, which reveals that
deformations are propagating along the paddle. However, the
more random motion of the paddle seen further away from
CNT contributes less to liquid pumping, so that pumping
should level out for long paddles.
These results illustrate that the flapping nanoscopic paddle

performs an irreversible motion, where periodic deformations
unidirectionally propagate along its length. This pocket-like
transport of liquids resembles motion of droplets on surfaces of
CNTs oscillating in air.20 However, these propagating

deformations are not waves, since the paddle vibration is
overdamped at low Re. The traveling deformations are
determined by mechanical properties of the paddle, the fluid
properties (damping), and the driving forces. The pumping
rates should depend on the paddle length, width, its chemical
functionalization, the frequency and amplitude of its driving.6

Changes in CNT dimensions are likely to have only a small
direct influence on the pumping rate, as long as the oscillatory
force with suitable amplitude and frequency can be applied to
CNT and thus also to one edge of the nanoscale paddle to
induce its flapping motion.
Figure 3a shows the calculated flows of water and pentane

separately driven by graphene paddles of different lengths and

Figure 2. Snapshots of paddle shapes within a single oscillatory cycle
for (a) ω = 0.045 and (b) 0.15 ps−1. The force, Fy = a0 sin(ωt), with
a0 = 8.4 nN, is applied to atoms at x ≈ 0 Å. The paddle has a length of
l = 4.1 nm and a width of w ≈ 1.4 nm. (c) A time-dependent
dynamics y(t) of several selected paddle atoms (l = 6.0 nm), separated
at zC distance from the driven atoms on CNT. For this system, ω =
0.045 ps−1 and a0 = 8.4 nN. With the increasing distance, the motion
becomes more random.
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a fixed width (w ≈ 1.4 nm), oscillated at ω = 0.045 ps−1. The
slippery nature of the graphene paddle allows higher water
flows, in analogy to carbon nanotubes.21

For paddles with very short lengths of l ≈ 1 nm, the flow is
very small since the paddle deformations are very small
(reversibility − scallop theorem). For longer paddles, the flow
increases and reaches a local maximum at lopt ≈ 2−3 nm where
the paddles are irreversibly waving without much restriction.
When the paddle lengths are further increased to l > 3 nm, the
flow slightly drops and remains approximately constant. The
long paddles cannot move freely because their long tails
prevent them from oscillating even close to the source.
Moreover, coherent oscillations do not propagate in distant
regions of the paddles, as visualized from the random profiles
(loss of coherence) of the paddle regions that are at large
distances from the oscillation source (Figure 2c). Therefore,
increasing the length of paddles has no effect on their pumping
rates. The dependence of the water flow on the paddle length,
shown in Figure 3a, resembles the length-dependence of a
propulsive force generated by a macroscopic flexible tail
oscillating in a viscous medium.5,16 This underlines the fact
that classicality is largely preserved at the nanoscale, despite
the presence of fluid molecules comparable in size to the
paddle.
Moreover, while the flow induced by the paddle in the same

conditions is approximately 1 order of magnitude smaller for
pentane than for water, the trends remain the same. We can
identify two main reasons for this reduced pumping of
pentane. The first reason is the wettability of the paddle; in
general, molecules that stick to the paddle tend to clog it.6 For
graphene paddles, this happens for hydrophobic molecules like
pentane. On the other hand, hydrophilic molecules can easily
slip away from the paddle. The second reason is the length of
the solvent molecules; longer pentane molecules can get
interlocked and tend to be more intertwined than smaller
water molecules.6 Both reasons contribute to the fact that
water can slip more easily from the paddle and thus get mixed
and pumped, while pentane sticks to the paddles, gets
interlocked, and significantly avoids the pumping.
Finally, Figure 3b shows the flow of water pumped by

paddles (l = 4.1 nm) driven by forces of different amplitudes
and frequencies. At both amplitudes, the water flow grows with

the driving frequency, since the irreversibility becomes larger.
The flow is growing in a nonlinear fashion with the driving
amplitude. In the limit of low frequency, the flow would go to
zero (in the present study, the frequencies examined are still
relatively large). The pumping rates in Figure 3 were
determined in simulations that neglect the polarizability of
CNT, graphene paddle and water. Previous studies showed
that water flow in polar boron-nitride nanotubes is smaller than
in nonpolar CNTs, due to stronger interactions between water
and polar nanotube walls resulting in increased friction.22

Analogously, polarizability effects are expected to result in
stronger interactions between water and the nanopaddle and
the reduced pumping rate.

■ CONCLUSION
In summary, using MD simulations, we have shown that
liquids can be pumped by molecular blades by the flexible oar
mechanism, which is active at low Reynolds numbers. The
pumping rates grow with the driving frequency, but they
undergo a typical flattening in long nanopaddles. Moreover,
the pumping becomes inefficient in liquids with large
molecules comparable in size to the paddle length. Never-
theless, the obtained data support the idea that such nanoscale
pumping of liquids should be possible to approximately
describe by macroscopic equations valid at low Reynolds
numbers, and here the molecular nature of pumped liquids can
be seen as a coarse-graining of the continuous macroscopic
models. In applications, the nanopaddle oscillations could be
powered by piezoelectric means23−25 and magnetic fields26−28

and used to drive microscopic devices submerged in liquids.
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Figure 3. (a) Flows of water and pentane separately pumped by paddles of the length l when driven by an oscillating force, Fy = a0 sin(ωt), where
a0 = 8.4 nN is the amplitude and ω = 0.045 ps−1 is the oscillation frequency. (b) Flows of water pumped by the paddle of a l = 4.1 nm length,
calculated for different a0 as a function of ω.
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