

# AQS System for AVANCE III HD

Technical Manual

Version 001

Innovation with Integrity

NMR Spectroscopy

Copyright<sup>©</sup> by Bruker Corporation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means without the prior consent of the publisher. Product names used are trademarks or registered trademarks of their respective holders.

This manual was written by

Arthur Schwilch, Christoph Schumacher, Balz Odermatt, Marcel Wattinger, Michael Schenkel

© June 19, 2012: Bruker Corporaton

Fällanden, Switzerland

P/N: Z33083 DWG-Nr.: Z4D12021 Version 001

| 1 | About      | t                                                                                                                                                                                                                             | 13                                                             |
|---|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|   | 1.1        | This Manual                                                                                                                                                                                                                   | 13                                                             |
|   | 1.2        | Policy Statement                                                                                                                                                                                                              | 13                                                             |
|   | 1.3        | Symbols and Conventions                                                                                                                                                                                                       | 13                                                             |
| 2 | Introd     | luction                                                                                                                                                                                                                       | 15                                                             |
|   | 2.1        | Limitation of Liability                                                                                                                                                                                                       | 15                                                             |
|   | 2.2        | Before You Begin                                                                                                                                                                                                              | 15                                                             |
|   | 2.3        | Minimum Qualifications for Operating Personnel                                                                                                                                                                                | 15                                                             |
|   | 2.4        | The Bruker Service                                                                                                                                                                                                            |                                                                |
|   | 2.5        | Transport to Manufacturer                                                                                                                                                                                                     | 16                                                             |
| 3 | Safety     | y                                                                                                                                                                                                                             | 17                                                             |
|   | 3.1        | Intended Use                                                                                                                                                                                                                  | 17                                                             |
|   | 3.2        | Owner's Responsibility                                                                                                                                                                                                        | 17                                                             |
|   | 3.3        | Personnel Requirements                                                                                                                                                                                                        | 19                                                             |
|   |            | Qualifications                                                                                                                                                                                                                | 19                                                             |
|   |            | Unauthorized Persons                                                                                                                                                                                                          | 19                                                             |
|   | 3.4        | Personal Protective Equipment                                                                                                                                                                                                 |                                                                |
|   | 3.5        | Basic Dangers                                                                                                                                                                                                                 | 20                                                             |
| 4 | Techr      | nical Data                                                                                                                                                                                                                    | 21                                                             |
|   | 4.1        | Product Name and Part Number                                                                                                                                                                                                  | 21                                                             |
|   | 4.2        | General Information                                                                                                                                                                                                           | 21                                                             |
|   | 4.3        | Connection Values                                                                                                                                                                                                             |                                                                |
|   | 4.4        | Operating Conditions                                                                                                                                                                                                          | 22                                                             |
|   | 4.5        | Rating Plate                                                                                                                                                                                                                  | 22                                                             |
| 5 | IPSO       | Acquisition System                                                                                                                                                                                                            | 23                                                             |
|   | 5.1        | Introduction                                                                                                                                                                                                                  | 23                                                             |
|   |            | Features of the AQS/3+ System                                                                                                                                                                                                 | 24                                                             |
|   |            |                                                                                                                                                                                                                               |                                                                |
|   |            | Acquisition Control                                                                                                                                                                                                           | 24                                                             |
|   |            | Acquisition Control<br>Analog to Digital Conversion                                                                                                                                                                           |                                                                |
|   | 5.2        |                                                                                                                                                                                                                               | 24                                                             |
|   | 5.2<br>5.3 | Analog to Digital Conversion                                                                                                                                                                                                  | 24<br>25                                                       |
|   | -          | Analog to Digital Conversion<br>The Channel Concept                                                                                                                                                                           | 24<br>25<br>27                                                 |
|   | -          | Analog to Digital Conversion<br>The Channel Concept<br>AQS/3+ Signal and Information Paths                                                                                                                                    | 24<br>25<br>27<br>27                                           |
|   | -          | Analog to Digital Conversion<br>The Channel Concept<br>AQS/3+ Signal and Information Paths<br>Basics of the AQS/3+ Chassis                                                                                                    |                                                                |
|   | -          | Analog to Digital Conversion<br>The Channel Concept<br>AQS/3+ Signal and Information Paths<br>Basics of the AQS/3+ Chassis<br>Communication inside the AQS/3+ Chassis                                                         |                                                                |
|   | -          | Analog to Digital Conversion<br>The Channel Concept<br>AQS/3+ Signal and Information Paths<br>Basics of the AQS/3+ Chassis<br>Communication inside the AQS/3+ Chassis<br>Intra Rack Bus                                       | 24<br>25<br>27<br>27<br>27<br>27<br>27<br>29<br>29             |
|   | -          | Analog to Digital Conversion<br>The Channel Concept<br>AQS/3+ Signal and Information Paths<br>Basics of the AQS/3+ Chassis<br>Communication inside the AQS/3+ Chassis<br>Intra Rack Bus<br>Synchronous Serial Rack Bus (SSRB) | 24<br>25<br>27<br>27<br>27<br>27<br>27<br>29<br>29<br>29<br>29 |

|   | 5.4  | Synchronous Signals                                                      | 30 |
|---|------|--------------------------------------------------------------------------|----|
|   |      | Real-time Control-pulses (RCP) on the AQS/3 User Bus                     | 30 |
|   | 5.5  | Receiver Pulse Separation for Multiple-Receiver Systems                  | 36 |
|   | 5.6  | RF Signal Paths                                                          | 36 |
|   | 5.7  | 20 MHz Clock Distribution                                                | 37 |
| 6 | AVAN | CE III HD Configurations                                                 | 39 |
|   |      | Rackcode Setting                                                         |    |
|   | 6.1  | A Typical 2 to 3 Channel AV III HD HR (Internal IPSO)                    |    |
|   |      | Bill of Material                                                         |    |
|   |      | Rackcode Setting                                                         |    |
|   |      | Board Location                                                           |    |
|   | 6.2  | A Typical 2 to 6 Channel AV III HD HR & Solids (ext. IPSO)               | 42 |
|   |      | Bill of Material                                                         |    |
|   |      | Rackcode Setting                                                         | 43 |
|   |      | Board Location                                                           | 43 |
|   | 6.3  | A Typical 2 Channel AV III HD HR Multi-RX (2 RX/TX)                      | 44 |
|   |      | Bill of Material                                                         | 44 |
|   |      | Rackcode Setting                                                         | 45 |
|   |      | Board Location                                                           | 45 |
|   |      | LO2 Splitter and AUX Combiner                                            | 46 |
|   | 6.4  | A Typical 4 Channel AV III HD HR Multi-RX (2+2 RX/TX)                    | 47 |
|   |      | Bill of Material                                                         | 47 |
|   |      | Rackcode Setting                                                         | 48 |
|   |      | Board Location                                                           | 49 |
|   |      | 20 MHz, REF and LO2 Distribution                                         | 49 |
|   | 6.5  | A Typical 6 Channel AV III HD HR Multi-RX (2+2+2 RX/TX)                  | 50 |
|   |      | Bill of Material                                                         | 50 |
|   |      | Rackcode Setting                                                         | 52 |
|   |      | Board Location                                                           | 53 |
|   | 6.6  | A Typical 1 Channel AV III HD PharmaScan with 1 RX                       | 54 |
|   |      | Bill of Material                                                         | 54 |
|   |      | Rackcode Setting                                                         | 55 |
|   |      | Board Location                                                           | 55 |
|   | 6.7  | A Typical 2 Channel AV III HD BioSpec (2-4 TX / 1 RX)                    | 56 |
|   |      | Bill of Material                                                         | 56 |
|   |      | Rackcode Setting                                                         |    |
|   |      | Board Location                                                           |    |
|   | 6.8  | A Typical 2 Channel AV III HD BioSpec with mRX Option (2 TX / 4,8,16 RX) |    |
|   |      | Bill of Material                                                         |    |
|   |      | Rackcode Setting                                                         |    |
|   | _    | Board Location                                                           |    |
|   | 6.9  | A Typical 2 Channel AV III HD BioSpec with pTX Option (8 TX / 2 RX)      | 62 |

|   |       | Bill of Material                                         |    |
|---|-------|----------------------------------------------------------|----|
|   |       | Rackcode Setting                                         | 63 |
|   |       | Board Location                                           | 64 |
|   |       | 20 MHz, LO2 and REF Distribution                         | 64 |
|   |       | Upgrade with mRX Options (4/8/16 RX)                     | 65 |
|   | 6.10  | A Typical 2 Channel AV III HD Dual RX Low and High Field | 66 |
|   |       | Bill of Material                                         |    |
|   |       | Rackcode Setting                                         | 67 |
|   |       | Board Location                                           | 67 |
| 7 | AQS/3 | 8+ Mainframe                                             | 69 |
|   | 7.1   | Introduction                                             |    |
|   | 7.2   | Front View                                               |    |
|   | 7.3   | Rear View                                                | 71 |
|   | 7.4   | AC Power Line Fuses                                      | 72 |
|   | 7.5   | Power-Up Delay                                           |    |
|   | 7.6   | Inrush Current Limiter                                   |    |
|   | 7.7   | Mains Power Failure & Restart Timeout                    | 72 |
|   | 7.8   | Diagnostics & Setup                                      | 73 |
|   | 7.9   | Safety Stop                                              | 74 |
|   | 7.10  | AC Wiring                                                | 75 |
|   | 7.11  | Backplane (User Bus)                                     |    |
|   |       | Pulse Switch for Receiver Pulse Separation               | 77 |
|   |       | Rackcode Settings                                        | 77 |
|   | 7.12  | Fans                                                     | 78 |
|   | 7.13  | AC/DC Power Supply                                       | 79 |
|   |       | Product and Part Number                                  | 79 |
|   | 7.14  | Power Supply Service Instruction                         | 79 |
|   |       | PSM-48V removal                                          | 79 |
|   |       | PSM-48V reassembly                                       | 80 |
| 8 | AQS/2 | 2-M Mainframe                                            | 81 |
|   | 8.1   | Introduction                                             |    |
|   | 8.2   | Front View                                               |    |
|   | 8.3   | Rear View                                                |    |
|   | 8.4   | AC Power Line Fuses                                      |    |
|   | 8.5   | Power-Up Delay                                           |    |
|   | 8.6   | Inrush Current Limiter                                   | 84 |
|   | 8.7   | Mains Power Failure                                      | 84 |
|   | 8.8   | Diagnostics & Setup                                      | 85 |
|   | 8.9   | Safety Stop                                              | 86 |
|   | 8.10  | AC Wiring                                                | 87 |
|   |       |                                                          |    |

|    | 8.11  | Backplane (User Bus)                               |      |
|----|-------|----------------------------------------------------|------|
|    |       | Pulse Switch for Receiver Pulse Separation         |      |
|    |       | Rackcode Settings                                  |      |
|    | 8.12  | Fans                                               | 91   |
| 9  | Powe  | r Supply System                                    | 93   |
|    | 9.1   | System Overview                                    |      |
|    |       | AQS/3+ Chassis PSM                                 |      |
|    |       | AQS/2-M Chassis PSM                                |      |
|    |       | PSM Summary Table                                  | 94   |
|    | 9.2   | AQS PSM-48V 600W POWER SUPPLY UNIT                 |      |
|    | 9.3   | AQS PSM-A2 POWER SUPPLY MODULE                     |      |
|    |       | AQS PSM-A POWER SUPPLY MODULE                      |      |
|    | 9.4   | AQS PSM-D POWER SUPPLY MODULE                      |      |
|    | 9.5   | AQS POWER SUPPLY DIGITAL                           |      |
|    | 9.6   | AQS PSM1 POWER SUPPLY MODULE                       |      |
|    | 9.7   | AQS PSM5 POWER SUPPLY MODULE                       |      |
|    | 9.8   | AQS PSM HPLNA                                      |      |
|    | 9.9   | AQS PSM ADM                                        |      |
|    | 9.10  | AQS POWER SUPPLY BLA 28V 20A                       |      |
| 10 | 40S F | REF/3                                              | 105  |
| 10 | 10.1  | Introduction                                       |      |
|    | 10.1  | Description                                        |      |
|    | 10.2  | Overall Synchronisation                            |      |
|    |       | Cable Lengths                                      |      |
|    |       | Bus Interfaces                                     |      |
|    | 10.3  | Unit Configuration / Jumpers                       |      |
|    | 10.0  | Differences to Previous Version                    |      |
|    | 10.4  | Front Panel Wiring / Display                       |      |
|    | 10.5  | Part Numbers                                       |      |
|    | 10.6  | Troubleshooting / Unit replacement / Tips'n Tricks |      |
|    | 10.7  | Specifications                                     |      |
|    | 10.8  | Power Suppy                                        |      |
|    | 1010  | Backplane Connector                                |      |
| 44 | 4001  |                                                    | 44 E |
| 11 |       | RXAD/2                                             |      |
|    | 11.1  |                                                    |      |
|    | 11.2  | Functions/Description                              |      |
|    |       | Power Supply and Monitoring                        |      |
|    |       | Reset                                              |      |
|    |       | Real Time Pulses                                   |      |

|    |                                                      | Effective Gain of the AQS RXAD/2                                                                                                                                                                                                                                                                                                                                                                                   | 119        |
|----|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|    | 11.3                                                 | Unit Configuration / Version / Jumpers                                                                                                                                                                                                                                                                                                                                                                             | 120        |
|    |                                                      | Differences to Previous Receiver Versions                                                                                                                                                                                                                                                                                                                                                                          | 120        |
|    | 11.4                                                 | Front Panel Wiring / Display                                                                                                                                                                                                                                                                                                                                                                                       | 121        |
|    |                                                      | LED Display                                                                                                                                                                                                                                                                                                                                                                                                        | 122        |
|    |                                                      | Front Panel Connectors                                                                                                                                                                                                                                                                                                                                                                                             | 123        |
|    | 11.5                                                 | Part Numbers                                                                                                                                                                                                                                                                                                                                                                                                       |            |
|    | 11.6                                                 | Troubleshooting / Unit Replacement / Tips 'n' Tricks                                                                                                                                                                                                                                                                                                                                                               | 124        |
|    |                                                      | General                                                                                                                                                                                                                                                                                                                                                                                                            | 124        |
|    |                                                      | Download new AQS Receiver (RX) Firmware                                                                                                                                                                                                                                                                                                                                                                            | 124        |
|    |                                                      | Error Messages                                                                                                                                                                                                                                                                                                                                                                                                     | 125        |
|    | 11.7                                                 | Diagnostic Tests                                                                                                                                                                                                                                                                                                                                                                                                   | 128        |
|    | 11.8                                                 | DC Offset and Quadrature Correction Table                                                                                                                                                                                                                                                                                                                                                                          | 128        |
|    | 11.9                                                 | Quadrature Phase/Gain Adjust – Useful Pulse Programs                                                                                                                                                                                                                                                                                                                                                               | 133        |
|    | 11.10                                                | Specifications                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|    |                                                      | Timing Definitions                                                                                                                                                                                                                                                                                                                                                                                                 | 137        |
|    | 11.11                                                | Power Supply / Fuses                                                                                                                                                                                                                                                                                                                                                                                               | 138        |
|    |                                                      | Backplane Connector                                                                                                                                                                                                                                                                                                                                                                                                | 138        |
|    | 11.12                                                | RXAD/2 Accessory                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|    |                                                      | MRI Array-Preamp Supply 10V                                                                                                                                                                                                                                                                                                                                                                                        |            |
|    |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| 12 | AQS D                                                | 0RU                                                                                                                                                                                                                                                                                                                                                                                                                | 141        |
|    |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
|    | 12.1                                                 | Introduction                                                                                                                                                                                                                                                                                                                                                                                                       |            |
|    | 12.1<br>12.2                                         | Functions/Description                                                                                                                                                                                                                                                                                                                                                                                              | 142        |
|    |                                                      | Functions/Description<br>Power Supply and Monitoring LEDs                                                                                                                                                                                                                                                                                                                                                          | 142<br>144 |
|    |                                                      | Functions/Description                                                                                                                                                                                                                                                                                                                                                                                              | 142<br>144 |
|    |                                                      | Functions/Description<br>Power Supply and Monitoring LEDs                                                                                                                                                                                                                                                                                                                                                          |            |
|    |                                                      | Functions/Description<br>Power Supply and Monitoring LEDs<br>Front Panel Wiring / Display<br>Reset and Operation LED Display<br>Servicing the DRU                                                                                                                                                                                                                                                                  |            |
|    | 12.2                                                 | Functions/Description<br>Power Supply and Monitoring LEDs<br>Front Panel Wiring / Display<br>Reset and Operation LED Display<br>Servicing the DRU<br>Accessing the DRU                                                                                                                                                                                                                                             |            |
|    | 12.2                                                 | Functions/Description<br>Power Supply and Monitoring LEDs<br>Front Panel Wiring / Display<br>Reset and Operation LED Display<br>Servicing the DRU                                                                                                                                                                                                                                                                  |            |
|    | 12.2<br>12.3<br>12.4                                 | Functions/Description<br>Power Supply and Monitoring LEDs<br>Front Panel Wiring / Display<br>Reset and Operation LED Display<br>Servicing the DRU<br>Accessing the DRU<br>Downloading New Firmware<br>Technical Data                                                                                                                                                                                               |            |
|    | 12.2                                                 | Functions/Description<br>Power Supply and Monitoring LEDs<br>Front Panel Wiring / Display<br>Reset and Operation LED Display<br>Servicing the DRU<br>Accessing the DRU<br>Downloading New Firmware                                                                                                                                                                                                                 |            |
| 12 | 12.2<br>12.3<br>12.4<br>12.5                         | Functions/Description<br>Power Supply and Monitoring LEDs<br>Front Panel Wiring / Display<br>Reset and Operation LED Display<br>Servicing the DRU<br>Accessing the DRU<br>Downloading New Firmware<br>Technical Data<br>Backplane Connectors                                                                                                                                                                       |            |
| 13 | 12.2<br>12.3<br>12.4<br>12.5<br><b>AQS S</b>         | Functions/Description<br>Power Supply and Monitoring LEDs<br>Front Panel Wiring / Display<br>Reset and Operation LED Display<br>Servicing the DRU<br>Accessing the DRU<br>Downloading New Firmware<br>Technical Data<br>Backplane Connectors                                                                                                                                                                       |            |
| 13 | 12.2<br>12.3<br>12.4<br>12.5<br><b>AQS S</b><br>13.1 | Functions/Description<br>Power Supply and Monitoring LEDs<br>Front Panel Wiring / Display<br>Reset and Operation LED Display<br>Servicing the DRU<br>Accessing the DRU<br>Downloading New Firmware<br>Technical Data<br>Backplane Connectors<br><b>GU/3</b><br>Introduction                                                                                                                                        |            |
| 13 | 12.2<br>12.3<br>12.4<br>12.5<br><b>AQS S</b>         | Functions/Description<br>Power Supply and Monitoring LEDs<br>Front Panel Wiring / Display<br>Reset and Operation LED Display<br>Servicing the DRU<br>Accessing the DRU<br>Downloading New Firmware<br>Technical Data<br>Backplane Connectors<br><b>GU/3</b><br>Introduction<br>Functions/Description                                                                                                               |            |
| 13 | 12.2<br>12.3<br>12.4<br>12.5<br><b>AQS S</b><br>13.1 | Functions/Description<br>Power Supply and Monitoring LEDs<br>Front Panel Wiring / Display<br>Reset and Operation LED Display<br>Servicing the DRU<br>Accessing the DRU<br>Downloading New Firmware<br>Technical Data<br>Backplane Connectors<br><b>GU/3</b><br>Introduction<br>Functions/Description<br>Important Functions                                                                                        |            |
| 13 | 12.2<br>12.3<br>12.4<br>12.5<br><b>AQS S</b><br>13.1 | Functions/Description<br>Power Supply and Monitoring LEDs<br>Front Panel Wiring / Display<br>Reset and Operation LED Display<br>Servicing the DRU<br>Accessing the DRU<br>Downloading New Firmware<br>Technical Data<br>Backplane Connectors<br><b>GU/3</b><br>Introduction<br>Functions/Description<br>Important Functions<br>LO Signal Routing                                                                   |            |
| 13 | 12.2<br>12.3<br>12.4<br>12.5<br><b>AQS S</b><br>13.1 | Functions/Description<br>Power Supply and Monitoring LEDs<br>Front Panel Wiring / Display<br>Reset and Operation LED Display<br>Servicing the DRU<br>Accessing the DRU<br>Downloading New Firmware<br>Technical Data<br>Backplane Connectors<br><b>GU/3</b><br>Introduction<br>Functions/Description<br>Important Functions<br>LO Signal Routing<br>Signal Generation Inside the SGU/3                             |            |
| 13 | 12.2<br>12.3<br>12.4<br>12.5<br><b>AQS S</b><br>13.1 | Functions/Description<br>Power Supply and Monitoring LEDs<br>Front Panel Wiring / Display<br>Reset and Operation LED Display<br>Servicing the DRU<br>Accessing the DRU<br>Downloading New Firmware<br>Downloading New Firmware<br>Technical Data<br>Backplane Connectors<br><b>GU/3</b><br>Introduction<br>Functions/Description<br>Important Functions<br>LO Signal Routing<br>Signal Generation Inside the SGU/3 |            |
| 13 | 12.2<br>12.3<br>12.4<br>12.5<br><b>AQS S</b><br>13.1 | Functions/Description<br>Power Supply and Monitoring LEDs<br>Front Panel Wiring / Display<br>Reset and Operation LED Display<br>Servicing the DRU<br>Accessing the DRU<br>Downloading New Firmware<br>Technical Data<br>Backplane Connectors<br><b>GU/3</b><br>Introduction<br>Functions/Description<br>Important Functions<br>LO Signal Routing<br>Signal Generation Inside the SGU/3                             |            |

|    |        | LED Display                            |     |
|----|--------|----------------------------------------|-----|
|    |        | Front Panel Connectors                 |     |
|    | 13.4   | SGU/3 FPGA Firmware                    |     |
|    |        | SGU/3 Firmware Version Encoding        |     |
|    |        | Identification of the Firmware Release |     |
|    |        | SGU/3 Firmware Download                |     |
|    | 13.5   | Part Numbers                           |     |
|    | 13.6   | Error Messages                         |     |
|    | 13.7   | Important Signals                      |     |
|    | 13.8   | Specifications                         |     |
|    |        | Timing                                 |     |
|    |        | Frequency                              |     |
|    |        | Phase                                  |     |
|    |        | Amplitude                              |     |
|    |        | Hardware Response                      |     |
|    | 13.9   | Power Supply / Fuses                   |     |
|    |        | Backplane Connector                    |     |
| 14 | AQS P  | ulse & RF-Splitter                     | 169 |
|    | 14.1   | Introduction                           |     |
|    | 14.2   | Functions/Description                  |     |
|    |        | 20MHz Clock and RX-Pulse Distribution  |     |
|    |        | LO- & LO2-Splitter                     |     |
|    | 14.3   | RF and Pulse Wiring                    |     |
|    | 14.4   | Front Panel                            |     |
|    |        | LED Indicators                         |     |
|    |        | Front Panel Connectors PULSE SPLITTER  |     |
|    |        | Front Panel Connectors RF-SPLITTER     |     |
|    | 14.5   | Diagnostics                            |     |
|    | 14.6   | RF-Splitter Setup and Gain Adjust      |     |
|    |        | Setup                                  |     |
|    |        | Gain Adjust                            |     |
|    | 14.7   | Part Numbers and Cables                |     |
|    |        | Technical Data                         |     |
|    |        | PULSE SPLITTER                         |     |
|    |        | RF-SPLITTER                            |     |
|    | 14.8   | Power Supply / Fuses                   |     |
|    |        | Backplane Connector                    |     |
| 15 | AQS 2I | Н ТХ                                   | 181 |
|    | 15.1   | Function/Description                   |     |
|    | 15.2   | Front Panel                            |     |
|    |        |                                        |     |

|    | 15.3    | Part Numbers                                         |     |
|----|---------|------------------------------------------------------|-----|
|    | 15.4    | Technical Data                                       | 183 |
| 16 | AQS 1   | to 4 Router                                          | 185 |
|    | 16.1    | Introduction                                         |     |
|    | 16.2    | Functions/Description                                |     |
|    |         | Switching 1 to 4                                     | 185 |
|    |         | Tune Signal                                          |     |
|    |         | Bus Interfaces                                       |     |
|    | 16.3    | Front Panel Wiring / Display                         |     |
|    |         | Power LED                                            |     |
|    | 16.4    | Backplane Connector                                  |     |
|    | 16.5    | Part Numbers and Cables                              |     |
|    | 16.6    | Troubleshooting / Unit replacement / Tips 'n' Tricks | 189 |
|    | 16.7    | Power Supply / Fuses                                 | 189 |
| 17 | AQS C   | Controller                                           | 191 |
|    | 17.1    | Introduction                                         |     |
|    | 17.2    | AQS Address Mapping                                  |     |
|    | 17.3    | Identify Your Chassis Configuration                  |     |
|    |         | AQS Service Web                                      | 193 |
|    |         | AQS Board Type Codes                                 | 193 |
|    | 17.4    | New Configuration of the AQS Amplifiers              |     |
|    |         | Default Values                                       |     |
|    |         | Adding Housing Setting (Via AQS Service Web)         | 197 |
|    | 17.5    | AQS Service Web                                      | 198 |
| 18 | Transp  | oort, Packaging and Storage                          | 201 |
|    | 18.1    | Symbols on the Packaging                             |     |
|    | 18.2    | Inspection at Delivery                               |     |
|    | 18.3    | Packaging                                            |     |
|    | 18.4    | Storage                                              | 203 |
| 19 | Install | ation and Initial Commissioning                      | 205 |
|    | 19.1    | Installation in Cabinet                              |     |
|    |         | Air Ventilation                                      |     |
|    |         | Power Cable                                          |     |
|    | 19.2    | Initial Commissioning                                |     |
|    |         | AQS/2-M chassis Mains Selector                       |     |
| 20 | Mainte  | enance                                               | 207 |
|    | 20.1    | Safety                                               |     |

|    | 20.2  | General                       |     |
|----|-------|-------------------------------|-----|
|    | 20.3  | Software                      |     |
|    | 20.4  | Cleaning                      |     |
|    | 20.5  | Maintenance Work              |     |
|    |       | Fan Tray Service Instructions |     |
|    |       | Fan Tray Removal              |     |
|    |       | Fan Tray Reassembly           |     |
| 21 | Disma | Intling and Disposal          | 211 |
|    | 21.1  | Safety                        |     |
|    | 21.2  | Dismantling                   |     |
|    | 21.3  | Disposal Instructions         |     |
| Α  | Appen | ndix                          | 213 |
|    | A.1   | Warning Signs                 |     |
|    | A.2   | Figures                       |     |
|    | A.3   | Tables                        | 219 |
|    |       |                               |     |

## Contact

#### Manufacturer

The individual units of the AQS system are manufactured at different BRUKER production sites. The manufacturer can be identified by the part number prefix according to the following table.

| Part No. Prefix                        | Ζ                                                                      | Н                                                                        | W                                                                                  |
|----------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Manufacturer<br>Address                | Bruker BioSpin AG<br>Industriestr. 26<br>8117 Fällanden<br>Switzerland | Bruker BioSpin GmbH<br>Silberstreifen 4<br>76287 Rheinstetten<br>Germany | Bruker BioSpin S.A.<br>34, rue de l'industrie<br>67166 Wissembourg Cédex<br>France |
| Phone<br>Fax                           | +41 (44) 825 91 11<br>+41 (44) 825 96 96                               | +49 (721) 5161 - 0<br>+49 (721) 5171 01                                  | +33 (3) 88 73 68 00<br>+33 (3) 88 73 68 79                                         |
| E-Mail                                 | sales@bruker-biospin.ch                                                | nmr@bruker-biospin.de                                                    | bruker@bruker.fr                                                                   |
| Internet http://www.bruker-biospin.com |                                                                        |                                                                          |                                                                                    |

#### **NMR Hotlines**

Contact our NMR service centers.

Bruker BioSpin NMR provide dedicated hotlines and service centers, so that our specialists can respond as quickly as possible to all your service requests, applications questions, software or technical needs.

Please select the NMR service center or hotline you wish to contact from our list available at:

http://www.bruker-biospin.com/hotlines\_nmr.html

#### Z33083\_001

## 1 About

## 1.1 This Manual

This manual is intended to be a reference guide for operators and service technicians. It provides detailed information about the user level maintenance and service and overall use of the Bruker device.

The figures shown in this manual are designed to be general and informative and may not represent the specific Bruker model, component or software/firmware version you are working with. Options and accessories may or may not be illustrated in each figure.

#### Carefully read all relevant chapters before working on the device!

This manual describes parts and procedures relevant to the device version it is delivered with. For older hardware, please refer to the manual supplied at the time.

## 1.2 Policy Statement

It is the policy of Bruker to improve products as new techniques and components become available. Bruker reserves the right to change specifications at any time.

Every effort has been made to avoid errors in text and figure presentation in this publication. In order to produce useful and appropriate documentation, we welcome your comments on this publication. Support engineers are advised to regularly check with Bruker for updated information.

Bruker is committed to providing customers with inventive, high quality products and services that are environmentally sound.

## 1.3 Symbols and Conventions

Safety instructions in this manual are marked with symbols. The safety instructions are introduced using indicative words which express the extent of the harzard.

In order to avoid accidents, personal injury or damage to property, always observe safety instructions and proceed with care.



## 

This combination of symbol and signal word indicates an immediately hazardous situation which could result in death or serious injury unless avoided.



## 

This combination of symbol and signal word indicates a potentially hazardous situation which could result in death or serious injury unless avoided.



## **A**CAUTION

This combination of symbol and signal word indicates a possibly hazardous situation which could result in minor or slight injury unless avoided.

NOTICE

This combination of symbol and signal word indicates a possibly hazardous situation which could result in damage to property or the environment unless avoided.

**1** This symbol highlights useful tips and recommendations as well as information designed to ensure efficient and smooth operation.

## 2 Introduction

This manual is intended to be used by trained device users. It contains information about the device: operation, safety, maintenance, etc..

## 2.1 Limitation of Liability

All specifications and instructions in this manual have been compiled taking account of applicable standards and regulations, the current state of technology and the experience and insights we have gained over the years.

The manufacturer accepts no liability for damage due to:

- Failure to observe this manual
- Improper use
- Deployment of untrained personnel
- Unauthorized modifications
- Technical modifications
- Use of unauthorized spare parts

The actual scope of supply may differ from the explanations and depictions in this manual in the case of special designs, take-up of additional ordering options, or as a result of the latest technical modifications.

The undertakings agreed in the supply contract as well as the manufacturer's Terms and Conditions and Terms of Delivery and the legal regulations applicable at the time of conclusion of the contract shall apply.

## 2.2 Before You Begin

This user manual contains information and safety information that are necessary for the safe operation of the device.

Any user maintenance and repairs are to be accomplished using the information in this manual.

Consider all safety references!

Information for ordering spare parts is available in the spare parts section for from the Bruker Service Center (see contacts).

## 2.3 Minimum Qualifications for Operating Personnel

#### EXAMPLE:

| Type of Task                      | Personnel                                                                               | Training and Experience                                                                                |  |
|-----------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| Transportation                    | No speical requirements.                                                                | No special.                                                                                            |  |
| Installation                      | Bruker certified personnel only.                                                        | Technically skilled, with a good knowledge of the application field.                                   |  |
| Routine Use                       | Appropriately certified and                                                             | Laboratory technicians or equiva-                                                                      |  |
| Daily Maintenance                 | experienced personnel, famil-<br>iar with use of computers and<br>automation in general | lent. Training is usually done in-<br>house. Familiar with MS Win-<br>dows® environment.               |  |
| Setup and optimization of program | Bruker certified personnel only.                                                        | Experienced laboratory techni-<br>cian. High degree of knowledge of<br>the relevant application field. |  |
| Preventive Maintenance            | Bruker certified personnel only.                                                        | Technically skilled with a basic understanding of the application.                                     |  |
| Servicing                         | Bruker certified personnel only.                                                        | Background and experience in electronics/mechanics with computer knowledge.                            |  |

Table 2.1 Overview Installation and Operation Requirements for Personnel

## 2.4 The Bruker Service

Our customer service division is available to provide technical information. See "Contact" on page 11 for contact details.

In addition, our employees are always interested in acquiring new information and experience gained from practical application; such information and experience may help improve our products.

## 2.5 Transport to Manufacturer

When the AQS/3+ mainframe or a subunit must be returned to the manufacturer for a major repair, use the original packaging for transportation.

Include a good description of the problem.

## 3 Safety

This section provides an overview of all the main safety aspects involved in ensuring optimal personnel protection and safe and smooth operation.

Non-compliance with the action guidelines and safety instructions contained in this manual may result in serious hazards.

## 3.1 Intended Use

The AQS system has been designed and constructed solely for the intended use as the acquisition system of the *AVANCE <sup>III</sup>* spectrometers of BRUKER.

Intended use also includes compliance with all specifications in this manual.

- Any use which exceeds or differs from the intended use shall be considered improper use.
- No claims of any kind for damage will be entertained if such claims result from improper use.

## 3.2 Owner's Responsibility

#### Owner

The term 'owner' refers to the person who himself operates the AQS system for trade or commercial purposes, or who surrenders the AQS system to a third party for use/application, and who bears the legal product liability for protecting the user, the personnel or third parties during the operation.

#### **Owner's Obligations**

The AQS system is used in the industrial sector, universities and research laboratories. The owner of the AQS system must therefore comply with statutory occupational safety requirements.

In addition to the safety instructions in this manual, the safety, accident prevention and environmental protection regulations governing the operating area of the AQS system must be observed.

In this regard, the following requirements should be particularly observed:

 The owner must obtain information about the applicable occupational safety regulations, and - in the context of a risk assessment - must determine any additional dangers resulting from the specific working conditions at the usage location of the device. The owner must then implement this information in a set of operating instructions governing operation of the AQS system.

- During the complete operating time of the AQS system, the owner must assess whether the operating instructions issued comply with the current status of regulations, and must update the operating instructions if necessary.
- The owner must clearly lay down and specify responsibilities with respect to installation, operation, troubleshooting, maintenance and cleaning.
- The owner must ensure that all personnel dealing with the AQS system have read and understood this manual. In addition, the owner must provide personnel with training and hazards information at regular intervals.
- The owner must provide the personnel with the necessary protective equipment.
- The owner must warrant that the AQS system is operated by trained and authorised personnel as well as all other work, as transportation, mounting, start-up, the installation, maintenance, cleaning, service, repair and shutdown, that is carried out on the AQS system.
- All personnel who work with, or in the close proximity of the AQS system, need to be informed of all safety issues and emergency procedures as outlined in this user manual.
- The owner must document the information about all safety issues and emergency procedures in a laboratory SOP (Standard Operating Procedure). Routine briefings and briefings for new personnel must take place.
- The owner must ensure that new personnel must be supervised by experienced personnel. It is highly recommended to implement a company training program for new personnel on all aspects of product safety and operation.
- The owner must ensure that personnel is regularly informed of the potential hazards within the laboratory. This is all personnel that work in the area, but in particular laboratory personnel and external personnel such as cleaning and service personnel.
- The owner is responsible for taking measures to avoid inherent risks in the handling of dangerous substances, preventing industrial disease, and providing medical first aid in emergencies.
- The owner is responsible for providing facilities according to the local regulations for the prevention of industrial accidents and generally accepted safety regulations according to the rules of occupational medicine.
- All substances needed for operating and cleaning the AQS system, solvents, cleaning agents, gases, etc. have to be handled with care and disposed of appropriately. All hints and warnings on storage containers must be read and adhered to.
- The owner must ensure that the work area is sufficiently illuminated to avoid reading errors and faulty operation.

Furthermore, the owner is responsible for ensuring that the AQS system is always in a technically faultless condition. Therefore, the following applies:

- The owner must ensure that the maintenance intervals described in this manual are observed.
- The owner must ensure that all safety devices are regularly checked to ensure full functionality and completeness.

## 3.3 Personnel Requirements

#### 3.3.1 Qualifications

Note: Only trained Bruker personnel are allowed to mount, retrofit, repair, adjust and dismantle the AQS system!

This manual specifies the personnel qualifications required for the different areas of work, listed below:

#### Laboratory Personnel

Laboratory personnel are health care professionals, technicians, and assistants staffing a research or health care facility where specimens are grown, tested, or evaluated and the results of such measures are recorded. Laboratory personnel are able to carry out assigned work and to recognize and prevent possible dangers self-reliant due to their professional training, knowledge and experience as well as profound knowledge of applicable regulations.

The workforce must only consist of persons who can be expected to carry out their work reliably. Persons with impaired reactions due to, for example, the consumption of drugs, alcohol, or medication are prohibited from carrying out work on the device.

When selecting personnel, the age-related and occupation-related regulations governing the usage location must be observed.

## 3.3.2 Unauthorized Persons

## **A** WARNING

Risk to life for unauthorized personnel due to hazards in the danger and working zone!



Unauthorized personnel who do not meet the requirements described in this manual will not be familiar with the dangers in the working zone. Therefore, unauthorized persons face the risk of serious injury or death.

- ▶ Unauthorized persons must be kept away from the danger and working zone.
- If in doubt, address the persons in question and ask them to leave the danger and working zone.
- Cease work while unauthorized persons are in the danger and working zone.

## 3.4 Personal Protective Equipment

Personal protective equipment is used to protect the personnel from dangers which could affect their safety or health while working.

The personnel must wear personal protective equipment while carrying out the different operations at and with the device.

This equipment will be defined by the head of laboratory. Always comply with the instructions governing personal protective equipment posted in the work area.

## 3.5 Basic Dangers

The following section specifies residual risks which may result from using the AQS system and have been established by means of a risk assessment.

In order to minimize health hazards and avoid dangerous situations, follow the safety instructions specified here as well as in the following chapters of this manual.

## 4 Technical Data

**1** The technical data for the AQS/3+ and the AQS/2-M chassis are generally the same. Exeptions are noted specifically.

## 4.1 Product Name and Part Number

| Name                  | Part Number |
|-----------------------|-------------|
| AQS/3+ CHASSIS WIRED  | Z120343     |
| AQS/2-M CHASSIS WIRED | Z103493     |

Table 4.1 Product name and part number

Product names and part numbers of subunits see "AVANCE III HD Configurations" or the appropriate subunit chapter of this manual.

## 4.2 General Information

| Data                                  | Value   | Unit |
|---------------------------------------|---------|------|
| Weight: without subunits <sup>a</sup> | 10      | kg   |
| Weight: with subunits                 | 40 - 50 | kg   |
| Length                                | 570     | mm   |
| Width                                 | 483     | mm   |
| Height                                | 310     | mm   |
| IEC protection class                  | Class I | -    |
| Overvoltage protection category       | CAT II  | -    |
| Pollution degree                      | 2       | -    |
| Ingress protection class (IEC 60259)  | IP 20   | -    |
| Conformity IEC/EN                     | 61010-1 | -    |

Table 4.2 Technical data: General information

a. AQS/2-M chassis = 20 kg

## 4.3 Connection Values

| Data                                  | Value    | Unit |
|---------------------------------------|----------|------|
| Voltage <sup>a</sup>                  | 208-230  | V~   |
| Input current                         | max. 8.0 | A    |
| Input inrush current                  | max. 20  | Apk  |
| Circuit protection: Fuse <sup>b</sup> | 8.0      | A    |
| Frequency                             | 50 / 60  | Hz   |

Table 4.3 Technical data: Electrical connection values

a. AQS/2-M chassis = 208 / 220 / 230 V~, voltage range selectable with switch

b. 2 pcs. 5x20mm, 250V~, time-lag T, type H

## 4.4 Operating Conditions

#### Environment

| Data                                    | Value   | Unit |
|-----------------------------------------|---------|------|
| Ambient temperature range               | 5 - 40  | °C   |
| Relative humidity at 31 °C <sup>a</sup> | max. 80 | %    |
| Working altitude above sea level        | 2000    | m    |

Table 4.4 Technical data: Environment conditions

a. Decreasing linear till relative humidity < 50% at 40  $^{\circ}\text{C}$ 

## 4.5 Rating Plate



Figure 4.1 AQS/3+ and AQS/2-M chassis rating plate

## **5 IPSO Acquisition System**

## 5.1 Introduction

The first Acquisition System (named AQS) was introduced into the market in 1999. The main reason was the development of a BRUKERs own synthesizer (SGU) based on a novel channel concept. The architecture of the former AQR and AQX units have been unified, higher integrated and more standardized. During the last years the architecture has been completed with additional and more diversified configurations still based on a unified hardware and software concept. This allowed i.e. to enhance Solids configurations (RX-BB instead of SE451), to develop higher integrated High Resolution spectrometer electronics (AQS integrated LNA preamplifiers instead of HPPR), to offer new MRI solutions (Pharmascan and Biospec with multiple RX) and standardize the FTMS platforms (SGU FTMS).

The 2nd generation (named AVANCE II) was the introduction off a new receiver system. The former RCU, RX-22 and the HADC/2 and SADC were replaced by the new DRU and RXAD (equipped in the also new AQS/2 chassis) which brought a much higher integration and increased performance.

The 3rd step (AVANCE III) was the replacement of the VME boards, such as CCU, FCU, TCU and GCU by the IPSO (intelligent pulse sequence organizer). The AQS/3 chassis can be equipped with an IPSO AQS Unit for systems up to three channels. Systems with more then three channels need the extended IPSO 19" Unit. The IPSO compatible SGU/ 2 was the successor of the former SGU with a higher bandwidth digital interface for setting all relevant pulse program parameters such as frequency, phase and amplitude at the same time. A package of frequency, phase- and amplitude-words together with some relevant real time pulses can be set synchronously every 25ns via the 80MHz and 48bit wide LVDS link. The setting via the synchronous and differential LVDS link guarantees an excellent isolation between digital computer electronics and purest RF signals.

With the introduction of AVANCE III HD a new and higher integrated digital RF synthesizer SGU/3 is being used for signal generation. It is based on latest digital RF components running at higher clock rates. This new synthesizer is fully compliant with the AVANCE III IPSO but requires different infrastructure (chassis, reference signals, power supply). At the same time a unification of frequency variants has taken place. There are no specific 400 MHz versions anymore.

The new AQS/3+ chassis offers one central 48V AC/DC power supply. All local voltages are derived from this central supply. The SGU/3 incorporates two highly integrated and independent RF channels with increased performance compared to the former SGU/2. The REF/3 generates all the necessary fix-frequencies for the SGU/3 and also synchronizes via a global reset all SGU/3. Therefore even in a complex multi chassis system, only one REF/3 is required.

## 5.1.1 Features of the AQS/3+ System

- Prepared for up to 11 6TE RF and other NMR electronic units
- Full compatibility with the IPSO AQS Unit
- Support of mixed systems (HR, Solids and multiple RX imaging) by a versatile backplane pulse routing under software control
- Two fully integrated RF synthesizer channels in one single SGU/3 unit
- SGU/3 and REF/3 are available in two frequency versions: SGU/3 600, SGU/3 1200 and REF/3 600, REF/3 1200
- Less dissipated power due to one central 48V AC/DC switched power supply



Figure 5.1 Three Channel configuration for 200 – 600 MHz with AQS IPSO

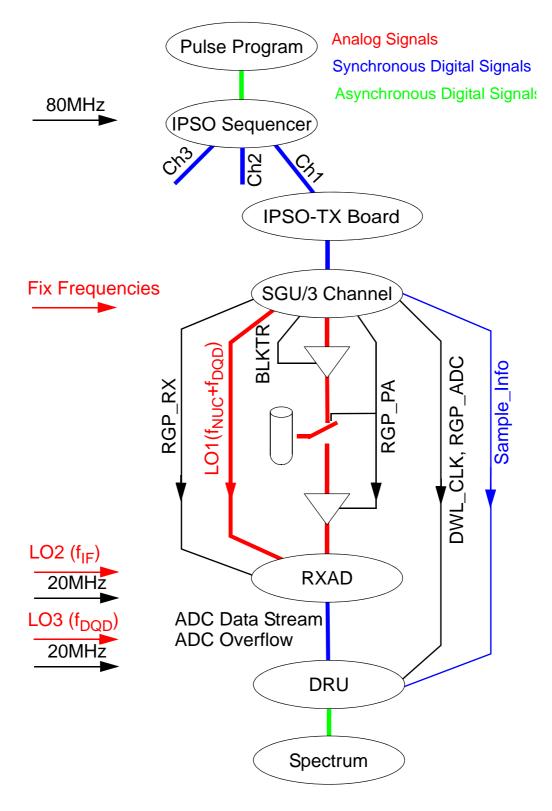
## 5.1.2 Acquisition Control

The "sample information bus" is being used for the control of the real-time actions in the digital receiver chain. Synchronous scan information (e.g. receiving phase, file handle, wobble control, accumulation and display management) is distributed over this bus from the acquisition main controller (timing control) via the observe SGU/3 channel to the digital receiver unit (DRU).

## 5.1.3 Analog to Digital Conversion

Newest A/D converter technologies allow sampling rates up to 20MHz with very high

dynamic ranges. In conjunction of the tremendous progress in digital signal processing (DSP technology) and very fast and highly integrated flexible digital hardware (FPGA based) it allows enormous higher DQD bandwidths and with that less audio artefacts as anyone could expect in earlier times.


Automatic DC compensation, higher frequency digital local oscillators (NCO, numeric controlled oscillators) and last but not least better performance is also achieved by continuos A/D converter operation (non start/stop mode). Inherent thermal settling of the A/D chips by using start/stop mode disappears. The DWELL clock is derived directly from the basic phase noise minimized spectrometer reference increasing the spectral purity. Finally the DWELL clock generation for such a system is much easier, because the gating is handled in the DSP by managing the data flow using previously mentioned ,scan control'.

## 5.2 The Channel Concept

With the introduction of the AQS/3 Chassis, the well proven AQS channel concept has been further extended by the replacement of the former TCU/FCU and GCU units with the IPSO AQS Unit and IPSO 19" Unit.

It was possible to reduce the control and routing of important channel related real time events and analog signals to only a few dedicated units. All these channel oriented signals (RF signals, shaping, gating and blanking pulses, dwell clocks etc.) are generated in the so called SGU/3 (Signal Generation Unit) under full timing control of pulse programs. The SGU/3 is physically controlled by the IPSO via a digital high speed link.

The following diagram shows the consequent implementation of this concept. The number of analog interconnections is reduced to a few dedicated units. All important RF signals, blanking pulses and dwell clock are channel related and follow a straightforward channel philosophy. In this way, extended and independent multi channel operation can be performed in a much more transparent way. Less interfaces and units allow a general guaranteed stability and reliability.



#### Figure 5.2 AQS channel concept

## 5.3 AQS/3+ Signal and Information Paths

Like in the previous versions of the AQS there are three different categories of signals in the AQS/3+ chassis:

#### Analog Signals

These signals are typically RF signals, which have no time and amplitude discrete values and may be easily checked with a scope. Examples of such signals are the local oscillator signals (i.e. LO1 and LO2).

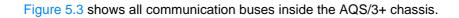
#### Synchronous Signals

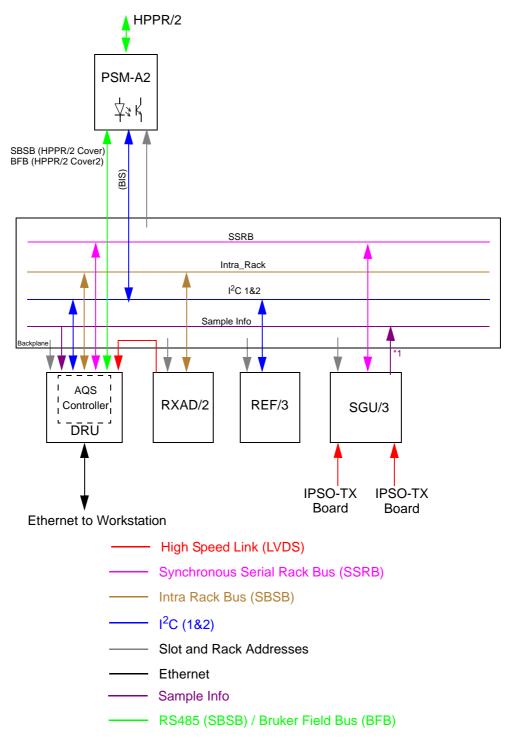
These signals are the basic spectrometer auxiliary, control and timing signals for each transmit but also receive channel. They are all derived from one master oven controlled oscillator (OCXO). Most important are the 10MHz, 20MHz, but also the transmitter blanking and the receiver gating pulses.

#### **Asynchronous Signals**

Asynchronous signals fall into the category of general information transfer protocol signals. These signals are represented by examples like Ethernet, RS232, RS485 and I2C.

## 5.3.1 Basics of the AQS/3+ Chassis


The AQS chassis has been designed to allow a very flexible extension of NMR transmitting channels, multireceiving capabilities and setting up numerous different NMR spectrometers configurations. In order to distinguish between different configurations multiple rack codes can be set. The rack code is set by rotary switches on the rear side of the AQS/3+ backplane (see "Rackcode Settings" on page 77).


Viewing the AQS/3+ chassis from the front, the IPSO connection is on the left side. On the right side there are eleven slots (0 to 10) for different AQS functional units (signal generators, receivers, splitters etc.).

Each slot on the AQS/3+ User Bus backplane is hardware coded, so that each unit can be addressed via its dedicated slot address. The AQS/3+ user bus backplane connector pin assignment is identical for all 6TE slots. Therefore each common signal respectively signal path is accessible on all slots.

## 5.3.2 Communication inside the AQS/3+ Chassis

The DRU placed in slot 1 serves as the 'rack master' or AQS Controller. This AQS Controller overtakes general control and configuration tasks during initialization which must be set up according to the rack address. The AQS Controller reacts to ,master' commands (e.g. power up, init...) incoming via the tty10 from the spectrometer control software via ethernet. It also reacts to incoming virtual SBSB commands for devices which do not have an SBSB interface (e.g. SSRB or I2C).





\*1=only active for observe SGU channel

Figure 5.3 AQS/3+ buses for a two channel system

#### 5.3.3 Intra Rack Bus

The intra rack bus is an internal SBSB (Serial Bruker Spectrospin Bus) based on RS485. In the AQS/3+ chassis it is only used for the communication between AQS controller (DRU in slot 1) and the receiver boards AQS RXAD/2.

## 5.3.4 Synchronous Serial Rack Bus (SSRB)

This bus was designed for fast communication with FPGA based units. In the AQS/3+ this bus is used by the new SGU/3 units. All SBSB communication to the SGU/3 is transferred from the AQS controller via SSRB.

## 5.3.5 I<sup>2</sup>C buses and I<sup>2</sup>C addresses

The two wire interface  $I^2C$  is used for units without an intelligent and powerful micro controller. The AQS Controller drives these units via different  $I^2C$  buses and thus plays the role of a virtual unit controller for each non microprocessor unit. Such units are the AQS REF/3 and the AQS Pulse Splitter. Incoming spectrometer SBSB commands from tty10 for I2C devices are converted to I2C commands by the AQS Controller.

## 5.3.6 High Speed Link

The high speed link (LVDS) from IPSO-TX Board to SGU/3 transfers all NMR relevant real time events derived from the pulse program to the corresponding SGU/3 channel (e.g. pulses, shapes, phase jumps, frequency jumps, etc.). The instructions are synchronously transferred in 12.5 ns time intervals. Each RF channel is connected by a separate high speed link to the IPSO-TX Board. To allow a flexible extension of NMR channels, the wiring is located on the front side of the corresponding boards. To allow highest speed, a point to point connection architecture has been chosen.

Similarly the A/D converter output of a RXAD/2 is coupled to the DRU via its own and well proven LVDS high speed link. This gives the possibility to transfer a complex digital data point (real and imaginary) within 50 ns and allows DWELL clocks up to 20MHz. Because each receiver channel consists of one RXAD/2 and one DRU this link is physically located on the AQS/3 user bus, leading to a minimum of cable connections on the front side.

## 5.3.7 Sample Info

A synchronous information mechanism for each acquisition named "sample info" has been established to control the receiver signal and process chain. It's use makes it possible to handle the receiver phase on the DRU by pulse program commands.

The sample information is stored on the workstation disk together with the acquisition data. This provides full synchronicity of the scans. The acquisition data can easily be traced on the disk file by storing the complete set of ,sample information'.

## 5.4 Synchronous Signals

## 5.4.1 Real-time Control-pulses (RCP) on the AQS/3 User Bus

#### 5.4.1.1 BLKTRx~ (Blanking pulses for power amplifiers)

Each BLKTR must be routed to the corresponding power amplifier. A SGU/3 channel can control up to 8 power amplifiers with the corresponding BLKTR. The SGU/3 must be initialized using SBSB commands before starting the experiment. Each SGU/3 channel drives the required BLKTR real time pulse on the AQS/3 User Bus backplane. The BLKTR are combined with wired nor logic on the backplane so that BLKTRs from different SGU/3 units can be combined to one amplifier (easy pulse programming, channel concept).

No additional cables are necessary to control the internal power amplifiers (e.g. AQS 2H-TX). The BLKTR are routed directly on the backplane from the SGU/3 to the corresponding BLA channel. BLKTR for external power amplifiers can be accessed on the front of the power supply PSM-A2.

#### 5.4.1.2 RGP\_HPPR~ (Preamplifier receiver gating pulse)

This pulse (also mentioned as RGP\_PA) is controlled by the SGU/3 channel which is initialized as observing channel. This signal is routed via the PSM-A2 to the observe module in the preamplifier HPPR/2. All other non lock HPPR/2 modules are in transmit or decoupling mode.

The preamplifier RGP is also connected to the RXAD/2 for multi receiver configurations only.

#### 5.4.1.3 RGP\_LO~ (Local oscillator gating pulse)

This internal pulse enables the local oscillator generation inside the RXAD/2. The pulse is automatically generated by the observe SGU/3 channel after switching to receive mode.

#### 5.4.1.4 RGP\_RX~ (Receiver gating pulse)

This pulse controls the gating inside the receiver e.g. the RXAD/2. The pulse is driven by the observe SGU/3 channel. The signal is directly routed from the observe SGU/3 via AQS/3 User Bus backplane to the receiver RXAD/2. With this signal the receiver may be ,opened' later in respect to the preamplifier to prevent saturation.

#### 5.4.1.5 Dwell\_Clk~ (ADC dwell clock)

In fact the Dwell\_Clk~ changed its operational behavior compared to previous AVANCE systems. It serves as a dwell enable and does not reflect the physical AD converter rate. The AD converter rate is fixed to an oversampling frequency of 20MHz, is running continuously and the data stream is enabled (gated) by the Dwell\_Clk~ inside the DRU. The signal is also driven by the observe SGU/3 channel.

#### 5.4.1.6 RGP\_ADC~ (ADC gating pulse)

This pulse (also driven by the observe SGU/3 channel) controls the ADC data stream. During inactive RGP\_ADC~ the data stream is filled with zeros inside the DRU. During an active pulse, ADC data is passed unchanged.

This signal is specially used for experiments like digital homodecoupling with oversampling.

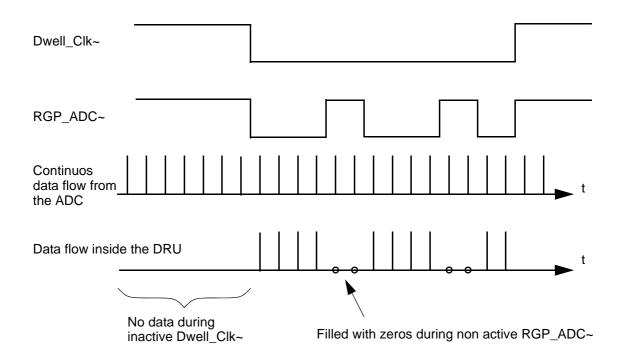



Figure 5.4 Explanation of Dwell\_Clk~ and RGP\_ADC~

#### 5.4.1.7 Interleave\_Incr~

This pulse allows to switch between different preloaded modes under pulse program control. E.g. real time switching between 2H lock mode and 2H decoupling mode of the HPPR/2 can be controlled using this pulse or different receiving parameters can be selected during the experiment for interleaved acquisition.

#### 5.4.1.8 Sample Info

The Sample Info bus consists of the five lines SAMPLE\_INFO(4:0) driven by the observing SGU/3 channel. The interface is synchronous to the 20 MHz system clock (20MHZ\_CLK) and hence the word rate is 20MW/s.

The scan control commands have a fixed length of 6 words. Bit 4 of the first word carries the start bit which is always 1. Bit 4 of the last word must be set to 0. With that, all listeners to these lines are able to synchronize to the information contained within burst sent under pulse program control.

In between two Sample Info bursts, a recovery time of 10us must be granted.

The information is clustered to two groups, each with an individual enable bit:

The first group (enabled by bit "ScanCtrl") carries information which must be available before a scan (e.g. scan phase, memory buffer, accumulation control). This information is associated to the upcoming scan.

The second group (enabled by bit "WriteCtrl") carries information on how to proceed with a scan that has been readily accumulated (e.g. file seek, file change). This information is associated to the past scan.

| Word | Bit 4<br>Pin E3 | Bit 3<br>Pin C2     | Bit 2<br>Pin D2 | Bit 1<br>Pin E2         | Bit 0<br>Pin E1 |
|------|-----------------|---------------------|-----------------|-------------------------|-----------------|
| 1    | 1 (Start)       | ScanCtrl            | PhaseRun        | Phase (0. 90, 180, 270) |                 |
| 2    | reserved=0      | st0                 | st              | zd                      | ze              |
| 3    | OffsMeas        | DruParamIndex       |                 |                         |                 |
| 4    | WriteCtrl       | FileNumber (0-15)   |                 |                         |                 |
| 5    | reserved (set   | zero) Write         |                 | Seek                    |                 |
| 6    | 0 (Stop)        | reserved (set zero) |                 |                         |                 |

Table 5.1 Data format of the 6 sample info words (5 bits each)

#### ScanCtrl

Enable bit for the first group. This bit must be set to prepare an upcoming scan.

#### PhaseRun

If this bit is set, the phase accumulator immediately starts running (synchronously to the Sample Info). If this bit is cleared, phase accumulation is delayed until Dwell\_Clk~ becomes active for the first time.

#### Phase

Accumulation phase.

 $0 = 0 \deg$ 

1 = 90 deg

## **IPSO Acquisition System**

2 = 180 deg

3 = 270 deg

#### st0, st

Controls the memory buffer handling.

st0,st

0,0 accumulate the upcoming scan to the current buffer

0,1accumulate the upcoming scan to the next buffer

1,0accumulate the upcoming scan to the first buffer

1,1reserved

#### zd, ze

Controls the accumulation.

zd,ze

0,0 add the upcoming scan to the buffer

0,1write the upcoming scan to the buffer

1,0write the upcoming DummyScans+1 scans to the buffer

1,1reserved

#### OffsMeas

This bit is partially independent of the groups "ScanCtrl" and "WriteCtrl" and triggers the DC offset calibration. The filed "DruParamIndex" is co-used with "ScanCtrl" but besides of this it is independent of the other two groups.

Dwell\_Clk~ and RGP\_ADC~ must be active for at least 1ms. During this time the DC offset is measured by averaging 16384 ADC samples.

#### DruParamIndex

These four bits select one out of 16 preloaded acquisition parameter sets. This is intended for interleaved acquisition, where all parameters have to change on the fly. (e.g. SWH, TD, DC offset)

#### WriteCtrl

Enable bit for the second group. This bit must be set to write a scan to disk.

#### FileNumber

These four bits select one of 16 disk files to write to or to manipulate the file pointer. Data source is always the memory buffer of the last acquisition.

"FileNumber" can be chosen independently of the preloaded acquisition parameter sets (addressed by "DruParamIndex") in the range 0-15.

(DataSetList, ifp, dfp, rfp):

0-12: directly access the files 0-12

13: use current file, then decrement file number

14: use current file, no change

15: use current file, then increment file number

#### Write (wr)

"Write" = 1: Write TD\*NBL samples to the file selected by "FileNumber".

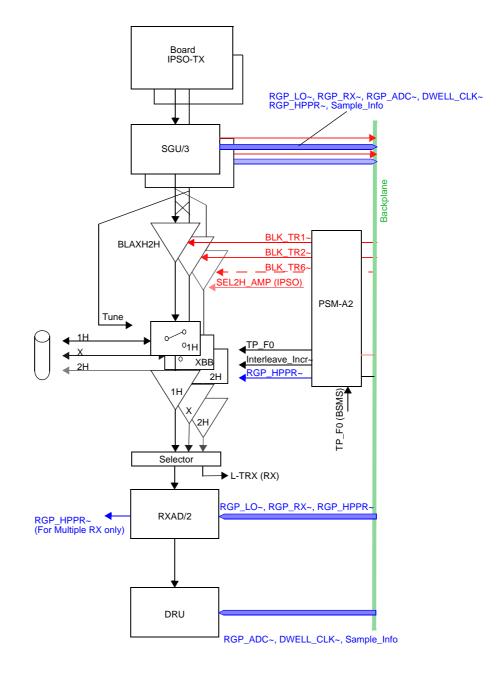
"Write" = 0: disk file pointer manipulation only.

#### Seek (if,df,rf)

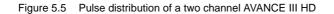
Manipulate the disk file pointer of the file "FileNumber".

All 16 disk file pointers are cleared at experiment setup time.

0=none


1=increment disk file pointer by TD\*NBL

2=decrement disk file pointer by TD\*NBL


3=reset disk file pointer

#### SEL\_ADCx~ (Select A/D converter)

Obsolete.



In this configuration three amplifiers exist but only two SGU/3 channels. SGU/3 (2) can either be used for 1H or 2H (for 2H decoupling or 2H shimming). Controlling Lock mode or L-TX mode is done via the signal SEL2H\_AMP from the IPSO.



## 5.5 Receiver Pulse Separation for Multiple-Receiver Systems

All receiver specific pulses must be separated between receivers in multiple receiver systems. These pulses are:

RGP\_HPPR~, RGP\_LO~, RGP\_RX~, RGP\_ADC~

DWELL\_CLK~

SAMPLE\_INFO(0:4)~, INTERLEAVE\_INCR~

The separation is done with a bus switch on the backplane. The bus switch is controlled by the AQS controller (SBSB) via I<sup>2</sup>C. For details see "Pulse Switch for Receiver Pulse Separation" on page 77.

## 5.6 **RF Signal Paths**

The following RF signals are required in the AQS system:

- 1. The RF output of each SGU/3 channel must be connected to a power amplifier or to a router/combiner.
- Each SGU/3 channel can be initialized as observe channel and therefore each SGU/3 channel must be able to drive the local oscillator (LO) signal for the receiver. Every SGU/3 has an LO input and an LO output connector. The LO signal is daisychained through all SGU/3 except the observe SGU/3, which is driving the local oscillator.
- 3. Several fixed frequencies (REF) are generated on the reference board (AQS Reference Board 3). These signals are required for the up-conversion electronics located in the SGU/3. One reference board can drive up to four SGU/3.
- The 10MHz output of the reference board is used to synchronize various units like the BSMS/2 ELCB. The reference board switches automatically to the external 10MHz input if a signal is applied.
- 5. The Lock Output of the reference board is connected to the BSMS/2 Lock Transceiver unit.
- 6. The detection reference signal (LO 2) is directly wired from the reference board to the receiver RXAD/2.

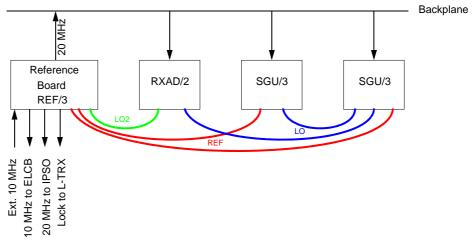



Figure 5.6 RF Distribution

## 5.7 20 MHz Clock Distribution

A synchronous 20 MHz clock signal is distributed to all slots in the AQS chassis. The clock source is given by the reference board in slot 2. shows the clock distribution over the backplane.

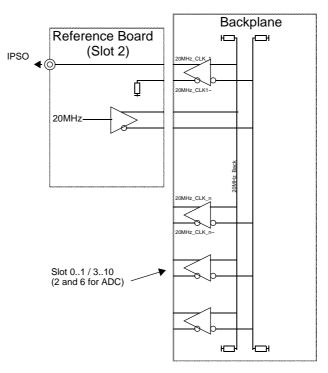



Figure 5.7 20 MHz Clock Distribution

6

# **AVANCE III HD Configurations**

| Group  | Description                                       | тх  | RX   | Racks | Console | Page |
|--------|---------------------------------------------------|-----|------|-------|---------|------|
| HR     | 2-3 channel with internal IPSO                    | 2-3 | 1    | 1     | OB      | 40   |
|        | 2-6 channel with external IPSO                    | 2-6 | 1    | 1     | TB      | 42   |
|        | 2 channel multi-receive 2 RX/TX                   | 2   | 2    | 1     | OB      | 44   |
|        | 4 channel multi-receive 2+2 RX/TX                 | 4   | 4    | 2     | TB      | 47   |
|        | 6 channel multi-receive 2+2+2 RX/TX               | 6   | 6    | 3     | TB      | 50   |
| MRI    | 1 channel PharmaScan                              | 1   | 1    | 1     | MRI     | 54   |
|        | 2 channel BioSpec with 1RX                        | 2   | 1    | 1     | MRI     | 56   |
|        | 2 channel BioSpec with mRX Option (4 / 8 / 16 RX) | 2   | 2-16 | 2     | MRI     | 58   |
|        | 2 channel BioSpec with pTX Option (8 TX)          | 8   | 2-16 | 2     | MRI     | 62   |
| Custom | 2 channel dual-receive low & high field           | 2-4 | 2    | 1     | OB      | 66   |

Table 6.1 List of configurations

#### 6.0.1 Rackcode Setting

An important element of the chassis configuration is the rackcode setting. To ensure correct operation set the switches according to the table in the configuration description.

The rackcode and power-up delay switches are located on the rear side. The pulse switch for receiver pulse separation is set via the device webpage in the DRU service web.

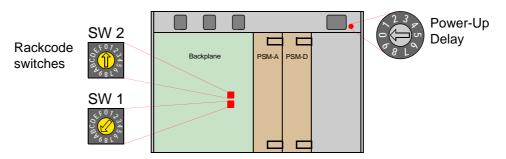



Figure 6.1 AQS/3+ chassis rear view: rackcode switch location

# 6.1 A Typical 2 to 3 Channel AV III HD HR (Internal IPSO)

#### 6.1.1 Bill of Material

| Pos.  | Units     | Part Number        | <b>Description</b><br>Channel extension and options written in italics.                                                                                 |
|-------|-----------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | 1         | Z120343            | AQS/3+ CHASSIS WIRED                                                                                                                                    |
| 2     | 1         | Z121625            | AQS PSM-D POWER SUPPLY MODULE                                                                                                                           |
| 3     | 1         | Z133424            | AQS PSM-A2 POWER SUPPLY MODULE                                                                                                                          |
| 4     | 1         | Z104783            | AQS PSM HPLNA                                                                                                                                           |
| 5     | 1         | H9984              | IPSO AQS HR UNIT                                                                                                                                        |
| 6     | 1         | Z102520            | AQS DRU-E ECL ≥ 06                                                                                                                                      |
| 7     | 1         | Z130588            | AQS RECEIVER BOARD RXAD/2 600                                                                                                                           |
| 8     | 1         | Z116985            | AQS REFERENCE BOARD/3 600                                                                                                                               |
| 9     | 1 (2)     | Z117129            | AQS SGU/3 600                                                                                                                                           |
| 10    | 1         | Z103550<br>Z103551 | AQS 2H-TX BD 200-400<br>AQS 2H-TX BD 500-1000                                                                                                           |
| 11    | 1         | Z101247            | AQS 1 TO 4 ROUTER                                                                                                                                       |
| 12    | 1         | W1345050           | AQS POWER SUPPLY BLA 28V 20A                                                                                                                            |
| Mecha | anical Pa | arts               | Mech. parts are components of the assembled chassis. Application and quantity are<br>dependent on options. Only spare parts must be ordered separately. |
| M1    | 1         | Z2778              | FRONTPLATE BLIND 4TE                                                                                                                                    |
| M2    | 2         | Z12489             | FRONTPLATE BLIND 6TE                                                                                                                                    |
| M3    | 1         | Z14118             | FRONTPLATE BLIND 8TE                                                                                                                                    |
| M4    | 3         | Z12170             | FRONTPLATE BLIND 12TE                                                                                                                                   |
| M5    | 3         | Z14119<br>Z14120   | FRONTPLATE BLIND 1MM 12TE<br>COVERPLATE 8TE                                                                                                             |
| _     | 26        | 25958              | SCREW RRCH KR M2,5 x 12,3                                                                                                                               |

Table 6.2 Bill of material

#### 6.1.2 Rackcode Setting

| Rack Nb. | Rackcode | SW2 | SW1 | Pulse Switch<br>(DRU Device Webpage) | Power-Up<br>Delay |
|----------|----------|-----|-----|--------------------------------------|-------------------|
| 1        | 0x0A     | 0   | А   | closed (default)                     | 0                 |

#### 6.1.3 Board Location

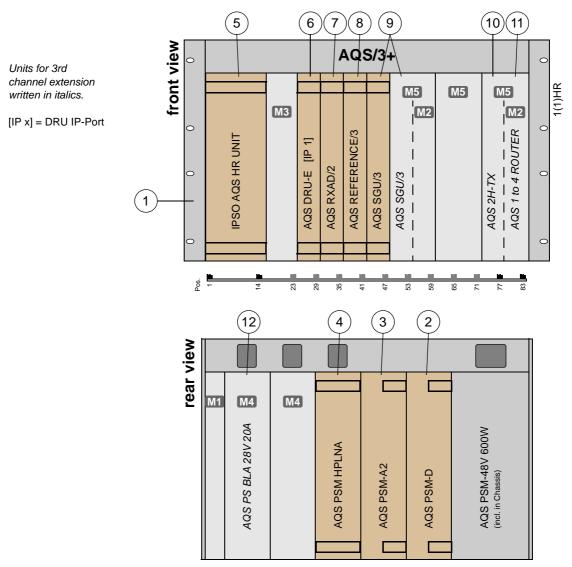



Figure 6.2 AQS/3+ for 2 channel AVANCE III HD (internal IPSO)

# 6.2 A Typical 2 to 6 Channel AV III HD HR & Solids (ext. IPSO)

#### 6.2.1 Bill of Material

| Pos.  | Units     | Part Number        | <b>Description</b><br>Channel extension and options written in italics.                                                                              |
|-------|-----------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | 1         | Z120343            | AQS/3+ CHASSIS WIRED                                                                                                                                 |
| 2     | 1         | Z121625            | AQS PSM-D POWER SUPPLY MODULE                                                                                                                        |
| 3     | 1         | Z133424            | AQS PSM-A2 POWER SUPPLY MODULE                                                                                                                       |
| 4     | 1 (2)     | Z104783            | AQS PSM HPLNA                                                                                                                                        |
| 5     | 1         | Z102520            | AQS DRU-E ECL $\ge 06$                                                                                                                               |
| 6     | 1         | Z130588<br>Z130589 | AQS RECEIVER BOARD RXAD/2 600<br>AQS RECEIVER BOARD RXAD/2 1000                                                                                      |
| 7     | 1         | Z116985<br>Z126572 | AQS REFERENCE BOARD/3 600<br>AQS REFERENCE BOARD/3 1200                                                                                              |
| 8     | 1 (3)     | Z117129<br>Z117130 | AQS SGU/3 600<br>AQS SGU/3 1200                                                                                                                      |
| 9     | 1         | Z103550<br>Z103551 | AQS 2H-TX BD 200-400<br>AQS 2H-TX BD 500-1000                                                                                                        |
| 10    | 1         | Z101247            | AQS 1 TO 4 ROUTER                                                                                                                                    |
| 11    | 1         | W1345050           | AQS POWER SUPPLY BLA 28V 20A                                                                                                                         |
| Mecha | anical Pa | arts               | Mech. parts are components of the assembled chassis. Application and quantity are dependent on options. Only spare parts must be ordered separately. |
| M1    | 1         | Z2778              | FRONTPLATE BLIND 4TE                                                                                                                                 |
| M2    | 2         | Z12489             | FRONTPLATE BLIND 6TE                                                                                                                                 |
| M3    | 2         | Z12170             | FRONTPLATE BLIND 12TE                                                                                                                                |
| M4    | 3         | Z14119<br>Z14120   | FRONTPLATE BLIND 1MM 12TE<br>COVERPLATE 8TE                                                                                                          |
| M5    | 1         | Z105564<br>Z105565 | FRONTPLATE 1MM 24TE<br>COVERPLATE 24TE                                                                                                               |
|       | 22        | 25958              | SCREW RRCH KR M2,5 x 12,3                                                                                                                            |

Table 6.3 Bill of material

#### 6.2.2 Rackcode Setting

| Rack Nb. | Rackcode | SW2 | SW1 | Pulse Switch<br>(DRU Device Webpage) | Power-Up<br>Delay |
|----------|----------|-----|-----|--------------------------------------|-------------------|
| 1        | 0x0A     | 0   | А   | closed (default)                     | 0                 |

#### 6.2.3 Board Location

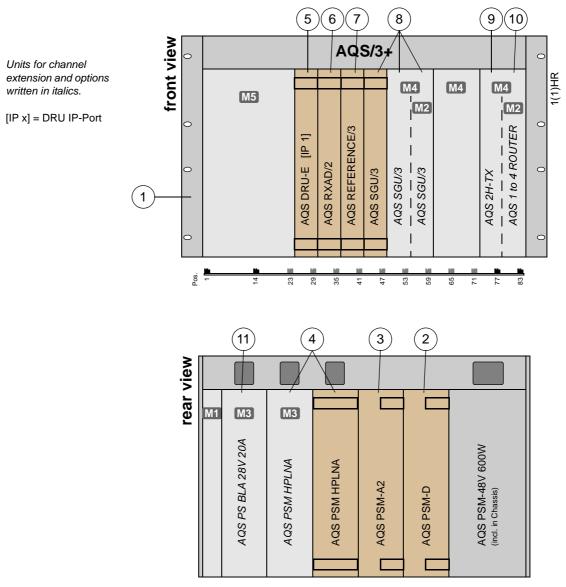



Figure 6.3 AQS/3+ for 2 to 6 channel AVANCE III HD (external IPSO)

# 6.3 A Typical 2 Channel AV III HD HR Multi-RX (2 RX/TX)

#### 6.3.1 Bill of Material

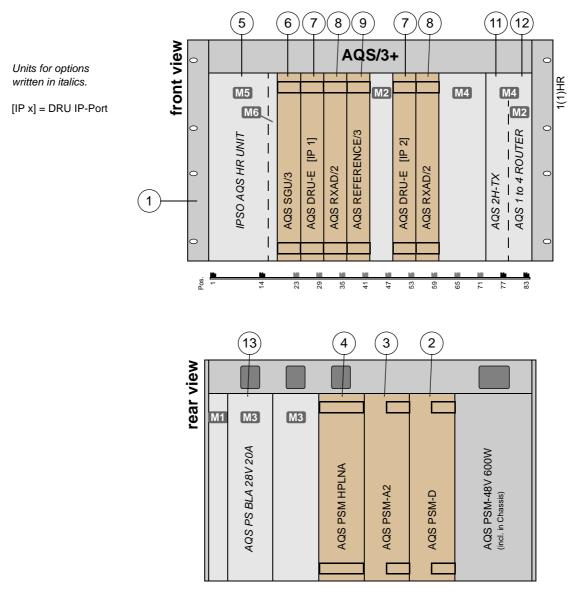

| Pos.  | Units     | Part Number        | <b>Description</b><br>Channel extension and options written in italics.                                                                                 |
|-------|-----------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | 1         | Z120343            | AQS/3+ CHASSIS WIRED                                                                                                                                    |
| 2     | 1         | Z121625            | AQS PSM-D POWER SUPPLY MODULE                                                                                                                           |
| 3     | 1         | Z133424            | AQS PSM-A2 POWER SUPPLY MODULE                                                                                                                          |
| 4     | 1         | Z104783            | AQS PSM HPLNA                                                                                                                                           |
| 5     | 1         | H9984              | IPSO AQS HR UNIT                                                                                                                                        |
| 6     | 1         | Z117129<br>Z117130 | AQS SGU/3 600<br>AQS SGU/3 1200                                                                                                                         |
| 7     | 2         | Z1002520           | AQS DRU-E ECL ≥ 06                                                                                                                                      |
| 8     | 2         | Z130588<br>Z130589 | AQS RECEIVER BOARD RXAD/2 600<br>AQS RECEIVER BOARD RXAD/2 1000                                                                                         |
| 9     | 1         | Z116985<br>Z126572 | AQS REFERENCE BOARD/3 600<br>AQS REFERENCE BOARD/3 1200                                                                                                 |
| 10    | 2<br>1    | 20910<br>47040     | HYBRID SPLITTER ZFSC-2-4<br>CN COAX ADAPT SMA-I M-M                                                                                                     |
| 11    | 1         | Z103550<br>Z103551 | AQS 2H-TX BD 200-400<br>AQS 2H-TX BD 500-1000                                                                                                           |
| 12    | 1         | Z101247            | AQS 1 TO 4 ROUTER                                                                                                                                       |
| 13    | 1         | W1345050           | AQS POWER SUPPLY BLA 28V 20A                                                                                                                            |
| Mecha | anical Pa | arts               | Mech. parts are components of the assembled chassis. Application and quantity are<br>dependent on options. Only spare parts must be ordered separately. |
| M1    | 1         | Z2778              | FRONTPLATE BLIND 4TE                                                                                                                                    |
| M2    | 2         | Z12489             | FRONTPLATE BLIND 6TE                                                                                                                                    |
| M3    | 3         | Z12170             | FRONTPLATE BLIND 12TE                                                                                                                                   |
| M4    | 2         | Z14119<br>Z14120   | FRONTPLATE BLIND 1MM 12TE<br>COVERPLATE 8TE                                                                                                             |
| M5    | 1         | Z13955<br>Z15202   | FRONTPLATE 1MM 18TE<br>COVERPLATE 16TE                                                                                                                  |
| M6    | 1         | Z14133             | FRONTPLATE BLIND 2TE                                                                                                                                    |
| —     | 24        | 25958              | SCREW RRCH KR M2,5 x 12,3                                                                                                                               |

Table 6.4 Bill of material

#### 6.3.2 Rackcode Setting

| Rack Nb. | Rackcode | SW2 | SW1 | Pulse Switch<br>(DRU Device Webpage) | Power-Up<br>Delay |
|----------|----------|-----|-----|--------------------------------------|-------------------|
| 1        | 0x0A     | 0   | А   | opened                               | 0                 |

#### 6.3.3 Board Location





#### 6.3.4 LO2 Splitter and AUX Combiner

In a two-receiver system the LO2 signal from the reference board (J5) has to be split for the two receivers by use of a ZFSC-2-4 power splitter. The two outputs of the splitter are connected to the LO2\_IN input (J3) of each receiver.

In order to allow the two SGU/3 channel to the generate the tune signal, the AUX outputs of CH1 (J2) and CH2 (J7) are combined with a second ZFSC-2-4. The combined output is connected to the TUNING\_IN connector of the HPPR cover module.

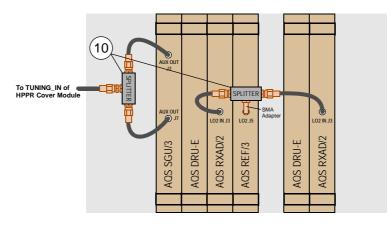



Figure 6.5 LO2 splitter and AUX combiner

# 6.4 A Typical 4 Channel AV III HD HR Multi-RX (2+2 RX/TX)

### 6.4.1 Bill of Material

| Pos.  | Units     | Part Number        | <b>Description</b><br>Channel extension and options written in italics.                                                                                 |
|-------|-----------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | 1         | Z120343            | AQS/3+ CHASSIS WIRED                                                                                                                                    |
| 2     | 1         | Z121625            | AQS PSM-D POWER SUPPLY MODULE                                                                                                                           |
| 3     | 1         | Z133424            | AQS PSM-A2 POWER SUPPLY MODULE                                                                                                                          |
| 4     | 1         | Z104783            | AQS PSM HPLNA                                                                                                                                           |
| 5     | 1         | Z117129<br>Z117130 | AQS SGU/3 600<br>AQS SGU/3 1200                                                                                                                         |
| 6     | 2         | Z102520            | AQS DRU-E ECL ≥ 06                                                                                                                                      |
| 7     | 2         | Z130588<br>Z130589 | AQS RECEIVER BOARD RXAD/2 600<br>AQS RECEIVER BOARD RXAD/2 1000                                                                                         |
| 8     | 1         | Z116985<br>Z126572 | AQS REFERENCE BOARD/3 600<br>AQS REFERENCE BOARD/3 1200                                                                                                 |
| 9     | 1<br>1    | 20910<br>47040     | HYBRID SPLITTER ZFSC-2-4<br>CN COAX ADAPT SMA-I M-M                                                                                                     |
| 10    | 1         | Z103550<br>Z103551 | AQS 2H-TX BD 200-400<br>AQS 2H-TX BD 500-1000                                                                                                           |
| 11    | 1         | Z101247            | AQS 1 TO 4 ROUTER                                                                                                                                       |
| 12    | 1         | W1345050           | AQS POWER SUPPLY BLA 28V 20A                                                                                                                            |
| Mecha | anical Pa | arts               | Mech. parts are components of the assembled chassis. Application and quantity are<br>dependent on options. Only spare parts must be ordered separately. |
| M1    | 1         | Z2778              | FRONTPLATE BLIND 4TE                                                                                                                                    |
| M2    | 2         | Z12489             | FRONTPLATE BLIND 6TE                                                                                                                                    |
| M3    | 2         | Z12170             | FRONTPLATE BLIND 12TE                                                                                                                                   |
| M4    | 2         | Z14119<br>Z14120   | FRONTPLATE BLIND 1MM 12TE<br>COVERPLATE 8TE                                                                                                             |
| M5    | 1         | Z13955<br>Z15202   | FRONTPLATE 1MM 18TE<br>COVERPLATE 16TE                                                                                                                  |
| —     | 20        | 25958              | SCREW RRCH KR M2,5 x 12,3                                                                                                                               |

Table 6.5Bill of material: rack 1

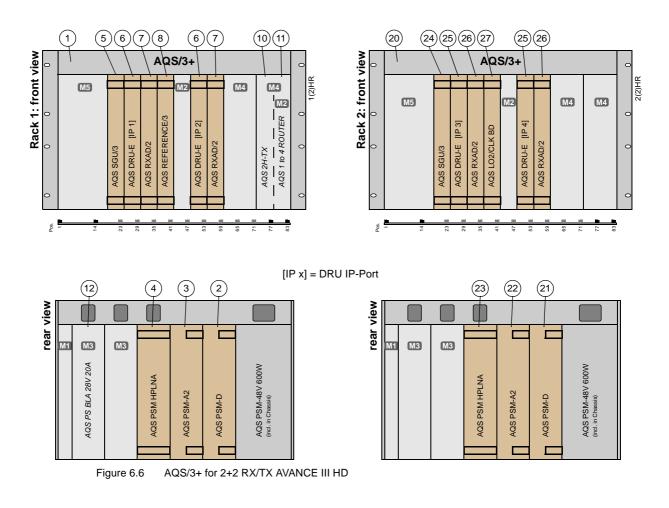
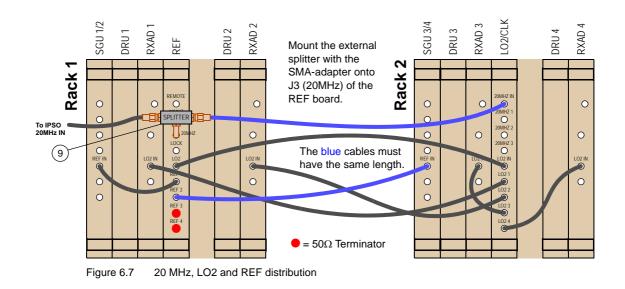

| Pos.  | Units     | Part Number        | <b>Description</b><br>Channel extension and options written in italics.                                                                              |
|-------|-----------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20    | 1         | Z120343            | AQS/3+ CHASSIS WIRED                                                                                                                                 |
| 21    | 1         | Z121625            | AQS PSM-D POWER SUPPLY MODULE                                                                                                                        |
| 22    | 1         | Z133424            | AQS PSM-A2 POWER SUPPLY MODULE                                                                                                                       |
| 23    | 1         | Z104783            | AQS PSM HPLNA                                                                                                                                        |
| 24    | 1         | Z117129<br>Z117130 | AQS SGU/3 600<br>AQS SGU/3 1200                                                                                                                      |
| 25    | 2         | Z102520            | AQS DRU-E ECL $\ge$ 06                                                                                                                               |
| 26    | 2         | Z130588<br>Z130589 | AQS RECEIVER BOARD RXAD/2 600<br>AQS RECEIVER BOARD RXAD/2 1000                                                                                      |
| 27    | 1         | Z129933            | AQS LO2/CLK BOARD                                                                                                                                    |
| Mecha | anical Pa | arts               | Mech. parts are components of the assembled chassis. Application and quantity are dependent on options. Only spare parts must be ordered separately. |
| M1    | 1         | Z2778              | FRONTPLATE BLIND 4TE                                                                                                                                 |
| M2    | 1         | Z12489             | FRONTPLATE BLIND 6TE                                                                                                                                 |
| M3    | 2         | Z12170             | FRONTPLATE BLIND 12TE                                                                                                                                |
| M4    | 2         | Z14119<br>Z14120   | FRONTPLATE BLIND 1MM 12TE<br>COVERPLATE 8TE                                                                                                          |
| M5    | 1         | Z13955<br>Z15202   | FRONTPLATE 1MM 18TE<br>COVERPLATE 16TE                                                                                                               |
|       | 18        | 25958              | SCREW RRCH KR M2,5 x 12,3                                                                                                                            |

Table 6.6 Bill of material: rack 2


## 6.4.2 Rackcode Setting

| Rack Nb. | Rackcode | SW2 | SW1 | Pulse Switch<br>(DRU Device Webpage) | Power-Up<br>Delay |
|----------|----------|-----|-----|--------------------------------------|-------------------|
| 1        | 0x0A     | 0   | А   | opened                               | 0                 |
| 2        | 0x1A     | 1   | А   | opened                               | 1                 |

#### 6.4.3 Board Location



#### 6.4.4 20 MHz, REF and LO2 Distribution



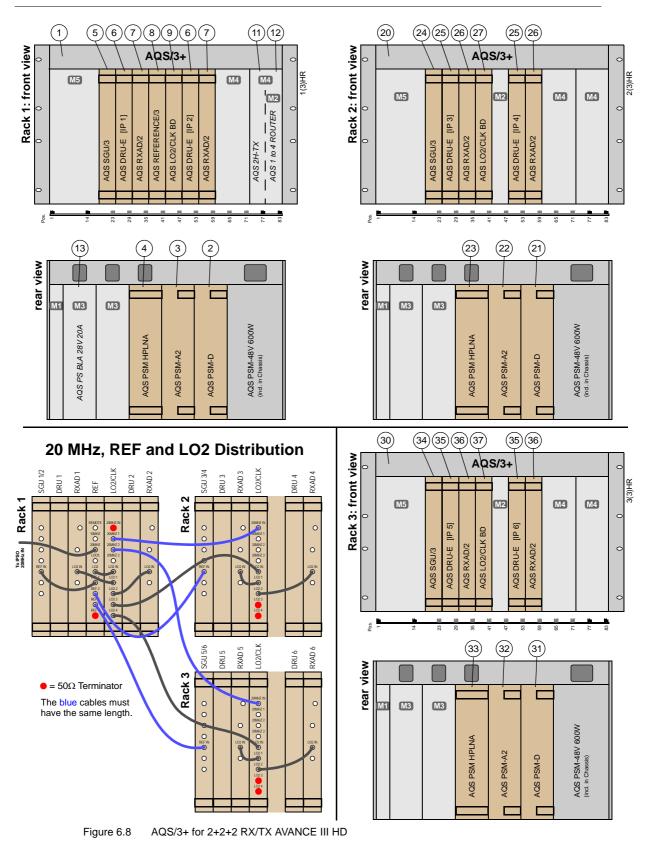
# 6.5 A Typical 6 Channel AV III HD HR Multi-RX (2+2+2 RX/TX)

#### 6.5.1 Bill of Material

| Pos.  | Units     | Part Number        | <b>Description</b><br>Channel extension and options written in italics.                                                                                 |
|-------|-----------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | 1         | Z120343            | AQS/3+ CHASSIS WIRED                                                                                                                                    |
| 2     | 1         | Z121625            | AQS PSM-D POWER SUPPLY MODULE                                                                                                                           |
| 3     | 1         | Z133424            | AQS PSM-A2 POWER SUPPLY MODULE                                                                                                                          |
| 4     | 1         | Z104783            | AQS PSM HPLNA                                                                                                                                           |
| 5     | 1         | Z117129<br>Z117130 | AQS SGU/3 600<br>AQS SGU/3 1200                                                                                                                         |
| 6     | 2         | Z102520            | AQS DRU-E ECL $\ge$ 06                                                                                                                                  |
| 7     | 2         | Z130588<br>Z130589 | AQS RECEIVER BOARD RXAD/2 600<br>AQS RECEIVER BOARD RXAD/2 1000                                                                                         |
| 8     | 1         | Z116985<br>Z126572 | AQS REFERENCE BOARD/3 600<br>AQS REFERENCE BOARD/3 1200                                                                                                 |
| 9     | 1         | Z129933            | AQS LO2/CLK BOARD                                                                                                                                       |
| 10    | 1<br>1    | 20910<br>47040     | HYBRID SPLITTER ZFSC-2-4<br>CN COAX ADAPT SMA-I M-M                                                                                                     |
| 11    | 1         | Z103550<br>Z103551 | AQS 2H-TX BD 200-400<br>AQS 2H-TX BD 500-1000                                                                                                           |
| 12    | 1         | Z101247            | AQS 1 TO 4 ROUTER                                                                                                                                       |
| 13    | 1         | W1345050           | AQS POWER SUPPLY BLA 28V 20A                                                                                                                            |
| Mecha | anical Pa | arts               | Mech. parts are components of the assembled chassis. Application and quantity are<br>dependent on options. Only spare parts must be ordered separately. |
| M1    | 1         | Z2778              | FRONTPLATE BLIND 4TE                                                                                                                                    |
| M2    | 1         | Z12489             | FRONTPLATE BLIND 6TE                                                                                                                                    |
| M3    | 2         | Z12170             | FRONTPLATE BLIND 12TE                                                                                                                                   |
| M4    | 2         | Z14119<br>Z14120   | FRONTPLATE BLIND 1MM 12TE<br>COVERPLATE 8TE                                                                                                             |
| M5    | 1         | Z13955<br>Z15202   | FRONTPLATE 1MM 18TE<br>COVERPLATE 16TE                                                                                                                  |
|       | 18        | 25958              | SCREW RRCH KR M2,5 x 12,3                                                                                                                               |

Table 6.7 Bill of material: rack 1

| Pos.  | Units     | Part Number        | <b>Description</b><br>Channel extension and options written in italics.                                                                                 |
|-------|-----------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20    | 1         | Z120343            | AQS/3+ CHASSIS WIRED                                                                                                                                    |
| 21    | 1         | Z121625            | AQS PSM-D POWER SUPPLY MODULE                                                                                                                           |
| 22    | 1         | Z133424            | AQS PSM-A2 POWER SUPPLY MODULE                                                                                                                          |
| 23    | 1         | Z104783            | AQS PSM HPLNA                                                                                                                                           |
| 24    | 1         | Z117129<br>Z117130 | AQS SGU/3 600<br>AQS SGU/3 1200                                                                                                                         |
| 25    | 2         | Z102520            | AQS DRU-E ECL $\ge$ 06                                                                                                                                  |
| 26    | 2         | Z130588<br>Z130589 | AQS RECEIVER BOARD RXAD/2 600<br>AQS RECEIVER BOARD RXAD/2 1000                                                                                         |
| 27    | 1         | Z129933            | AQS LO2/CLK BOARD                                                                                                                                       |
| Mecha | anical Pa | arts               | Mech. parts are components of the assembled chassis. Application and quantity are<br>dependent on options. Only spare parts must be ordered separately. |
| M1    | 1         | Z2778              | FRONTPLATE BLIND 4TE                                                                                                                                    |
| M2    | 1         | Z12489             | FRONTPLATE BLIND 6TE                                                                                                                                    |
| M3    | 2         | Z12170             | FRONTPLATE BLIND 12TE                                                                                                                                   |
| M4    | 2         | Z14119<br>Z14120   | FRONTPLATE BLIND 1MM 12TE<br>COVERPLATE 8TE                                                                                                             |
| M5    | 1         | Z13955<br>Z15202   | FRONTPLATE 1MM 18TE<br>COVERPLATE 16TE                                                                                                                  |
| —     | 18        | 25958              | SCREW RRCH KR M2,5 x 12,3                                                                                                                               |


Table 6.8Bill of material: rack 2

| Pos.  | Units     | Part Number        | <b>Description</b><br>Channel extension and options written in italics.                                                                                 |
|-------|-----------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30    | 1         | Z120343            | AQS/3+ CHASSIS WIRED                                                                                                                                    |
| 31    | 1         | Z121625            | AQS PSM-D POWER SUPPLY MODULE                                                                                                                           |
| 32    | 1         | Z133424            | AQS PSM-A2 POWER SUPPLY MODULE                                                                                                                          |
| 33    | 1         | Z104783            | AQS PSM HPLNA                                                                                                                                           |
| 34    | 1         | Z117129<br>Z117130 | AQS SGU/3 600<br>AQS SGU/3 1200                                                                                                                         |
| 35    | 2         | Z102520            | AQS DRU-E ECL $\ge 06$                                                                                                                                  |
| 36    | 2         | Z130588<br>Z130589 | AQS RECEIVER BOARD RXAD/2 600<br>AQS RECEIVER BOARD RXAD/2 1000                                                                                         |
| 37    | 1         | Z129933            | AQS LO2/CLK BOARD                                                                                                                                       |
| Mecha | anical Pa | arts               | Mech. parts are components of the assembled chassis. Application and quantity<br>are dependent on options. Only spare parts must be ordered separately. |
| M1    | 1         | Z2778              | FRONTPLATE BLIND 4TE                                                                                                                                    |
| M2    | 1         | Z12489             | FRONTPLATE BLIND 6TE                                                                                                                                    |
| M3    | 2         | Z12170             | FRONTPLATE BLIND 12TE                                                                                                                                   |
| M4    | 2         | Z14119<br>Z14120   | FRONTPLATE BLIND 1MM 12TE<br>COVERPLATE 8TE                                                                                                             |
| M5    | 1         | Z13955<br>Z15202   | FRONTPLATE 1MM 18TE<br>COVERPLATE 16TE                                                                                                                  |
| —     | 18        | 25958              | SCREW RRCH KR M2,5 x 12,3                                                                                                                               |

Table 6.9 Bill of material: rack 3

#### 6.5.2 Rackcode Setting

| Rack Nb. | Rackcode | SW2 | SW1 | Pulse Switch<br>(DRU Device Webpage) | Power-Up<br>Delay |
|----------|----------|-----|-----|--------------------------------------|-------------------|
| 1        | 0x0A     | 0   | А   | opened                               | 0                 |
| 2        | 0x1A     | 1   | A   | opened                               | 1                 |
| 3        | 0x2A     | 2   | А   | opened                               | 2                 |



#### 6.5.3 Board Location

# 6.6 A Typical 1 Channel AV III HD PharmaScan with 1 RX

#### 6.6.1 Bill of Material

| Pos.  | Units            | Part Number        | <b>Description</b><br>Channel extension and options written in italics.                                                                                 |
|-------|------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | 1                | Z120343            | AQS/3+ CHASSIS WIRED                                                                                                                                    |
| 2     | 1                | Z121625            | AQS PSM-D POWER SUPPLY MODULE                                                                                                                           |
| 3     | 1                | Z133424            | AQS PSM-A2 POWER SUPPLY MODULE                                                                                                                          |
| 4     | 1                | Z102520            | AQS DRU-E ECL $\ge$ 06                                                                                                                                  |
| 5     | 1                | Z130588            | AQS RECEIVER BOARD RXAD/2 600                                                                                                                           |
| 6     | 1                | Z116985            | AQS REFERENCE BOARD/3 600                                                                                                                               |
| 7     | 1                | Z117129            | AQS SGU/3 600                                                                                                                                           |
| Mecha | Mechanical Parts |                    | Mech. parts are components of the assembled chassis. Application and quantity are<br>dependent on options. Only spare parts must be ordered separately. |
| M1    | 1                | Z2778              | FRONTPLATE BLIND 4TE                                                                                                                                    |
| M2    | 3                | Z12170             | FRONTPLATE BLIND 12TE                                                                                                                                   |
| M3    | 3                | Z14119<br>Z14120   | FRONTPLATE BLIND 1MM 12TE<br>COVERPLATE 8TE                                                                                                             |
| M4    | 1                | Z105564<br>Z105565 | FRONTPLATE 1MM 24TE<br>COVERPLATE 24TE                                                                                                                  |
| —     | 22               | 25958              | SCREW RRCH KR M2,5 x 12,3                                                                                                                               |

Table 6.10 Bill of material

#### 6.6.2 Rackcode Setting

| Rack Nb. | Rackcode | SW2 | SW1 | Pulse Switch<br>(DRU Device Webpage) | Power-Up<br>Delay |
|----------|----------|-----|-----|--------------------------------------|-------------------|
| 1        | 0x0A     | 0   | А   | closed (default)                     | 0                 |

#### 6.6.3 Board Location

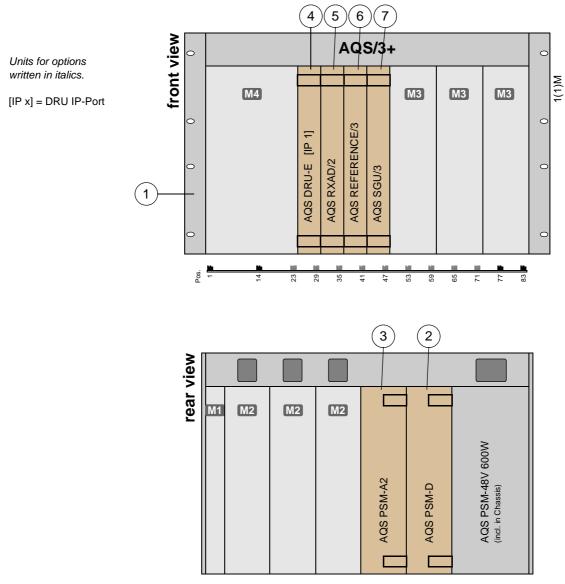



Figure 6.9 AQS/3+ for 1 channel (RX/TX) PharmaScan AVANCE III HD

# 6.7 A Typical 2 Channel AV III HD BioSpec (2-4 TX / 1 RX)

#### 6.7.1 Bill of Material

| Pos.  | Units     | Part Number        | <b>Description</b><br>Channel extension and options written in italics.                                                                              |
|-------|-----------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | 1         | Z120343            | AQS/3+ CHASSIS WIRED                                                                                                                                 |
| 2     | 1         | Z121625            | AQS PSM-D POWER SUPPLY MODULE                                                                                                                        |
| 3     | 1         | Z133424            | AQS PSM-A2 POWER SUPPLY MODULE                                                                                                                       |
| 4     | 2         | Z104783            | AQS PSM HPLNA                                                                                                                                        |
| 5     | 1         | Z107413            | AQS PSM ADM                                                                                                                                          |
| 6     | 1         | Z102520            | AQS DRU-E ECL $\ge$ 06                                                                                                                               |
| 7     | 1         | Z130588<br>Z130589 | AQS RECEIVER BOARD RXAD/2 600<br>AQS RECEIVER BOARD RXAD/2 1000                                                                                      |
| 8     | 1         | Z116985<br>Z126572 | AQS REFERENCE BOARD/3 600<br>AQS REFERENCE BOARD/3 1200                                                                                              |
| 9     | 1 (2)     | Z117129<br>Z117130 | AQS SGU/3 600<br>AQS SGU/3 1200                                                                                                                      |
| Mecha | anical Pa | arts               | Mech. parts are components of the assembled chassis. Application and quantity are dependent on options. Only spare parts must be ordered separately. |
| M1    | 1         | Z2778              | FRONTPLATE BLIND 4TE                                                                                                                                 |
| M2    | 1         | Z12489             | FRONTPLATE BLIND 6TE                                                                                                                                 |
| M3    | 3         | Z12170             | FRONTPLATE BLIND 12TE                                                                                                                                |
| M4    | 3         | Z14119<br>Z14120   | FRONTPLATE BLIND 1MM 12TE<br>COVERPLATE 8TE                                                                                                          |
| M5    | 1         | Z105564<br>Z105565 | FRONTPLATE 1MM 24TE<br>COVERPLATE 24TE                                                                                                               |
|       | 24        | 25958              | SCREW RRCH KR M2,5 x 12,3                                                                                                                            |

Table 6.11 Bill of material

#### 6.7.2 Rackcode Setting

| Rack Nb. | Rackcode | SW2 | SW1 | Pulse Switch<br>(DRU Device Webpage) | Power-Up<br>Delay |
|----------|----------|-----|-----|--------------------------------------|-------------------|
| 1        | 0x0A     | 0   | А   | closed (default)                     | 0                 |

#### 6.7.3 Board Location

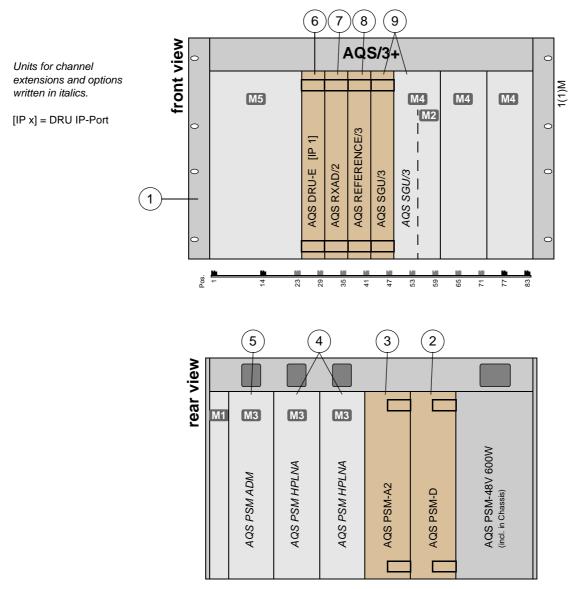



Figure 6.10 AQS/3+ for 2 channel (2-4TX/1RX) BioSpec AVANCE III HD

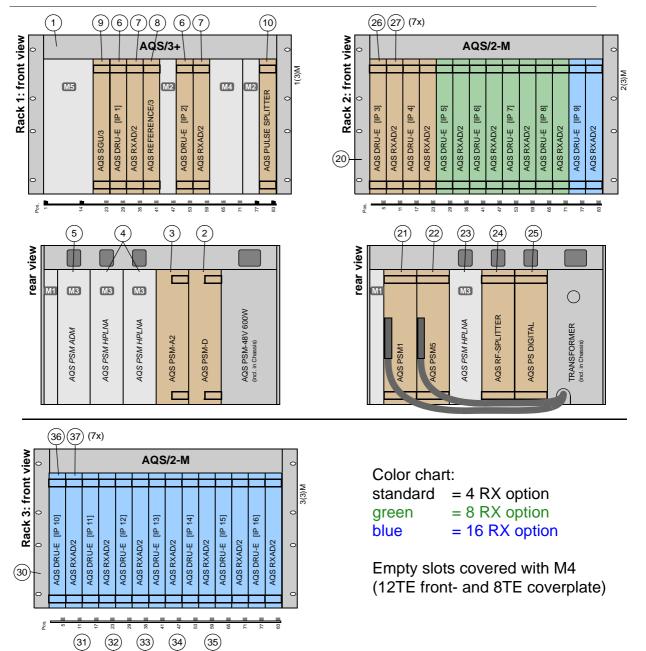
## 6.8 A Typical 2 Channel AV III HD BioSpec with mRX Option (2 TX / 4,8,16 RX)

#### 6.8.1 Bill of Material

| Pos.  | Units     | Part Number        | <b>Description</b><br>Channel extension and options written in italics.                                                                                 |
|-------|-----------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | 1         | Z120343            | AQS/3+ CHASSIS WIRED                                                                                                                                    |
| 2     | 1         | Z121625            | AQS PSM-D POWER SUPPLY MODULE                                                                                                                           |
| 3     | 1         | Z133424            | AQS PSM-A2 POWER SUPPLY MODULE                                                                                                                          |
| 4     | 2         | Z104783            | AQS PSM HPLNA                                                                                                                                           |
| 5     | 1         | Z107413            | AQS PSM ADM                                                                                                                                             |
| 6     | 2         | Z102520            | AQS DRU-E ECL $\ge$ 06                                                                                                                                  |
| 7     | 2         | Z130588<br>Z130589 | AQS RECEIVER BOARD RXAD/2 600<br>AQS RECEIVER BOARD RXAD/2 1000                                                                                         |
| 8     | 1         | Z116985<br>Z126572 | AQS REFERENCE BOARD/3 600<br>AQS REFERENCE BOARD/3 1200                                                                                                 |
| 9     | 1         | Z117129<br>Z117130 | AQS SGU/3 600<br>AQS SGU/3 1200                                                                                                                         |
| 10    | 1         | Z104431            | AQS PULSE SPLITTER                                                                                                                                      |
| Mecha | anical Pa | arts               | Mech. parts are components of the assembled chassis. Application and quantity are<br>dependent on options. Only spare parts must be ordered separately. |
| M1    | 1         | Z2778              | FRONTPLATE BLIND 4TE                                                                                                                                    |
| M2    | 2         | Z12489             | FRONTPLATE BLIND 6TE                                                                                                                                    |
| M3    | 3         | Z12170             | FRONTPLATE BLIND 12TE                                                                                                                                   |
| M4    | 1         | Z14119<br>Z14120   | FRONTPLATE BLIND 1MM 12TE<br>COVERPLATE 8TE                                                                                                             |
| M5    | 1         | Z13955<br>Z15202   | FRONTPLATE 1MM 18TE<br>COVERPLATE 16TE                                                                                                                  |
|       | 22        | 25958              | SCREW RRCH KR M2,5 x 12,3                                                                                                                               |

Table 6.12 Bill of material: rack 1

| Pos.  | Units     | Part Number        | <b>Description</b><br>Channel extension and options written in italics.                                                                                 |
|-------|-----------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20    | 1         | Z103493            | AQS/2-M CHASSIS WIRED ECL $\ge$ 01                                                                                                                      |
| 21    | 1         | Z003402            | AQS PSM1 POWER SUPPLY MODULE                                                                                                                            |
| 22    | 1         | Z102023            | AQS PSM5 POWER SUPPLY MODULE                                                                                                                            |
| 23    | 1         | Z104783            | AQS PSM HPLNA                                                                                                                                           |
| 24    | 1         | Z104432            | AQS RF-SPLITTER                                                                                                                                         |
| 25    | 1         | H9489              | AQS POWER SUPPLY DIGITAL 350W ECL ≥ 11                                                                                                                  |
| 26    | 2 (7)     | Z102520            | AQS DRU-E ECL $\ge$ 02                                                                                                                                  |
| 27    | 2 (7)     | Z130588<br>Z130589 | AQS RECEIVER BOARD RXAD/2 600<br>AQS RECEIVER BOARD RXAD/2 1000                                                                                         |
| Mecha | anical Pa | arts               | Mech. parts are components of the assembled chassis. Application and quantity are<br>dependent on options. Only spare parts must be ordered separately. |
| M1    | 1         | Z2778              | FRONTPLATE BLIND 4TE                                                                                                                                    |
| M3    | 1         | Z12170             | FRONTPLATE BLIND 12TE                                                                                                                                   |
| M4    | 5         | Z14119<br>Z14120   | FRONTPLATE 1MM 12TE<br>COVERPLATE 8TE                                                                                                                   |
|       | 16        | 25958              | SCREW RRCH KR M2,5 x 12,3                                                                                                                               |


Table 6.13Bill of material: rack 2

| Pos.  | Units            | Part Number        | <b>Description</b><br>Channel extension and options written in italics.                                                                                 |
|-------|------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30    | 1                | Z103493            | AQS/2-M CHASSIS WIRED ECL $\ge$ 01                                                                                                                      |
| 31    | 1                | Z003402            | AQS PSM1 POWER SUPPLY MODULE                                                                                                                            |
| 32    | 1                | Z102023            | AQS PSM5 POWER SUPPLY MODULE                                                                                                                            |
| 33    | 1                | Z104783            | AQS PSM HPLNA                                                                                                                                           |
| 34    | 1                | Z104432            | AQS RF-SPLITTER                                                                                                                                         |
| 35    | 1                | H9489              | AQS POWER SUPPLY DIGITAL 350W ECL $\ge$ 11                                                                                                              |
| 36    | 7                | Z102520            | AQS DRU-E ECL $\ge$ 06                                                                                                                                  |
| 37    | 7                | Z130588<br>Z130589 | AQS RECEIVER BOARD RXAD/2 600<br>AQS RECEIVER BOARD RXAD/2 1000                                                                                         |
| Mecha | Mechanical Parts |                    | Mech. parts are components of the assembled chassis. Application and quantity are<br>dependent on options. Only spare parts must be ordered separately. |
| M1    | 1                | Z2778              | FRONTPLATE BLIND 4TE                                                                                                                                    |
| M3    | 1                | Z12170             | FRONTPLATE BLIND 12TE                                                                                                                                   |
| _     | 6                | 25958              | SCREW RRCH KR M2,5 x 12,3                                                                                                                               |

Table 6.14Bill of material: rack 3 (for 16 RX option only)

## 6.8.2 Rackcode Setting

| Rack<br>Nb. | Rack<br>Code | Userbus |     |     | Pulse Switch<br>(DRU Device Webpage) |        |   | Power-Up<br>Delay |
|-------------|--------------|---------|-----|-----|--------------------------------------|--------|---|-------------------|
|             |              | SW3     | SW2 | SW1 | 1                                    | 2      | 3 |                   |
| 1           | 0x0A         | -       | 0   | А   | ope                                  | ned    | - | 0                 |
| 2           | 0x102        | 1       | 0   | 2   |                                      | closed |   | 1                 |
| 3           | 0x202        | 2       | 0   | 2   |                                      | closed |   | 2                 |



#### 6.8.3 Board Location



 $\bigcirc$ 

TRANSFORMER (incl. in Chassis)

ſ

AQS RF-SPLITTER

AQS PS DIGITAL

Π

M3

**4QS PSM HPLNA** 

AQS PSM5

AQS PSM1

rear view

## 6.9 A Typical 2 Channel AV III HD BioSpec with pTX Option (8 TX / 2 RX)

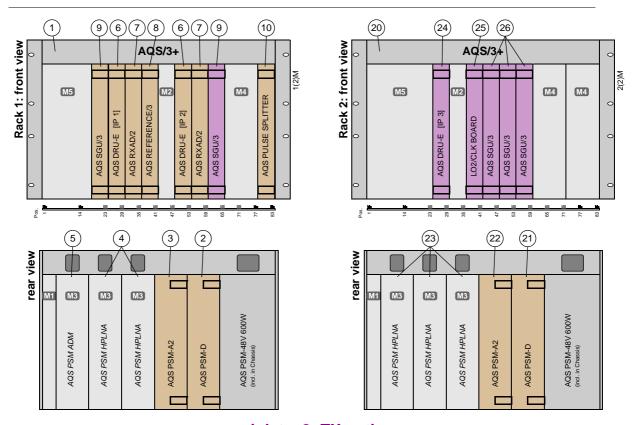
#### 6.9.1 Bill of Material

| Pos.  | Units     | Part Number        | <b>Description</b><br>Channel extension and options written in italics.                                                                                 |
|-------|-----------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | 1         | Z120343            | AQS/3+ CHASSIS WIRED                                                                                                                                    |
| 2     | 1         | Z121625            | AQS PSM-D POWER SUPPLY MODULE                                                                                                                           |
| 3     | 1         | Z133424            | AQS PSM-A2 POWER SUPPLY MODULE                                                                                                                          |
| 4     | 2         | Z104783            | AQS PSM HPLNA                                                                                                                                           |
| 5     | 1         | Z107413            | AQS PSM ADM                                                                                                                                             |
| 6     | 2         | Z102520            | AQS DRU-E ECL $\ge$ 06                                                                                                                                  |
| 7     | 2         | Z130588<br>Z130589 | AQS RECEIVER BOARD RXAD/2 600<br>AQS RECEIVER BOARD RXAD/2 1000                                                                                         |
| 8     | 1         | Z126573            | AQS REFERENCE BOARD/3-M 1200                                                                                                                            |
| 9     | 2         | Z117129<br>Z117130 | AQS SGU/3 600<br>AQS SGU/3 1200                                                                                                                         |
| 10    | 1         | Z104431            | AQS PULSE SPLITTER                                                                                                                                      |
| 11    | 1<br>1    | 20910<br>47040     | HYBRID SPLITTER ZFSC-2-4<br>CN COAX ADAPT SMA-I M-M                                                                                                     |
| 12    | 2         | 45999              | ATTENUATOR SMA-SMA 6DB                                                                                                                                  |
| Mecha | anical Pa | arts               | Mech. parts are components of the assembled chassis. Application and quantity are<br>dependent on options. Only spare parts must be ordered separately. |
| M1    | 1         | Z2778              | FRONTPLATE BLIND 4TE                                                                                                                                    |
| M2    | 1         | Z12489             | FRONTPLATE BLIND 6TE                                                                                                                                    |
| M3    | 3         | Z12170             | FRONTPLATE BLIND 12TE                                                                                                                                   |
| M4    | 1         | Z14119<br>Z14120   | FRONTPLATE BLIND 1MM 12TE<br>COVERPLATE 8TE                                                                                                             |
| M5    | 1         | Z13955<br>Z15202   | FRONTPLATE 1MM 18TE<br>COVERPLATE 16TE                                                                                                                  |
| —     | 20        | 25958              | SCREW RRCH KR M2,5 x 12,3                                                                                                                               |

Table 6.15Bill of material: rack 1

| Pos.  | Units     | Part Number        | <b>Description</b><br>Channel extension and options written in italics.                                                                                 |
|-------|-----------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20    | 1         | Z120343            | AQS/3+ CHASSIS WIRED                                                                                                                                    |
| 21    | 1         | Z121625            | AQS PSM-D POWER SUPPLY MODULE                                                                                                                           |
| 22    | 1         | Z133424            | AQS PSM-A2 POWER SUPPLY MODULE                                                                                                                          |
| 23    | 3         | Z104783            | AQS PSM HPLNA                                                                                                                                           |
| 24    | 1         | Z102520            | AQS DRU-E ECL $\ge$ 06                                                                                                                                  |
| 25    | 1         | Z129933            | AQS LO2/CLK BOARD                                                                                                                                       |
| 26    | 3         | Z117129<br>Z117130 | AQS SGU/3 600<br>AQS SGU/3 1200                                                                                                                         |
| 27    | 2         | Z102000            | AQS BB SPLITTER 2-WAY                                                                                                                                   |
| Mecha | anical Pa | arts               | Mech. parts are components of the assembled chassis. Application and quantity are<br>dependent on options. Only spare parts must be ordered separately. |
| M1    | 1         | Z2778              | FRONTPLATE BLIND 4TE                                                                                                                                    |
| M2    | 1         | Z12489             | FRONTPLATE BLIND 6TE                                                                                                                                    |
| M3    | 3         | Z12170             | FRONTPLATE BLIND 12TE                                                                                                                                   |
| M4    | 2         | Z14119<br>Z14120   | FRONTPLATE 1MM 12TE<br>COVERPLATE 8TE                                                                                                                   |
| M5    | 1         | Z105564<br>Z105565 | FRONTPLATE 1MM 24TE<br>COVERPLATE 24TE                                                                                                                  |
|       | 22        | 25958              | SCREW RRCH KR M2,5 x 12,3                                                                                                                               |

Table 6.16 Bill of material: rack 2

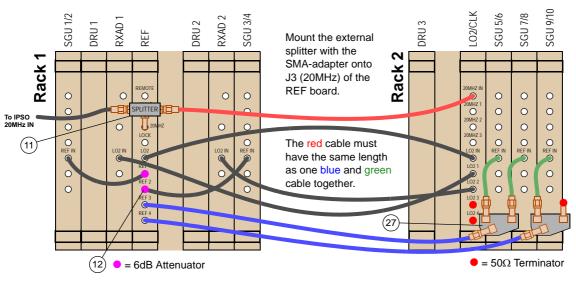

#### 6.9.2 Rackcode Setting

| Rack Nb. | Rackcode | SW2 | SW1 | Pulse Switch<br>(DRU Device Webpage) | Power-Up<br>Delay |
|----------|----------|-----|-----|--------------------------------------|-------------------|
| 1        | 0x0A     | 0   | А   | opened                               | 0                 |
| (16)     | 0xFA     | F   | А   | closed (default)                     | 1                 |

1 The pTX rack is the last chassis in the configuration. It is always set to rack number 16 = 0xF regardless of how many receiver racks are used to avoid DRU IP-port number conflicts. However the power-up delay has to be set according to the real rack number, which is the total number of racks -1.

Example: pTX is rack number 3: rackcode = **0xFA**, power-up delay = **2** 

# **AVANCE III HD Configurations**




#### 6.9.3 Board Location

violet = 8pTX option

Figure 6.12 AQS/3+ for 2 channel BioSpec with pTX Option (2+8TX/2RX)

#### 6.9.4 20 MHz, LO2 and REF Distribution



#### 6.9.5 Upgrade with mRX Options (4/8/16 RX)

This configuration is ugradable with additional RX channels to 4, 8 or 16RX.

#### **Bill of Material:**

Add AQS/2-M Chassis with DRU and RXAD boards according to Table 6.13 (rack 2) and Table 6.14 (rack 3).

#### **Rackcode Setting:**

The pTX rack is the last chassis in the configuration. It is always set to rack number 16 to avoid DRU IP-port number conflicts, regardless how many receiver racks are used.

However the power-up delay has to be set according to the real rack number, which is the total number of racks -1.

Example: pTX is rack number 4: rackcode = 0xFA, power-up delay = 3

#### **Board Location:**

Use the same board locations for rack 2 and rack 3 as in Figure 6.11

#### 20 MHz, LO2 and REF Distribution:

The 20MHz and REF distribution remains the same as in Figure 6.13. The LO and LO2's are distributed via the RF-splitter board in the AQS/2-M chassis.

# 6.10 A Typical 2 Channel AV III HD Dual RX Low and High Field

#### 6.10.1 Bill of Material

| Pos.  | Units            | Part Number        | <b>Description</b><br>Channel extension and options written in italics.                                                                                 |  |  |  |  |
|-------|------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1     | 1                | Z120343            | AQS/3+ CHASSIS WIRED                                                                                                                                    |  |  |  |  |
| 2     | 1                | Z121625            | AQS PSM-D POWER SUPPLY MODULE                                                                                                                           |  |  |  |  |
| 3     | 1                | Z133424            | AQS PSM-A2 POWER SUPPLY MODULE                                                                                                                          |  |  |  |  |
| 4     | 1                | Z104783            | AQS PSM HPLNA                                                                                                                                           |  |  |  |  |
| 5     | 2                | Z102520            | AQS DRU-E ECL $\ge 06$                                                                                                                                  |  |  |  |  |
| 6     | 1                | Z102501            | AQS RECEIVER BOARD RXAD FTMS                                                                                                                            |  |  |  |  |
| 7     | 1                | Z130588            | AQS RECEIVER BOARD RXAD/2 600                                                                                                                           |  |  |  |  |
| 8     | 1                | Z116985            | AQS REFERENCE BOARD/3 600                                                                                                                               |  |  |  |  |
| 9     | 1                | Z117131            | AQS SGU/3 LF                                                                                                                                            |  |  |  |  |
| 10    | 1                | Z117129            | AQS SGU/3 600                                                                                                                                           |  |  |  |  |
| Mecha | Mechanical Parts |                    | Mech. parts are components of the assembled chassis. Application and quantity are<br>dependent on options. Only spare parts must be ordered separately. |  |  |  |  |
| M1    | 1                | Z2778              | FRONTPLATE BLIND 4TE                                                                                                                                    |  |  |  |  |
| M2    | 1                | Z12489             | FRONTPLATE BLIND 6TE                                                                                                                                    |  |  |  |  |
| M3    | 2                | Z12170             | FRONTPLATE BLIND 12TE                                                                                                                                   |  |  |  |  |
| M4    | 1                | Z14119<br>Z14120   | FRONTPLATE BLIND 1MM 12TE<br>COVERPLATE 8TE                                                                                                             |  |  |  |  |
| M5    | 1                | Z105564<br>Z105565 | FRONTPLATE 1MM 24TE<br>COVERPLATE 24TE                                                                                                                  |  |  |  |  |
|       | 16               | 25958              | SCREW RRCH KR M2,5 x 12,3                                                                                                                               |  |  |  |  |

Table 6.17 Bill of material

#### 6.10.2 Rackcode Setting

| Rack Nb. | Rackcode | SW2 | SW1 | Pulse Switch<br>(DRU Device Webpage) | Power-Up<br>Delay |
|----------|----------|-----|-----|--------------------------------------|-------------------|
| 1        | 0x0A     | 0   | А   | opened                               | 0                 |

#### 6.10.3 Board Location

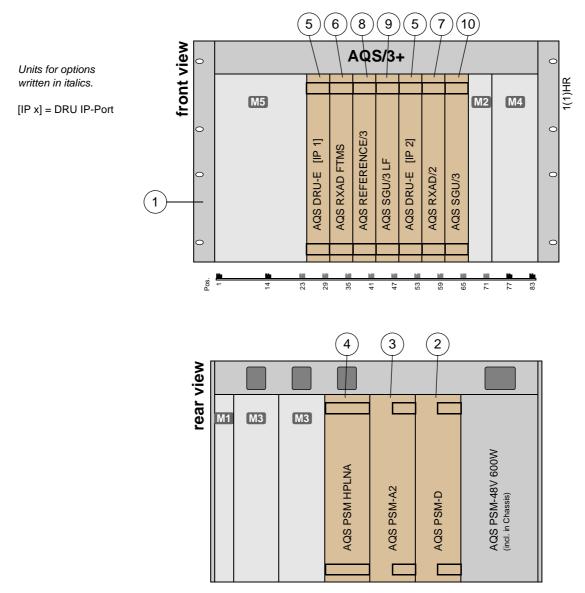



Figure 6.14 AQS/3+ for 2 channel Dual RX AVANCE III HD

# 7 AQS/3+ Mainframe

## 7.1 Introduction

The AQS/3+ mainframe consists of a single backplane, replacing the former AQS/3 IPSO and user bus parts. It can be equipped with an AQS IPSO and various AQS RF units (e.g. SGU/3, REFERENCE/3, RXAD/2, DRU, 1 to 4 Router, Pulse Splitter).

The AQS/3+ mainframe is intended for the use with the double channel SGU/3 and the corresponding REFERENCE/3 board only. The former SGU/2 and REFERENCE boards are not supported.

On the rear side, one AC/DC power supply (PSM-48V) feeds two DC/DC power supply modules (PSM-A2 & PSM-D). Next to them are 3 slots for auxiliary power supply modules (PSM-HPLNA, PSM-ADM). Their mains supply are plugged into the line output connectors above their slot.

The mainframe is cooled with 8 fans located in a fan tray on top of the mainframe. The fan tray is serviceable without removing the mainframe from the spectrometer cabinet. (see "Fans" on page 78)

# AQS/3+ Mainframe

## 7.2 Front View

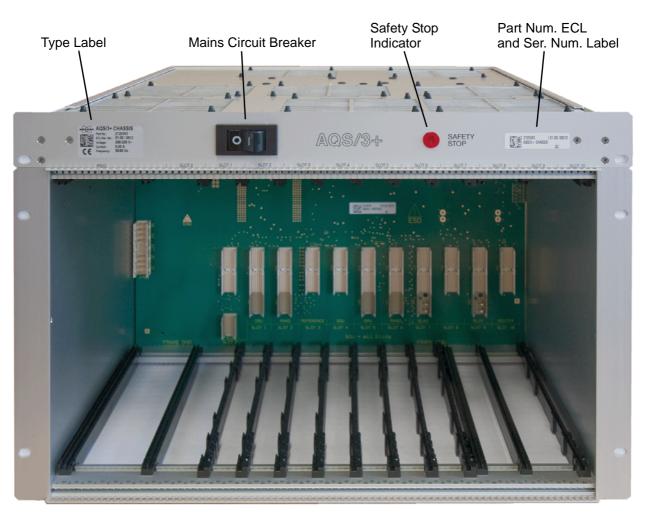



Figure 7.1 AQS/3+ Chassis front view

## 7.3 Rear View

The rear view shows the housing of the power supply boards. On the right hand side is the PSM-48V which is an integral part of the mainframe.

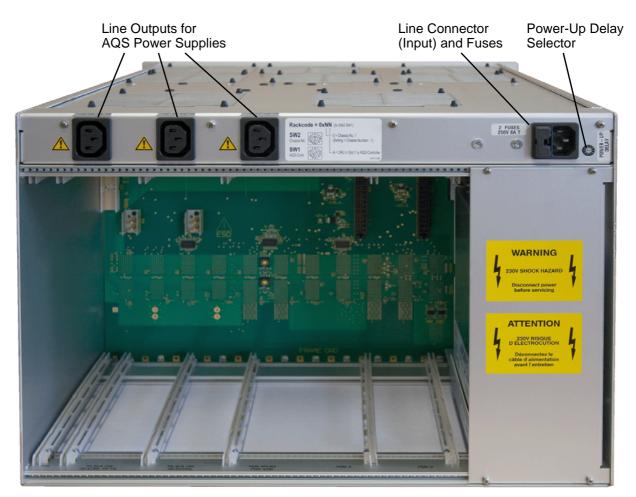



Figure 7.2 AQS/3+ Chassis rear view

**A**CAUTION



Only connect AQS power supply units to chassis rear connectors.

- ► AQS PSM HPLNA (Z104783)
- ► AQS PSM ADM (Z107413)
- ▶ POWER SUPPLY COMPACT 28V 20A (W1345050)

Material damage may result if other units or devices are connected.

## 7.4 AC Power Line Fuses

The AQS/3+ is protected by two fuses. They are located in a removable fuse holder next to the AC power connector. For replacement always use time-lag T fuse types with high breaking capacity H.

## 7.5 Power-Up Delay

The power-up delay can be selected with a rotary switch next to the power connector at the back of the mainframe. Please set the switch according to your configuration as described in the configurations section within this manual. The minimal power-up delay is 0.5 sec due to the inrush current limiter circuit.

| Setting      | 0   | 1 | 2 | 3 | 4 | 5  | 6  | 7  | 8  | 9  |
|--------------|-----|---|---|---|---|----|----|----|----|----|
| Delay in sec | 0.5 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 |

Table 7.1 Power-Up Delay

## 7.6 Inrush Current Limiter

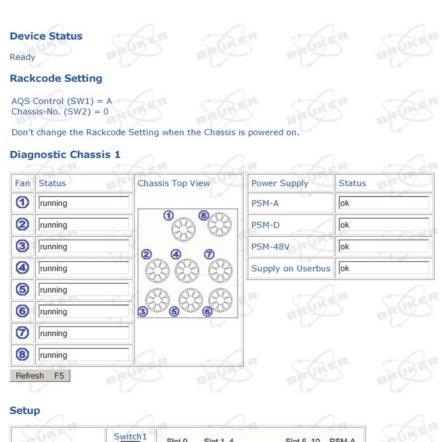
The mainframe is equipped with an inrush current limiter which limits the peak current to approx. 20 A. The limiter is always active, even after a "hot start" when the chassis is switched OFF / ON within a short timespan.

## 7.7 Mains Power Failure & Restart Timeout

In the event of a short time mains power loss or a significant drop in the supply voltage the chassis turns itself of and, after the mains power is restored, restarts automatically with a timeout of 5 sec.

## NOTICE

#### **Restart timeout:**


The 5 sec timeout applies also when the chassis is switched off and on manually within a short interval.

To prevent short time power losses an external UPS (uninterruptible power supply) must be used.

# 7.8 Diagnostics & Setup

The AQS/3+ mainframe has several diagnostic and setup features controlled by the AQS controller and accessible via the AQS chassis page in the DRU service web.

- Device status (read only)
- Rackcodes settings (read only, see page 77)
- Fan and power supply diagnostics (read only)
- Pulse switch setup (see page 77)



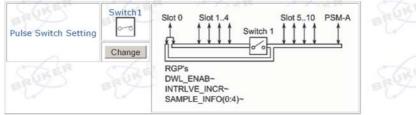



Figure 7.3 DRU Service Web: AQS Chassis Diagnostic

# 7.9 Safety Stop

If the temperature inside the mainframe exceeds the absolute maximum limit of save operation, the mains supply to the chassis is switched off automatically (and without warning) to prevent permanent damage to the AQS units. This "Safety Stop" condition is indicated with a red lamp on the front panel as long as the mains supply is present at the power connector.

**1** Make sure to establish and remove the cause of the Safety Stop condition before using the spectrometer again.

The Safety Stop can be caused by a fan or power supply failure within the mainframe. Other causes can be inefficient cooling air supply to the mainframe or exceeding ambient air temperatures within or around the spectrometer cabinet.



# 

Accident hazard from contact with hot surfaces on the unit.

In case of a fan failure the surface of the subunits within the mainframe become very hot before the Safety Stop condition is triggered.

- Let the units cool down before handling
- Contact Bruker service personnel if you cannot establish the cause of the failure.

#### 7.9.0.1 Safety Stop Reset

The chassis can be returned to its normal working state by switching the mains circuit breaker manually OFF and ON (be aware of the 5 sec timeout). An AC power loss also resets the chassis to its working state.

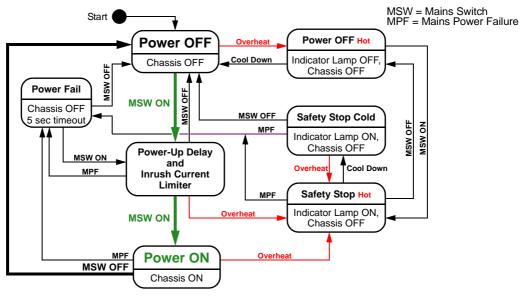



Figure 7.4 Safety Stop State Diagram

7.10 AC Wiring

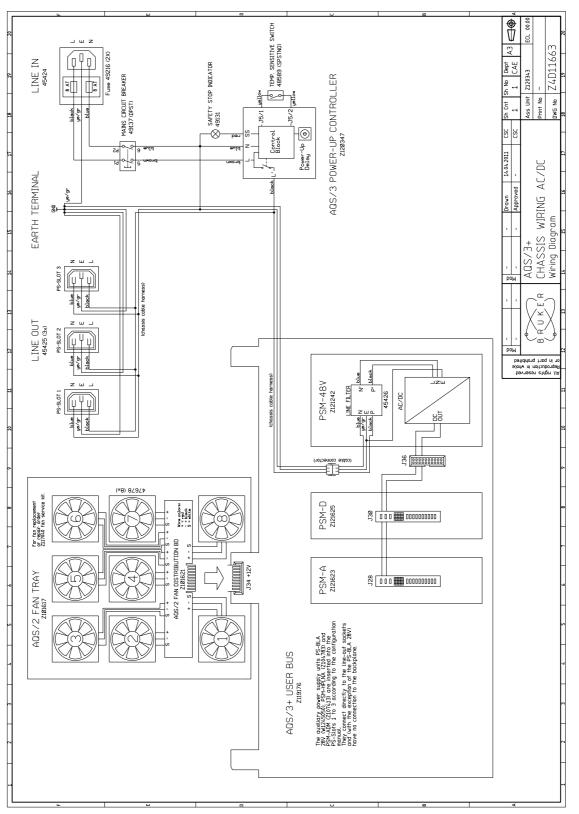
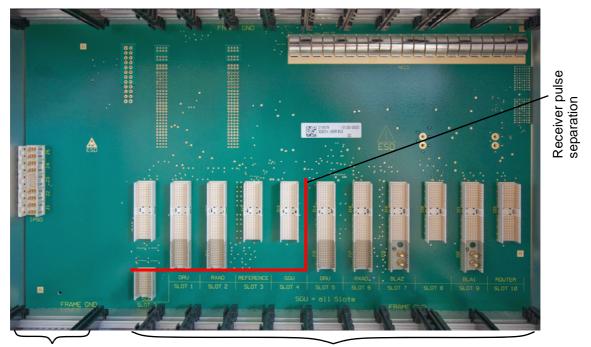




Figure 7.5 AQS/3+ AC Wiring

# 7.11 Backplane (User Bus)

The user bus is designed to route all signals and power supplies to the specific boards. It represents the ground point of the AQS/3+ and is connected to the chassis frame. For detailed information about user bus signals see "AQS/3+ Signal and Information Paths" on page 27, "Synchronous Signals" on page 30 and "20 MHz Clock Distribution" on page 37.



IPSO Slot User Bus Slots 0..10 Figure 7.6 AQS/3+ User Bus (front view)

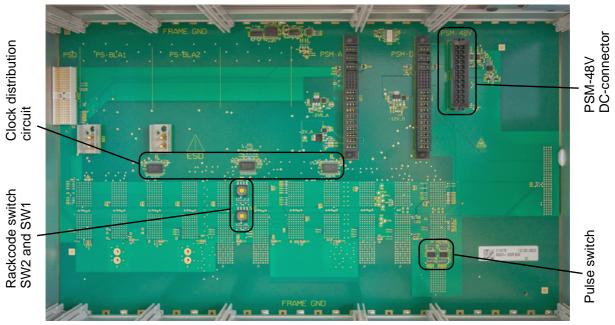



Figure 7.7 AQS/3+User Bus (rear view without PSM-48V)

# 7.11.1 Pulse Switch for Receiver Pulse Separation

The user bus is equipped with one pulse switch. It separates all receiver control pulses between slots 4 and 5. A SGU/3 in slot 0 can either feed two receivers with the same control pulses (switch closed) or two receivers with separate control pulses (switch open) via its additional backplane connector.

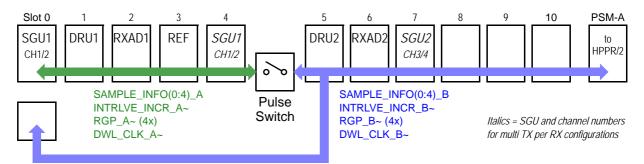



Figure 7.8 Pulse switch function

In multi receiver configurations with only two TX/RX channel, a single SGU/3 is placed in slot 0 to provide both TX channels. If more TX per RX channels are required, the SGU's are placed in slots 4 and 7 respectively, leaving slot 0 empty.

The switch status can be checked and set via the AQS controller only.

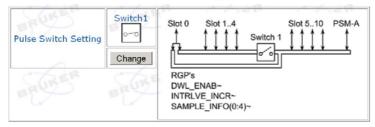



Figure 7.9 DRU Service Web: AQS Chassis Setup

# 7.11.2 Rackcode Settings

The rackcode must be set according to the chassis configuration as described in the configurations section of this manual.

| Switch <sup>a</sup> | Function                                      | Setting            |
|---------------------|-----------------------------------------------|--------------------|
| SW2                 | Chassis Number<br>(for DRU IP-Port numbering) | Chassis Number - 1 |
| SW1                 | AQS Controller                                | A = DRU in Slot 1  |

 Table 7.2
 Rackcode Switch Function

a. Example setting: Rackcode 0x0A = Chassis 1 with DRU as AQS controller in Slot 1

# 7.12 Fans

The fans are located in the fan tray on top of the mainframe. They are supplied and controlled via the user bus. The fan tray is serviceable without removing the mainframe from the spectrometer cabinet. It has been introduced with the AQS/2 chassis, hence the name AQS/2 FAN TRAY. Since then adaptions to newer chassis generations have been made.

**1** Only use AQS/2 FAN TRAY (Z101617) with **ECL**  $\ge$ **04** as a replacement!

The "Fan Tray Service Instructions" can be found in the "Maintenance" section of this manual.

Single fans can be replaced using the AQS/2+AQS/3 CHASSIS FAN SERVICE KIT (Z117040).

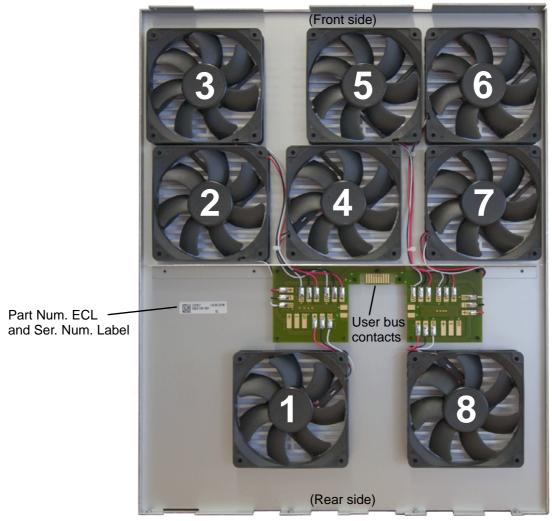



Figure 7.10 Fan Tray (Bottom view)

# 7.13 AC/DC Power Supply

The mainframe is delivered with a 48V AC/DC power supply module already installed on the rear side. However this power supply is a field exchangeable unit and can be replaced.

## 7.13.1 Product and Part Number

Product: AQS PSM-48V 600W POWER SUPPLY UNIT Part No: Z121242

# 7.14 Power Supply Service Instruction

## 7.14.1 PSM-48V removal

To remove the PSM-48V from the mainframe follow the steps exactly as described below:



# 

Electrical hazard from electrical shock.

A life threatening shock may result when the housing is opened when under power!

- ▶ Turn of the chassis with mains circuit breaker
- Disconnect the chassis from the mains power supply before servicing.
- ▶ Be sure that the power supply cannot be reconnected without notice.
- 1. Remove the power supply modules PSM-A and PSM-D
- 2. Loosen the screws on the PSM-48V front panel
- 3. Pull the PSM a little forward and disconnect the two cable connectors inside as shown in Figure 7.11
- 4. Remove the PSM-48V completely from the mainframe



AC-cable connector press retaining clips on both sides to release

DC-cable connector press retaining clips on front to release

Figure 7.11 PSM-48V removal from mainframe

## 7.14.2 PSM-48V reassembly

To replace the PSM-48V in the mainframe follow the steps as described above in reverse order.

Make sure that:

- ▶ the PSM sits in both guide rails before final insertion
- both connectors are fully connected with their retaining clips clicked in place (the connectors are reverse polarity protected)
- no wires are squeezed in between the power supply housing and the mainframe
- the PSM-A and PSM-D are inserted at their proper place and all screws are tightened

Only then reconnect the AC power line and turn on the chassis.

• Check that both LED's of the PSM-A and PSM-D glow green after power up.

# 8 AQS/2-M Mainframe

# 8.1 Introduction

The AQS/2-M mainframe is commonly used as en extension chassis. One mainframe may contain up to 7 receiver channels (DRU and RXAD). It has 14 aqs-slot on the user bus.

i

The AQS/2-M does not support double channel SGU/3 and REFERENCE/3 boards.

On the rear side, linear power supply modules (PSM1 &PSM5) and the switched power supply (PS Digital) are placed. One slot (AUX2) is reserved for the AQS RF-SPLITTER board.

The transformer, which feeds the linear power supply modules, is part of the mainframe and is located on the rear side.

The mainframe is cooled with 8 fans located in a fan tray on top of the mainframe. The fan tray is serviceable without removing the mainframe from the spectrometer cabinet. (see "Fans" on page 91)

# AQS/2-M Mainframe

# 8.2 Front View

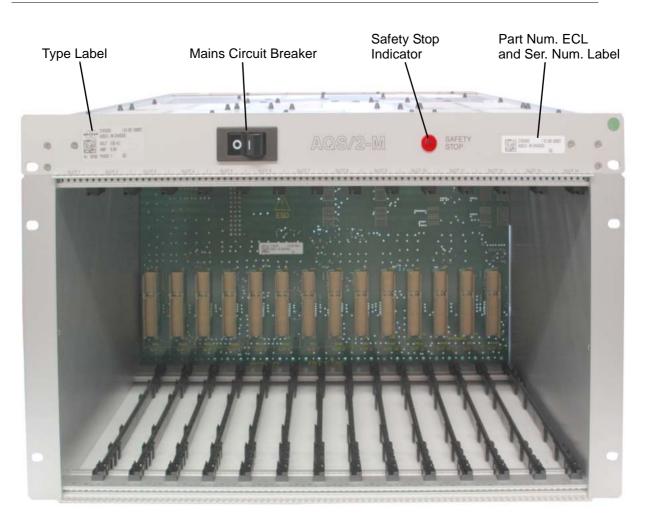
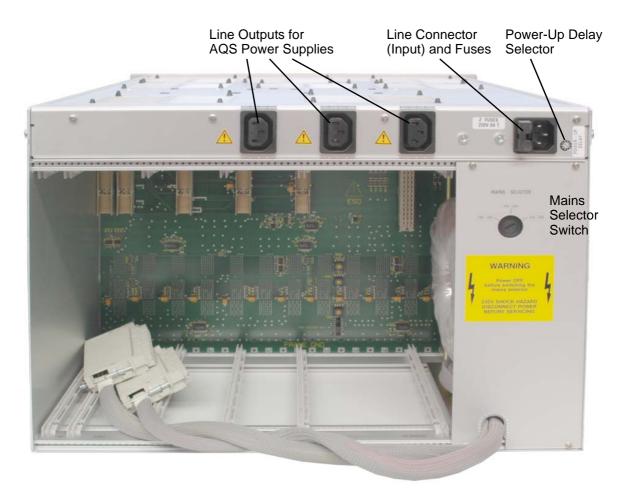
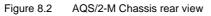





Figure 8.1 AQS/2-M Chassis front view

# 8.3 Rear View

The rear view shows the housing of the power supply boards. On the right hand side is the transformer housing with the appropriate AC cables.







Only connect AQS power supply units to chassis rear connectors.

- ► AQS POWER SUPPLY DIGITAL 350W (H9489)
- ► AQS PSM5 POWER SUPPLY MODULE (Z102023)
- ► AQS PSM HPLNA (Z104783)
- ► AQS PSM ADM (Z107413)

Material damage may result if other units or devices are connected.

# 8.4 AC Power Line Fuses

The AQS/2-M is protected by two fuses. They are located in a removable fuse holder next to the AC power connector. For replacement always use time-lag T fuse types with high breaking capacity H.

# 8.5 **Power-Up Delay**

The power-up delay can be selected with a rotary switch next to the power connector at the back of the mainframe. Please set the switch according to your configuration as described in the configurations section within this manual. The minimal power-up delay is 0.5 sec due to the inrush current limiter circuit.

| Setting      | 0   | 1 | 2 | 3 | 4 | 5  | 6  | 7  | 8  | 9  |
|--------------|-----|---|---|---|---|----|----|----|----|----|
| Delay in sec | 0.5 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 |

Table 8.1 Power-Up Delay

# 8.6 Inrush Current Limiter

The mainframe is equipped with an inrush current limiter which limits the peak current to approx. 20 A. The limiter is always active, even after a "hot start" when the chassis is switched OFF / ON within a short timespan.

# 8.7 Mains Power Failure

In the event of an AC power loss in the spectrometer cabinet, the chassis turns itself of and restarts automatically when the power is restored.

To prevent short time power losses an external UPS (uninterruptible power supply) must be used.

# 8.8 Diagnostics & Setup

The AQS/2-M mainframe has several diagnostic and setup features controlled by the AQS controller and accessible via the AQS chassis page in the DRU service web.

- Device status (read only)
- Fan and power supply diagnostics (read only)
- Pulse switch setup (see page 90)

| Diagno | ostic and | ER BRUKER        |
|--------|-----------|------------------|
| Fan    | Status    | Chassis Top View |
| 1      | running   |                  |
| 2      | running   | <b>1</b>         |
| 3      | running   | <b>2 4 0</b>     |
| 4      | running   | 63 63 63         |
| 5      | running   |                  |
| 6      | running   | 3005060          |
| 0      | running   | ER CRER          |
| 8      | running   | BRUKE            |
| Update | Update    |                  |

#### Setup

| Pulse Switch Setting * | Switch1 | Switch2 Switch3 | click picture to enlarge |
|------------------------|---------|-----------------|--------------------------|
|                        | Change  | Change Change   |                          |

Figure 8.3 DRU Service Web: AQS Chassis Diagnostic

# 8.9 Safety Stop

If the temperature inside the mainframe exceeds the absolute maximum limit of save operation, the mains supply to the chassis is switched off automatically (and without warning) to prevent permanent damage to the AQS units. This "Safety Stop" condition is indicated with a red lamp on the front panel as long as the mains supply is present at the power connector.

**1** Make sure to establish and remove the cause of the Safety Stop condition before using the spectrometer again.

The Safety Stop can be caused by a fan or power supply failure within the mainframe. Other causes can be inefficient cooling air supply to the mainframe or exceeding ambient air temperatures within or around the spectrometer cabinet.



# 

Accident hazard from contact with hot surfaces on the unit.

In case of a fan failure the surface of the subunits within the mainframe become very hot before the Safety Stop condition is triggered.

- Let the units cool down before handling
- Contact Bruker service personnel if you cannot establish the cause of the failure.

#### 8.9.0.1 Safety Stop Reset

The chassis can be returned to its normal working state by switching the mains circuit breaker manually OFF and ON. An AC power loss also resets the chassis to its working state.

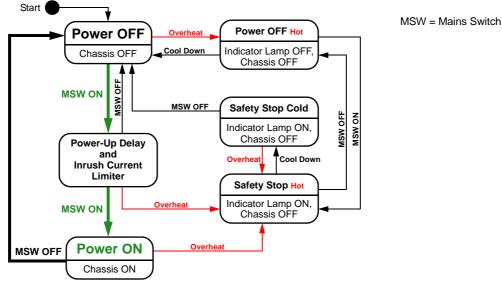



Figure 8.4 Safety Stop State Diagram

8.10 AC Wiring

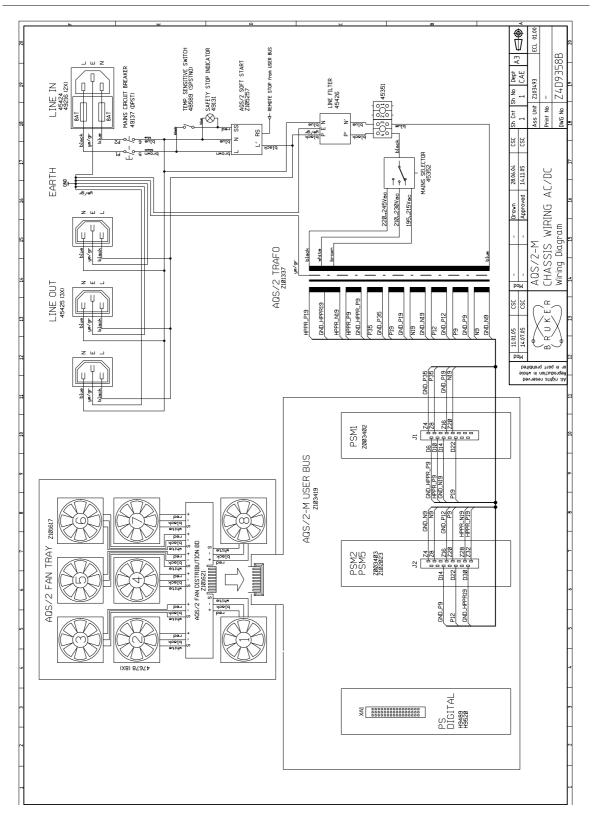



Figure 8.5 AQS/2-M AC Wiring

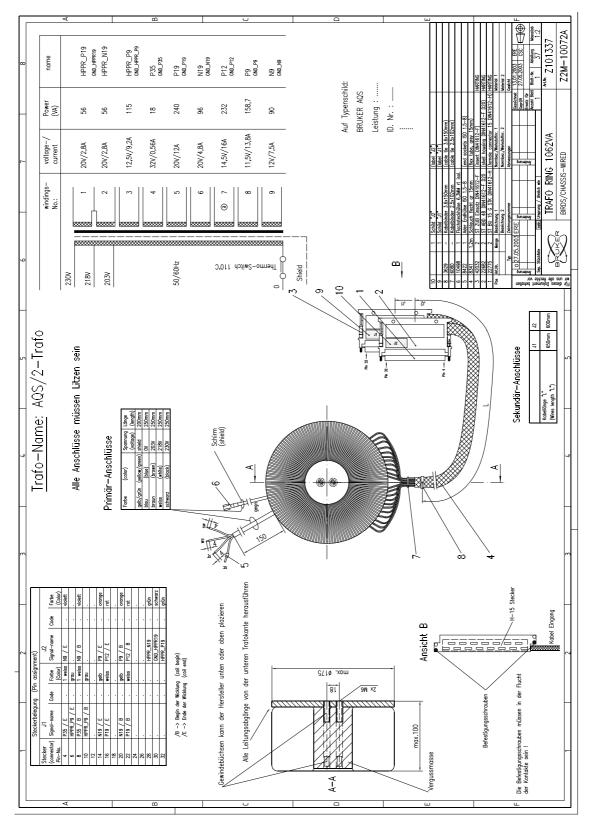



Figure 8.6 AQS/2 Transformer

# 8.11 Backplane (User Bus)

The user bus is designed to route all signals and power supplies to the specific boards. It represents the ground point of the AQS/2-M and is connected to the chassis frame. For detailed information about user bus signals see "AQS/3+ Signal and Information Paths" on page 27, "Synchronous Signals" on page 30 and "20 MHz Clock Distribution" on page 37.

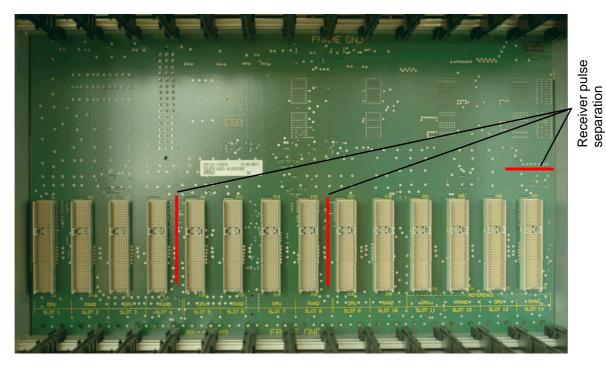



Figure 8.7 AQS/2-M User Bus (front view)

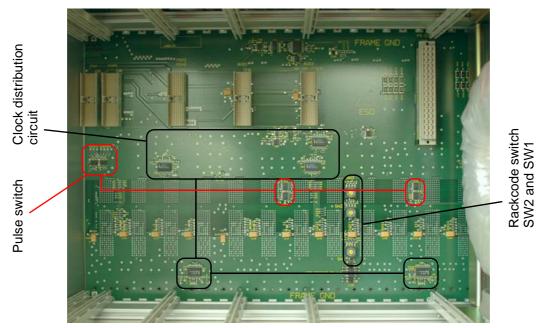



Figure 8.8 AQS/2-M User Bus (rear view)

# 8.11.1 Pulse Switch for Receiver Pulse Separation

The user bus is equipped with three pulse switches. One is located between slots 4 and 5, another between slots 8 and 9 and the third between slot 14 and the PSD slot. All switches are either controlled via the AQS controller or with a rotary switch (SW2) on the rear side of the user bus.

The switch status can be checked and set via the AQS controller.

| Setup                  |         |         |         |              |
|------------------------|---------|---------|---------|--------------|
| Pulse Switch Setting * | Switch1 | Switch2 | Switch3 | e to enlarge |
|                        | Change  | Change  | Change  | <br>         |

Figure 8.9 DRU Service Web: AQS Chassis Setup

#### 8.11.2 Rackcode Settings

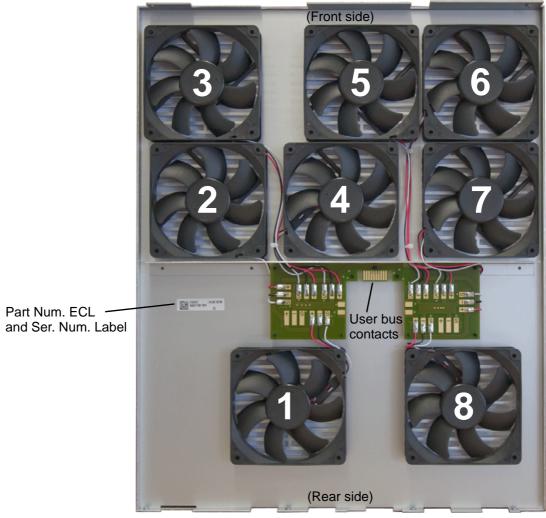
The rackcode must be set according to the chassis configuration as described in the configurations section of this manual.

| Switch <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Function                                                                                                     | Setting            |             |             |             |             |             |        |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------|-------------|-------------|-------------|-------------|-------------|--------|-------------|
| SW2 $SW2 = \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{5} \\ $ | Chassis Number<br>(for DRU IP-Port numbering)                                                                | Chassis Number - 1 |             |             |             |             |             |        |             |
| SW2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Clk Source BACK = RF-Splitter<br>Clk Source FRONT = REF-Board                                                | <b>0</b><br>8      | 1<br>9      | 2<br>A      | 3<br>B      | 4<br>C      | 5<br>D      | 6<br>E | 7<br>F      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pulse Switch 1 = Slot 4 // 5 <sup>b</sup><br>Pulse Switch 2 = Slot 8 // 9<br>Pulse Switch 3 = Slot 14 // PSD | 0<br>0<br>0        | X<br>0<br>0 | 0<br>X<br>0 | X<br>X<br>O | 0<br>0<br>X | X<br>O<br>X | 0 X X  | X<br>X<br>X |
| SW1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AQS Controller                                                                                               | 2 = DRU in Slot 1  |             |             |             |             |             |        |             |

Table 8.2Rackcode Switch Function

a. Example setting: Rackcode 0x102 = Chassis no. is 2, clock source is RF-Splitter, all pulse switches are remote controlled and the DRU in Slot 1 is AQS controller.

b. O = open or remote controlled, X = permanently closed


# 8.12 Fans

The fans are located in the fan tray on top of the mainframe. They are supplied and controlled via the user bus. The fan tray is serviceable without removing the mainframe from the spectrometer cabinet. It has been introduced with the AQS/2 chassis, hence the name AQS/2 FAN TRAY. Since then adaptions to newer chassis generations have been made.

**1** Only use AQS/2 FAN TRAY (Z101617) with **ECL**  $\ge$ **02** as a replacement!

The "Fan Tray Service Instructions" can be found in the "Maintenance" section of this manual.

Single fans can be replaced using the AQS/2+AQS/3 CHASSIS FAN SERVICE KIT (Z117040).



#### Figure 8.10 Fan Tray (Bottom view)

# 9 Power Supply System

# 9.1 System Overview

#### 9.1.1 AQS/3+ Chassis PSM

The power supply system of the AQS/3+ chassis consists of one ac/dc, two dc/dc and several auxiliary ac/dc power supply modules (PSM). The auxiliary power supplies are used according to the chassis configuration.

| Туре               | Part Number          | Description                           |
|--------------------|----------------------|---------------------------------------|
| AC/DC              | Z121242              | AQS PSM-48V 600W POWER SUPPLY UNIT    |
| DC/DC              | Z133424 <sup>a</sup> | AQS PSM-A2 POWER SUPPLY MODULE        |
|                    | Z121625              | AQS PSM-D POWER SUPPLY MODULE         |
| A 11               | Z104783              | AQS PSM HPLNA                         |
| Auxiliary<br>AC/DC | Z107413              | AQS PSM ADM                           |
| AC/DC              | W1345050             | POWER SUPPLY COMPACT 28V 20A (PS-BLA) |

Table 9.1 AQS/3+ power supply part numbers

a. for HPPR/2 assemblies with COVER modules Z003356 or Z103945 use AQS PSM-A Z121623

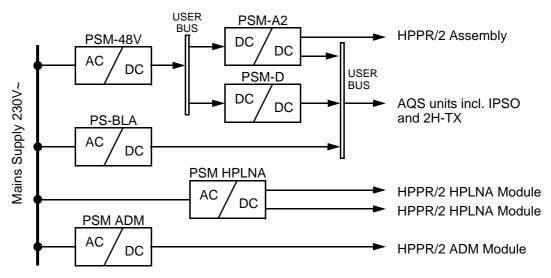



Figure 9.1 Power supply system overview

## 9.1.2 AQS/2-M Chassis PSM

The power supply system of the AQS/2-M chassis consists of one ac/dc, two linear and several auxiliary ac/dc power supply modules. The linear PSM are fed from a transformer in the mainframe.

The auxiliary power supplies are the same as in the AQS/3+ chassis.

| Туре   | Part Number | Description                   |
|--------|-------------|-------------------------------|
| AC/DC  | H9520       | AQS POWER SUPPLY DIGITAL 450W |
| Lincor | Z003403     | AQS PSM2 POWER SUPPLY MODULE  |
| Linear | Z102023     | AQS PSM5 POWER SUPPLY MODULE  |

Table 9.2 AQS/2-M power supply part numbers

## 9.1.3 **PSM Summary Table**

| Shortname                                            |                       |                       | Supp                 | ly Outp               | ut                   |                          | Power              | Load                                                                    |
|------------------------------------------------------|-----------------------|-----------------------|----------------------|-----------------------|----------------------|--------------------------|--------------------|-------------------------------------------------------------------------|
| PSM-48V                                              | <u>+48V</u><br>12.5 A |                       |                      |                       |                      |                          | 600 W              | PSM-A, PSM-D                                                            |
| PSM-A / A2                                           | <u>+9V</u><br>13 A    | <u>-9V</u><br>1.5 A   | <u>+19V</u><br>5.0 A | <u>-19V</u><br>2.0 A  | <u>+35V</u><br>0.5 A | <u>+9V HPPR</u><br>5.0 A | 300 W <sup>a</sup> | AQS units including<br>AQS IPSO and AQS<br>Preamp<br>ext. HPPR Assembly |
| PSM-D                                                | <u>+12V</u><br>8.0 A  | <u>+5V</u><br>25 A    | <u>+3.6V</u><br>25 A | <u>+3.3V</u><br>8.0 A |                      |                          | 300 W              | AQS units, Fan                                                          |
| Supply on AQS/3+<br>USERBUS<br>(supplied from PSM-A) | <u>+2V</u><br>0.5 A   | <u>-2.5V</u><br>0.5 A | <u>-12V</u><br>0.2 A |                       |                      |                          | 5 W                | AQS units                                                               |
| PS DIGITAL 450W                                      | <u>+5V</u><br>50A     | <u>+5V</u><br>14A     | <u>+12V</u><br>9A    | <u>-12V</u><br>3A     |                      |                          | 460W               | Fan, USER BUS                                                           |
| PSM1                                                 | <u>+2V</u><br>0.5A    | <u>-2.5V</u><br>0.2A  | <u>+19V</u><br>6.4A  | <u>-19V</u><br>2.5A   | <u>+9V</u><br>5A     | <u>+35V</u><br>0.2A      | 220W               | USER BUS<br>HPPR                                                        |
| PSM5                                                 | <u>+19V</u><br>1.5A   | <u>-19V</u><br>1.5A   | <u>+12V</u><br>17A   | <u>+9V</u><br>7.3A    | <u>-9V</u><br>3.9A   |                          | 470W               | USER BUS<br>HPPR                                                        |
| PSM HPLNA                                            | <u>+500V</u><br>0.2 A | <u>+20V</u><br>0.1 A  | <u>-5V</u><br>3.0 A  |                       |                      |                          | 117 W              | HPPR/2 HPLNA<br>(max. 2 modules)                                        |
| PSM ADM                                              | <u>+7.5V</u><br>10 A  | <u>+19V</u><br>2.0 A  | <u>-19V</u><br>1.0 A | <u>-36V</u><br>1.0 A  | <u>-60V</u><br>1.0 A |                          | 228 W              | HPPR/2 ADM                                                              |
| PS BLA 28V                                           | <u>+28V</u><br>20 A   |                       |                      |                       |                      |                          | 560 W              | internal BLA<br>(pulsed power)                                          |

 Table 9.3
 Power supply module output specification (short form)

a. The total output power of the module shall not exceed 300W.

# 9.2 AQS PSM-48V 600W POWER SUPPLY UNIT

**1** This unit is delivered as an integral part of the AQS/3+ chassis. It can be replaced for repairs as a field exchangeable unit.

The PSM-48V unit consists of an ac-input filter and a compact switched mode AC/DC power supply module with a singel 48V output. The ac-input connects directly to the internal cable harness of the chassis. The dc-output connects to the backplane.

The supply status is not indicated on the front panel.

The units has no serviceable parts or fuses.



Figure 9.2 Overview PSM-48V <sup>a</sup> a. The interior view of the unit may look different depending on subcomponents from other manufacturers.

# 9.3 AQS PSM-A2 POWER SUPPLY MODULE

The PSM-A2 module consists of several hybrid DC/DC power supplies on a printed circuit board. The 48V input and most outputs connect to the backplane.

The module incorporates the functions of the former AQS PSD/3 board. The connectors for the external HPPR/2 assembly including it's power supply, the power amplifier blanking pulses and the EMERGENCY and TPF0 signals are on the front panel.

The supply status is indicated with one LED on the front panel. It can also be checked via the AQS chassis page on the DRU service web.

The units has no serviceable parts except two fuses.

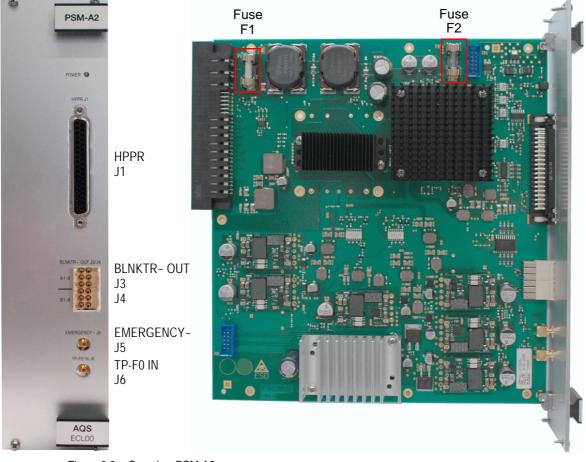



Figure 9.3 Overview PSM-A2

| Supply          | Fuse | Mat. Nb. | Value    |
|-----------------|------|----------|----------|
| +48V Input      | F1   | 49216    | 8.0 AT H |
| +9V HPPR Output | F2   | 1801422  | 5.0 AT   |

Table 9.4 Fuses PSM-A2

| Pin | Signal    | Pin | Signal          | Pin | Signal         | Pin | Signal         |
|-----|-----------|-----|-----------------|-----|----------------|-----|----------------|
| 1   | N19V_HPPR | 11  | GND_HPPR        | 20  | N19V_HPPR      | 30  | GND_HPPR       |
| 2   | N19V_HPPR | 12  | GND_HPPR        | 21  | N19V_HPPR      | 31  | BFB_RXHPPR     |
| 3   | GND       | 13  | BFB_RX+_HPPR    | 22  | GND            | 32  | BFB_TXHPPR     |
| 4   | P19V_HPPR | 14  | BFB_TX+_HPPR    | 23  | P19V_HPPR      | 33  | EMERGENCY_STOP |
| 5   | P19V_HPPR | 15  | EMERGENCY_STOP~ | 24  | P19V_HPPR      | 34  | GND_HPPR       |
| 6   | GND       | 16  | GND_HPPR        | 25  | GND            | 35  | INTRLVE_INCR~  |
| 7   | GND_HPPR  | 17  | INTRLVE_INCR    | 26  | P9V_HPPR_SENSE | 36  | LOCK_PP~       |
| 8   | P9V_HPPR  | 18  | LOCK_PP         | 27  | P9V_HPPR       | 37  | RGP_HPPR~      |
| 9   | P9V_HPPR  | 19  | RGP_HPPR        | 28  | P9V_HPPR       |     |                |
| 10  | P9V_HPPR  |     | ·               | 29  | GND_HPPR_SENSE |     |                |

Table 9.5 Pinout HPPR connector J1

| Pin | Signal   | Pin | Signal   | Pin | Signal   | Pin | Signal |
|-----|----------|-----|----------|-----|----------|-----|--------|
| A1  | BLNKTR1~ | A4  | BLNKTR4~ | B1  | BLNKTR7~ | B4  | NC     |
| A2  | BLNKTR2~ | A5  | BLNKTR5~ | B2  | BLNKTR8~ | B5  | NC     |
| A3  | BLNKTR3~ | A6  | BLNKTR6~ | B3  | NC       | B6  | NC     |

Table 9.6Pinout BLNKTR~ OUT connector J3 / J4

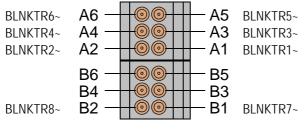



Figure 9.4 Front view BLNKTR~ OUT connector J3 / J4

# 9.3.1 AQS PSM-A POWER SUPPLY MODULE

The PSM-A is functionally the same as the PSM-A2, except for different HPPR connectors. It is only used for HPPR/2 assemblies with COVER modules Z003356 or Z103945.

Fuse information see Table 9.4.

# 9.4 AQS PSM-D POWER SUPPLY MODULE

The PSM-D module consists of several hybrid DC/DC power supplies on a printed circuit board. The 48V input and all outputs connect to the backplane.

The supply status is indicated with one LED on the front panel. It can also be checked via the AQS chassis page on the DRU service web.

The units has no serviceable parts except one fuse.



Figure 9.5 Overview PSM-D

| Supply     | Fuse | Mat. Nb. | Value    |
|------------|------|----------|----------|
| +48V Input | F1   | 49216    | 8.0 AT H |

Table 9.7 Fuses PSM-D

# 9.5 AQS POWER SUPPLY DIGITAL

The unit consist of a compact switched mode power supply module with multiple outputs. The ac-input cable connects to the line output socket at the rear side of the chassis. The dc-outputs connect to the backplane.

The supply status is indicated with LED's on the front panel.

The unit has no serviceable parts or fuses.



Figure 9.6 View POWER SUPPLY DIGITAL

# 9.6 AQS PSM1 POWER SUPPLY MODULE

The linear power supply module PSM1 consist of rectifiers and linear regulators mounted on an open print. The ac-inputs connects directly to the transformer in the chassis via a front panel connector. The dc-outputs connect to the backplane.

The supply status is indicated with LED's on the front panel.



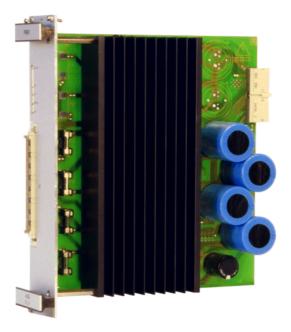



Figure 9.7 Overview PSM1

| SUPPLY   | FUSE    | CAT_NM | VALUE               |  |
|----------|---------|--------|---------------------|--|
| +19V     | F3 2259 |        | 8.0 AT              |  |
| -19V     | F4      | 2256   | 3.15 AT             |  |
| HPPR +9V | F5      | 4907   | 5 AT                |  |
| +35V     | F6      | 2248   | 0.5 AT <sup>a</sup> |  |

Table 9.8Fuses PSM1a. prior fuse was 0.315 AT

# 9.7 AQS PSM5 POWER SUPPLY MODULE

The power supply module PSM5 consist largely of rectifiers and linear regulators mounted on an open print. The ac-inputs connects directly to the transformer in the chassis via a front panel connector. The +12V supply is taken from a compact switched power supply module. It's ac-input cable connects directly to the line output socket at the rear side of the chassis. All dc-outputs connect to the backplane.

The supply status is indicated with LED's on the front panel.

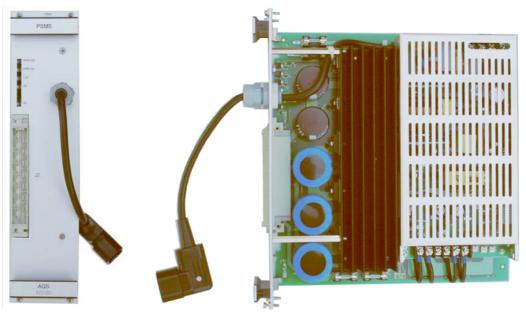



Figure 9.8 Overview PSM5

| SUPPLY    | FUSE | CAT_NM | VALUE              |  |
|-----------|------|--------|--------------------|--|
| HPPR +19V | F1   | 2254   | 2AT                |  |
| HPPR -19V | F2   | 2254   | 2AT                |  |
| +9V       | F3   | 2260   | 10 AT <sup>a</sup> |  |
| -9V       | F4   | 4907   | 5AT                |  |

Table 9.9 Fuses PSM5

a. prior fuse was 8.0 AT

```
i
```

The +12V supply from the switched power supply module has no serviceable fuse.

# 9.8 AQS PSM HPLNA

The PSM HPLNA is a compact switched mode AC/DC power supply module with multiple outputs. The input cable connects directly to the line output socket at the rear side of the chassis. The dc-outputs connect to two D-SUB connectors with high-voltage pins on the front panel.

The supply status is indicated with LED's on the front panel.

The unit has no serviceable parts or fuses.

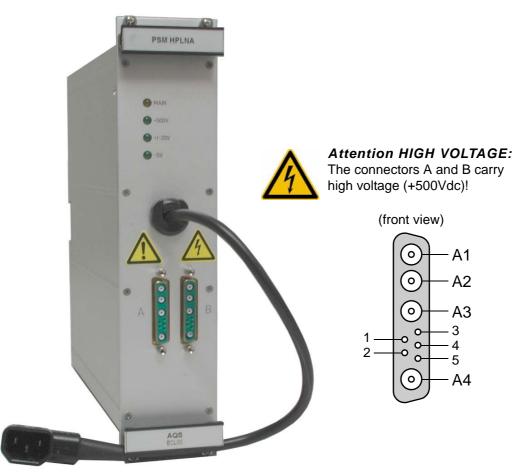



Figure 9.9 View PSM HPLNA

| Pin | Signal           | Pin | Signal      | Pin | Signal     |
|-----|------------------|-----|-------------|-----|------------|
| A1  | + 500V           | A4  | GND1 (500V) | 3   | SENSE GND2 |
| A2  | + 20V (floating) | 1   | SENSE -5V   | 4   | GND2 (-5V) |
| A3  | - 20V (floating) | 2   | -5V         | 5   | NC         |

Table 9.10 Pinout ADM POWER connector

# 9.9 AQS PSM ADM

The PSM ADM is a compact switched mode AC/DC power supply module with multiple outputs. The input cable connects directly to the line output socket at the rear side of the chassis. The dc-outputs connect to an UT0 connector with 12 dc pins on the front panel.

The supply status is indicated with LED's on the front panel.

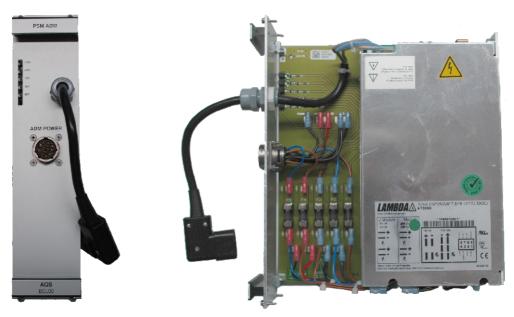



Figure 9.10 View PSM ADM

| Supply | Fuse | Mat. Nb. | Value  |
|--------|------|----------|--------|
| +7.5V  | F1   | 1801424  | 10 AT  |
| +19V   | F2   | 1801716  | 2.0 AT |
| -19V   | F3   | 1802112  | 1.0 AT |
| -36V   | F4   | 1802112  | 1.0 AT |
| -60V   | F5   | 1802112  | 1.0 AT |

| Table 9.11 | Fuses PSM ADM |
|------------|---------------|
|------------|---------------|

| Pin | Signal | Pin | Signal | Pin | Signal | Pin | Signal         |
|-----|--------|-----|--------|-----|--------|-----|----------------|
| А   | GND    | D   | P7V5   | G   | GND    | К   | SHIELD (Earth) |
| В   | GND    | E   | P19V   | Н   | N36V   | L   | PSENSE_P7V5    |
| С   | P7V5   | F   | N19V   | J   | N60V   | М   | NSENSE_P7V5    |

Table 9.12 Pinout ADM POWER connector

# 9.10 AQS POWER SUPPLY BLA 28V 20A

The PS BLA is a compact switched mode AC/DC power supply module with a single 28V output. The ac-input cable connects to the line output socket at the rear side of the chassis. The dc-output connect to the backplane.

The supply status is indicated with LED's on the front panel.

The units has no serviceable parts or fuses.



Figure 9.11 View PS BLA 28V

# **10 AQS REF/3**

# 10.1 Introduction

The AQS Reference Board 3, called "REF/3", developped from 2009 to 2012, replaces the AQS Reference Boards for RXAD. A new phase synchronisation mechanism named "Synchro Reset" has been implemented. The REF/3 is not backward compatible, requires SGU/3 and BSMS/2 Lock Transceiver and must be placed in slot 3 of an AQS rack.

One REF/3 can supply up to four SGU/3s, totalling eight TX channels. The not yet released REF/3-M is planned to double that number.

The heart of REF/3 still is a 10MHz OCXO (Oven Controlled Crystal Oscillator).

# 10.2 Description

All NMR frequencies and timings are generated by the REF/3 or derived from it. As there are:

- 10MHz signal for ELCB
- 20MHz clock for user backplane and IPSO
- 160MHz and 320MHz for BSMS/2 Lock Transceiver
- LO frequency (720MHz) for RXAD receiver
- Frequency mix for up to four (eight<sup>1</sup>) SGU/3
- "Synchro Reset" to assure phase coherence of all NMR signals, even between different racks. Cable lengths are not absolutely critical anymore. This "Synchro Reset" is a gap of 150ns length in the 960MHz signal on J6..J9 and can be triggered on the REF/3 by a SBSB command.

1. REF/3-M

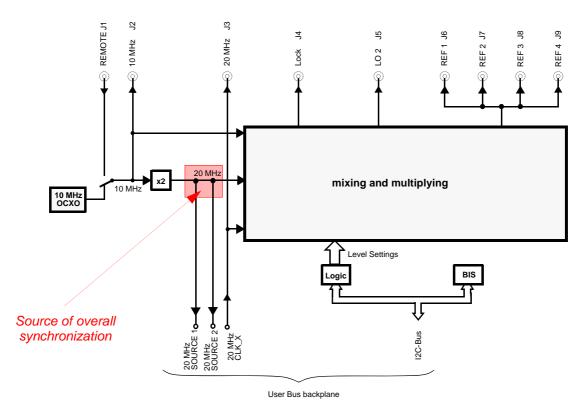



Figure 10.1 Block diagram of AQS Reference Board 3

# 10.2.1 Overall Synchronisation

The 20MHz signal generated by the first frequency doubler on the REF/3 is transmitted to the backplane as a differential ECL signal (20MHz\_SOURCE1 and 2). This signal is refreshed on the backplane and distributed to all the slots of the user bus (signals 20MHz\_CLK\_X and 20MHz\_CLK\_X). The REF/3 picks its own 20MHz clock from the backplane again and provides the IPSO with it (SMA connector J3). All clock frequencies in both the analog and digital sections of the AQS are synchronized with the 20MHz clock of the REF/3.

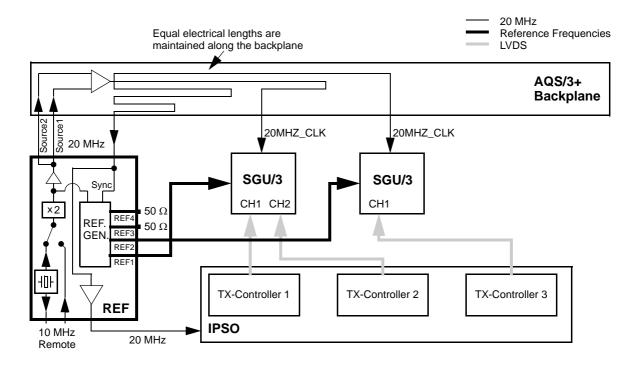



Figure 10.2 Overall synchronisation of a 3 channel spectrometer with an AQS/3+ chassis

## 10.2.2 Cable Lengths

Due to the new Synchro Reset phase coherence mechanism, equal cable lengths are not required anymore. However, cables should always be as short as possible to minimize insertion loss.

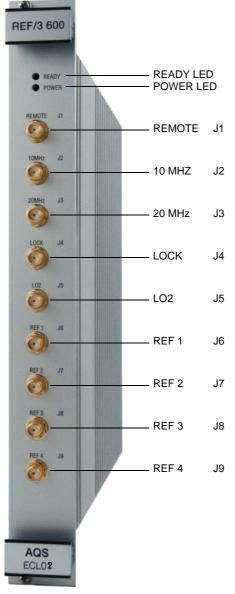
#### 10.2.3 Bus Interfaces

The AQS Reference Board is controlled by the  $I^2C$  bus on the backplane. This bus is used to:

- read BIS date (Bruker Information System)
- allow the AQS controller (DRU in slot 1) to set frequency output power levels and ready LED and to read status of power supply voltage and SGU/3 output power level self diagnosis.

# **10.3 Unit Configuration / Jumpers**

The unit is configured through the "cf" routine. No jumper setting required.


# AQS REF/3

## 10.3.1 Differences to Previous Version

Phase Noise performance has been improved, power supply voltage and SGU/3 output power level self diagnosis added.

There is a new phase synchronisation mechanism called "Synchro Reset". New frequencies for SGU/3 are generated. REF/3 is neither backward compatible to SGU/2 or older nor to BSMS Lock Receiver/Transmitter.

# 10.4 Front Panel Wiring / Display



#### Figure 10.3 REF/3 front panel

#### J1 REMOTE IN

By applying a 10MHz sine wave clock signal of power 8dBm...14dBm to J1, the OCXO on the Reference Board ist switched off and the applied 10MHz signal is used instead for frequency generation.

#### J2 10MHz OUT

+7dBm (1.4V  $_{pp} @ 50 \Omega)$  sine wave signal for ELCB

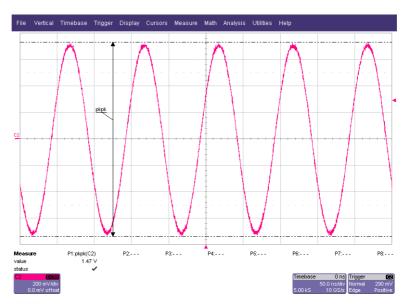



Figure 10.4 Waveform of signal at J2

#### J3 20MHz OUT

 $0.9V_{pp} @ 50\Omega$  square wave signal (+5dBm @ 20MHz fundamental wave) for IPSO



Figure 10.5 Waveform of signal at J3

#### J4 LOCK OUT

Phase locked mix of two sine wave signals: -0.5dBm (0.6V  $_{pp}$  @ 50 $\Omega$ ) @ 160MHz and - 3.5dBm (0.42V  $_{pp}$  @ 50 $\Omega$ ) @ 320MHz



Figure 10.6 Waveform of signal at J4

### J5 LO2 OUT

+4dBm (1V\_{pp} @ 50\Omega) sine wave signal @ 720MHz

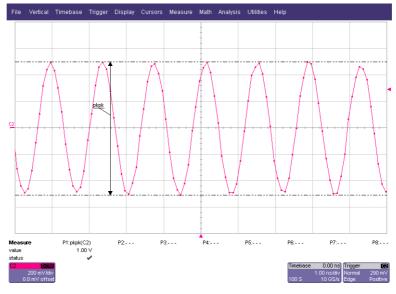



Figure 10.7 Waveform of signal at J5

#### J6-J9 REF1-4 OUT

Phase locked mix of two tones: 960MHz and 1280MHz, power level -4dBm (0.4V  $_{\rm pp}$  @ 50 $\Omega$ ) each. New feature: Synchro Reset.

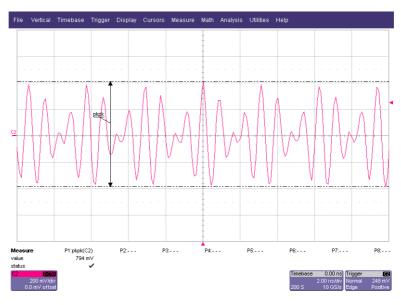



Figure 10.8 Waveform of signal at J6...J9

#### LEDs

There are two LEDs. The ready LED is set by the AQS controller as soon as all signal output power levels are set to their appropriate value. The power LED is set as long as the power supply voltage self test is successful. This feature is hard wired. In case of power supply failure, the power LED switches off at once.

# AQS REF/3

## 10.5 Part Numbers

AQS REERENCE BOARD/3 600: P/N Z116985

Not released yet: AQS REERENCE BOARD/3 1200 : P/N Z126572 AQS REERENCE BOARD/3-M 1200: P/N Z126573

# 10.6 Troubleshooting / Unit replacement / Tips'n Tricks

- Unused REF outputs (J6-J9) have to be terminated by 50Ω resistors. Other outputs can be left open.
- If you suspect a broken OCXO, apply your own 10MHz sine wave signal to J1 ("REMOTE"). Remote signal power level should be between +8dBm and +14dBm at 50Ω.
- The power supply voltage self diagnosis is hard wired. In case of power supply failiure, the power LED switches off at once.

# 10.7 Specifications

Most important specification: Phase noise. Maximum values for REF/3 600, J6..J9, 1280MHz:

-75dBc @ 10Hz Offset

-95dBc @ 100Hz

-110dBc @ 1kHz

-120dBc @ 10kHz

Accuracy of output power levels: ±0.5dB

### 10.8 Power Suppy

The Reference Board 3 uses only +9V and +19V from the backplane. See "Backplane Connector REF/3" on page 113. The power LED on the front panel inidcates that all voltages generated on the REF/3 from backplane +9V and +19V are present and at correct level.

### 10.8.1 Backplane Connector

The table below shows the pin assignment for the rear 110 pin connector. Note the presence of the source and clock signals.

|    | z   | а             | b             | С               | d   | е  | f   |
|----|-----|---------------|---------------|-----------------|-----|----|-----|
| 1  | GND | GND           | NC            | NC              | GND | NC | GND |
| 2  | GND | 20MHz_SOURCE1 | GND           | NC              | NC  | NC | GND |
| 3  | GND | GND           | 20MHz_SOURCE2 | I2C_STATUS_INT~ | GND | NC | GND |
| 4  | GND | 20MHZ_CLK_X   | GND           | NC              | NC  | NC | GND |
| 5  | GND | GND           | 20MHz_CLK_X~  | NC              | GND | NC | GND |
| 6  | GND | NC            | GND           | NC              | NC  | NC | GND |
| 7  | GND | NC            | NC            | NC              | GND | NC | GND |
| 8  | GND | NC            | GND           | NC              | NC  | NC | GND |
| 9  | GND | NC            | NC            | NC              | GND | NC | GND |
| 10 | GND | NC            | GND           | NC              | NC  | NC | GND |
| 11 | GND | NC            | NC            | NC              | GND | NC | GND |

# Key Area

| 15 | GND | SLOT2 | SLOT1 | SLOT0   | GND | NC  | GND |
|----|-----|-------|-------|---------|-----|-----|-----|
| 16 | GND | NC    | GND   | I2C_SDA | NC  | GND | GND |
| 17 | GND | NC    | NC    | I2C_SCL | GND | NC  | GND |
| 18 | GND | NC    | GND   | NC      | NC  | GND | GND |
| 19 | GND | NC    | NC    | NC      | GND | NC  | GND |
| 20 | GND | NC    | GND   | NC      | NC  | GND | GND |
| 21 | GND | NC    | NC    | P9V     | P9V | P9V | GND |
| 22 | GND | NC    | NC    | NC      | NC  | NC  | GND |
| 23 | GND | NC    | P19V  | NC      | NC  | NC  | GND |
| 24 | GND | NC    | P19V  | NC      | NC  | NC  | GND |
| 25 | GND | NC    | P19V  | NC      | NC  | NC  | GND |

Table 10.1 Backplane Connector REF/3

# AQS REF/3

# 11 AQS RXAD/2

# 11.1 Introduction

The AQS RXAD/2 is a high dynamic range receiver for NMR with integrated analog-todigital converter (ADC). The AQS RXAD/2 is available for two different nuclei ranges (RXAD/2 600 and RXAD/2 1000). The AQS RXAD/2 is fully integrated in the AQS/3+ concept and runs in conjunction with the AQS SGU/3, AQS REF/3 and AQS DRU. The AQS RXAD/2 is located in the analog section of the AQS rack. The board is physically as long as the other AQS units and attaches to the user bus (backplane) directly.

As the name suggests the AQS RXAD/2 receiver is a further derivative of the AQS RXAD. The RXAD/2 unit has an enhanced dynamic range at low RG's and includes the broadband ability of the former AQS RXAD-BB (no special solids version anymore).

The AQS RXAD/2 has a sufficient gain range to be set in 1 dB steps. The correct setting of the RF gain will ensure that the receiver output is matched to the ADC range.

The entire receiver function is controlled by a microprocessor. This allows accurate gain setting, phase/amplitude and dc offset adjustment in the quadrature-module via a RS485-Interface which runs over the backplane. Calibration and production data (BIS, Bruker Board Information System) are stored in a EEPROM flash on the board.

A vital element of any RF receiver is the quality of the shielding to maximize the suppression of noise. In the design of this unit special attention has been paid to maximal clean signal transmission etc. The AQS RXAD/2 is mounted in a 19" RF cassette type case.

All communication with the AQS RXAD/2 take place using the SBSB1 link along the backplane. This enables the application of the UniTool which is a software diagnostic tool and is also used for accessing other devices like SGU/3 or HPPR/2.

The AQS RXAD/2 is also initialized and supervised by the AQS controller (AQS DRU) using the separate internal RS485 bus on the AQS User Bus.

In multi receiver systems each channel is equipped with a AQS RXAD/2 and DRU and its SGU/3 channel for LO (local oscillator) signal generation.

# 11.2 Functions/Description

The AQS RXAD/2 has four main functions, which are to amplify the signal from HPPR, to down convert it, to match the input range of the ADC and digitize the quadrature signal. The vital elements of this are the linear amplification of all frequencies as well as to guarantee the precise phase relationship of all RF signals.

The RF input is amplified in several stages to increase the dynamic range. The current LO frequency for the first mixer stage is generated in the LO frequency synthesizer.

At the final section the IF signal is split into two channels with phase difference of 90 degrees, a standard method well known as the classical quadrature detection. In order to ensure that the two channels provide identical amplification, slight adjustment to the phase and gain of these channels may be necessary. This can be done via UniTool. Channel A and B are connected directly to the integrated ADC.

The integrated ADC converts the quadrature signal at a very high sampling rate and transmits the data to the AQS DRU over a high speed data link on the backplane.

DC offset is pre-adjusted for proper control of the ADC input range and can be fineadjusted using UniTool. The adjusted values can be saved in the on-board non-volatile memory.

In addition, the well known DQD-mode allows down-converting without quadrature and DC-signals.

During acquisition full control of the RXAD/2 sections (gain, frequency, sampling etc.) is maintained by two complex FPGA (field programmable gate array) that handles the real-time behavior. The FPGA real-time circuitry is controlled by external gating and pulse signals from the backplane (AQS/2 User Bus). Control information is passed on from the IPSO and the actual Observe-SGU in order to the channel concept.

The on-board microcontroller is used for initialization and RS485 communication.

For multi receiver systems with several preamplifiers, the gating pulse for the HPPR (RGP\_HPPR~) from the backplane is buffered and is fed separately to the front panel of the AQS RXAD (RGP\_HPPR~\_OUT J4).

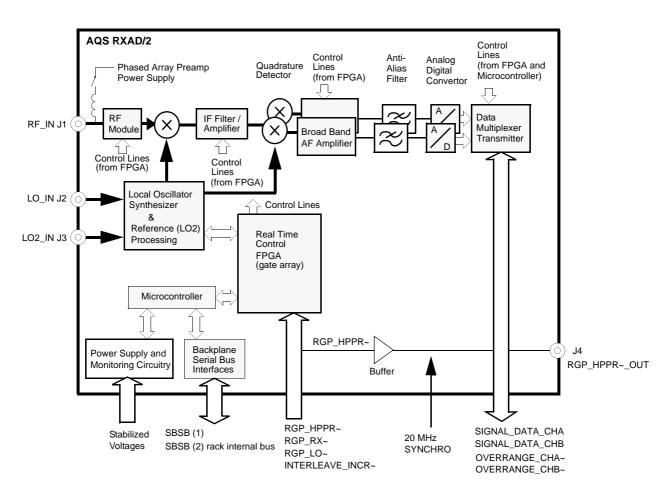



Figure 11.1 RXAD/2 Block diagram

### 11.2.1 Power Supply and Monitoring

All voltages supplied from the backplane are filtered and stabilized on the RXAD/2. Operation of the on-board power stabilization is monitored and indicated by the green LED on the front labeled POWER. If one of the AQS power supply voltages used by the AQS RXAD/2 fails the monitoring circuit will turn the LED off.

#### 11.2.2 Reset

The AQS RXAD/2 controller is normally in sleep mode (reset state) to prevent disturbance and spikes in the spectra. The 20 MHz microprocessor clocking frequency is also switched off. The controller will be restarted each time a communication via the RS485 is opened (TOPSPIN or UniTool).

The controller will be active during acquisition only in the following cases:

- ,gs'-mode operation (which is typically used to adjust parameters dynamically) and
- at the beginning of wobble and receiver gain adjustment (rga)

This state is indicated by a blinking red LED labeled ERROR while the green LED labeled READY remains on.

### 11.2.3 Real Time Pulses

The AQS RXAD/2 is mainly controlled from the backplane by the following pulses

- RGP\_LO~
- RGP\_RX~
- INTERLEAVE\_INCR~

#### RGP\_LO~

The RGP\_LO~ pulse indicates that the LO signal from the SGU/3 is available and so the LO synthesizer of the AQS RXAD/2 can synchronize. If there is a RPG\_LO~ pulse and no appropriate LO signal (defective cable, not connected, wrong setting of SGU/3) an error message will appear.

#### RGP\_RX~

The RGP\_RX~ pulse opens the receiver after excitation and prevents saturation of the input stage while transmitters are switched on. An RGP\_RX~ pulse occurrence while the on-board microcontroller is running will also lead to an error message (except in ,gs'-mode operation) because microcontroller circuitry noise might affect the spectral purity of the RF signals.

#### INTERLEAVE\_INCR~

The receiver is prepared for pre-loading a table of different frequency/gain pairs. An

INTERLEAVE\_INCR~ pulse selects the next line of the table.

This concept is used for wobble, interleaved acquisition experiments and fast receiver gain ('rg') switching.

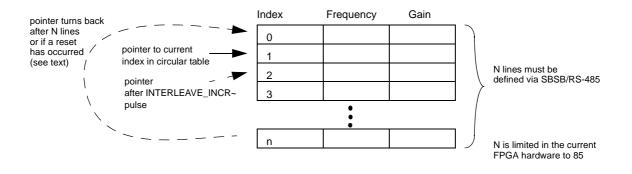



Figure 11.2 Circular Table: Mode of operation

The pointer in the circular table resets to index 0 if a long ( $\geq 4 \ \mu s$ ) INTERLEAVE\_INCR~ pulse has occurred. A short pulse ( $\leq 1 \ \mu s$ ) selects the next line of the table.

# 11.2.4 Effective Gain of the AQS RXAD/2

| Receiver<br>Gain 'RG'<br>Equivalent<br>RX-BB/RX-22<br>Voltage Gain [dB]<br>20*log([VHR_OU<br>T/VRF_IN]) |    | dB]<br>OU    | Receiver<br>Gain 'RG' | Equivalent<br>RX-BB/RX-22<br>Voltage Gain [dB]<br>20*log([VHR_OU<br>T/VRF_IN]) | Receiver<br>Gain 'RG' | Equivalent<br>RX-BB/RX-22<br>Voltage Gain [dB]<br>20*log([VHR_OU<br>T/VRF_IN]) |
|---------------------------------------------------------------------------------------------------------|----|--------------|-----------------------|--------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------|
| 2050                                                                                                    | 78 |              | 90.5                  | 51                                                                             | 4.50                  | 25                                                                             |
| 1820                                                                                                    | 77 |              | 80.6                  | 50                                                                             | 4.00                  | 24                                                                             |
| 1620                                                                                                    | 76 |              | 71.8                  | 49                                                                             | 3.56                  | 23                                                                             |
| 1440                                                                                                    | 75 |              | 64.0                  | 48                                                                             | 3.20                  | 22                                                                             |
| 1290                                                                                                    | 74 |              | 57.0                  | 47                                                                             | 2.80                  | 21                                                                             |
| 1150                                                                                                    | 73 |              | 50.8                  | 46                                                                             | 2.56                  | 20                                                                             |
| 1030                                                                                                    | 72 |              | 45.2                  | 45                                                                             | 2.25                  | 19                                                                             |
| 912                                                                                                     | 71 |              | 40.3                  | 44                                                                             | 2.00                  | 18                                                                             |
| 812                                                                                                     | 70 | а            | 36.0                  | 43                                                                             | 1.78                  | 17                                                                             |
| 724                                                                                                     | 69 | see footnote | 32.0                  | 42                                                                             | 1.60                  | 16                                                                             |
| 645                                                                                                     | 68 | fooi         | 28.5                  | 41                                                                             | 1.40                  | 15                                                                             |
| 575                                                                                                     | 67 | see          | 25.4                  | 40                                                                             | 1.28                  | 14                                                                             |
| 512                                                                                                     | 66 |              | 22.6                  | 39                                                                             | 1.12                  | 13                                                                             |
| 456                                                                                                     | 65 |              | 20.2                  | 38                                                                             | 1.00                  | 12                                                                             |
| 406                                                                                                     | 64 |              | 18.0                  | 37                                                                             | 0.89                  | 11                                                                             |
| 362                                                                                                     | 63 |              | 16.0                  | 36                                                                             | 0.80                  | 10                                                                             |
| 322                                                                                                     | 62 |              | 14.2                  | 35                                                                             | 0.70                  | 9                                                                              |
| 287                                                                                                     | 61 |              | 12.7                  | 34                                                                             | 0.64                  | 8                                                                              |
| 256                                                                                                     | 60 |              | 11.3                  | 33                                                                             | 0.56                  | 7                                                                              |
| 228                                                                                                     | 59 |              | 10.0                  | 32                                                                             | 0.50                  | 6                                                                              |
| 203                                                                                                     | 58 |              | 9.00                  | 31                                                                             | 0.44                  | 5                                                                              |
| 181                                                                                                     | 57 |              | 8.00                  | 30                                                                             | 0.40                  | 4                                                                              |
| 161                                                                                                     | 56 |              | 7.12                  | 29                                                                             | 0.35                  | 3                                                                              |
| 144                                                                                                     | 55 |              | 6.35                  | 28                                                                             | 0.32                  | 2                                                                              |
| 128                                                                                                     | 54 |              | 5.60                  | 27                                                                             | 0.28                  | 1                                                                              |
| 114                                                                                                     | 53 |              | 5.00                  | 26                                                                             | 0.25                  | 0                                                                              |
| 101                                                                                                     | 52 |              | L                     | <u>ا</u>                                                                       | L                     | 1                                                                              |

Table 11.1 Possible gain steps of the AQS RXAD/2

a. Maximum receiver gain value can be set by UniTool or WebTool to either RG 203 (default) or optional to RG 2050.

# 11.3 Unit Configuration / Version / Jumpers

There are two versions of RXAD/2 available (see "Part Numbers" on page 124).

Key specifications and digital control behavior remain the same for both versions.

There are no jumpers or manual switches to set.

Through the 'cf' routine the number and location of all installed RXAD/2s is determined. In multi receiver systems each RXAD/2 in the AQS/3+ chassis has a unique address derived from its physical position.

### 11.3.1 Differences to Previous Receiver Versions

The AQS RXAD/2 is different from the AQS RXAD in many ways:

- very low dead-time to switch on receiving
- improved dynamic range at low RGs
- broadband suitability

# 11.4 Front Panel Wiring / Display




Figure 11.3 AQS RXAD/2 front panel

# 11.4.1 LED Display

| ERROR<br>(red)                    | READY<br>(green)                   | POWER <sup>a</sup><br>(green) | Description                                                                                                                                                                                                     |
|-----------------------------------|------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                                 | -                                  | off                           | - Power supply switched off or operating incorrectly                                                                                                                                                            |
| off                               | on                                 | on                            | <ul> <li>Normal sleep mode</li> <li>Microcontroller asleep (no spectral spikes<br/>due to microcontroller circuitry)</li> <li>No communication is possible with the<br/>RXAD/2.</li> </ul>                      |
| off                               | on resp. short-<br>time flickering | on                            | <ul> <li>Ready for operation (microcontroller<br/>awake)</li> <li>Communication with the RXAD/2 is possible.</li> </ul>                                                                                         |
| off                               | blinking<br>(data stream)          | on                            | - Communication LED<br>The unit has received a command from the<br>RS485 bus master. The READY LED<br>switches off and as soon as the RXAD/2<br>acknowledges the command the READY<br>LED is switched on again. |
| blinking slowly<br>(approx. 3 Hz) | on                                 | on                            | <ul> <li>Indicates warning and not error ('gs' mode).</li> <li>Caution: Sensitive NMR experiments are not possible in this mode due to disturbances of the controller system.</li> </ul>                        |
| blinking slowly<br>(approx. 3 Hz) | off                                | on                            | - An error has occurred on the RXAD/2                                                                                                                                                                           |
| blinking fast                     | -                                  | on                            | - Boot-mode<br>Board not initialized yet or no application<br>firmware found (e.g. because of power fail-<br>ure during firmware update).                                                                       |

The table below summarizes the states of the three front panel LEDs.

Table 11.2 LED States

a. The power LED indicates that all necessary voltages are present and at the correct level. If any voltage level drops then the LED will go out. Thus once the power LED lights, further investigations on the backplane to check the precise voltage are unnecessary.

### 11.4.2 Front Panel Connectors

#### J1 RF\_IN

Input (receive signal) from HPPR. This is a RF signal which will only be present when the HPPR is in receive mode. The timing is controlled by the RGP\_HPPR signal which is closely linked to the AQS RXAD/2 gating signal (RGP\_RX~). The phased array preamp power supply voltage is set to 10 V<sub>DC</sub> to meet the requirements of the MRI phased array preamps. The preamp power supply is by default turned off and can be enabled by software.

#### J2 LO\_IN

RF CW signal with frequency of SFO1 +  $f_{DQD}$  from SGU/3. This signal (1V<sub>pp</sub> at 50  $\Omega$ ) originates from the observing SGU/3 (LO generating SGU/3) and is only present when the RXAD/2 is receiving.

The LO signal is routed in a chain through all SGUs and is fed from the most right SGU/ 3 (connector LO OUT J4) to the RXAD/2 – see also wiring principle.

#### J3 LO2\_IN

Detector reference frequency (local oscillator signal 2) from AQS Reference Board (REF/3) LO2 J5.

#### J4 RGP\_HPPR~\_OUT

Buffered gating pulse (RGP\_HPPR~) from backplane, used for preamplifiers in multi receiver systems.

### 11.5 Part Numbers

- Z130588 RXAD/2 600 (broadband option, 5...432.5 MHz)
- Z130589 RXAD/2 1000 (broadband option, 5...1072.5 MHz)

# 11.6 Troubleshooting / Unit Replacement / Tips 'n' Tricks

#### 11.6.1 General

- 1. Do not open the AQS RXAD/2 in the field (calibration void).
- Ensure that the AQS Reference Board is one of "REF/3 600", "REF/3 1200" or "REF/3-M 1200" type.
- 3. To replace the unit simply switch off the AQS/3+ chassis, replace the board and switch the chassis on. Having inserted a new AQS RXAD/2 the spectrometer should be reconfigured ('cf') and the entry in the file uxmnr.info checked.
- RF signals are all AC coupled<sup>1</sup> and the overall input resp. output impedance is 50 Ω. (Please note: The SMA-connector nuts must not be tightened more than to a torque of 45Ncm.)

### 11.6.2 Download new AQS Receiver (RX) Firmware

- 1. Check if the directory (/Bruker/<topspin release>/conf/instr/servtool/UniTool/files/ birds) exists. Otherwise create it.
- 2. Copy the new firmware e.g. rxs\_aw.hex into the directory Bruker/ <topspin release>/conf/instr/servtool/UniTool/files/birds
- 3. Open a shell or the command prompt in the BRUKER Utilities folder when using Windows.
- 4. Start the UniTool: topspin -e UniTool
- 5. -> aqs, confirm
- 6. -> decimal address for RX-1 is 16, confirm
- 7. When the UniTool Menu is loaded, enter <4> Auto Download -> download is started. The download takes about 22 minutes
- 8. If you have more than one RX, do the same as above with address 17, 18, and so on.

<sup>1.</sup> Except RF\_IN (J1)  $\rightarrow$  see "J1 RF\_IN" on page 123

## 11.6.1 Error Messages

| Error No.    | Error Message                                                                                          | Description                                                                          | Possible cause                                                                                                             |
|--------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Error No. 1  | Serial RS485 time-out                                                                                  | slave device did not answer in expected time                                         | slave device probably not initial-<br>ized, check connections                                                              |
| Error No. 4  | Serial RS485 command, checksum error                                                                   | RS485 protocol violation                                                             | spectrometer control software fail-<br>ure                                                                                 |
| Error No. 8  | checksum error on INTRA<br>bus                                                                         |                                                                                      |                                                                                                                            |
| Error No. 10 | RAM Selftest Error                                                                                     | RAM test failed                                                                      | hardware failure                                                                                                           |
| Error No. 11 | No application firmware found                                                                          | no application firmware found                                                        | hardware failure or firmware down-<br>load failed                                                                          |
| Error No. 13 | Power failed                                                                                           | indicate that a power up has<br>occurred and the system is not<br>initialized        | ordinary power up or a power<br>breakdown during an experi-<br>ment                                                        |
| Error No. 15 | Parameter exceeds valid range                                                                          | value out of range                                                                   | spectrometer control software fail-<br>ure or faulty input using Unitool                                                   |
| Error No. 16 | Unknown board hardware version                                                                         | this hardware version has never been delivered                                       | firmware or hardware error on RXAD/2                                                                                       |
| Error No. 17 | Function not supported by board hardware version                                                       |                                                                                      | RXAD/2 with newer ECL required                                                                                             |
| Error No. 18 | Unknown version index in configuration page                                                            | internal validation of calibration data failed                                       | hardware error                                                                                                             |
| Error No. 19 | BIS checksum error                                                                                     |                                                                                      |                                                                                                                            |
| Error No. 20 | Syntax error                                                                                           | selected feature not supported by actual firmware, board does not understand command | spectrometer control software fail-<br>ure, wrong board selected, hard-<br>ware feature not supported by<br>actual version |
| Error No. 21 | Command not available for this HW version                                                              |                                                                                      | RXAD/2 with newer ECL required                                                                                             |
| Error No. 22 | RTX create error                                                                                       | operating system error                                                               | firmware or hardware error on                                                                                              |
| Error No. 23 | RTX memory allocation error                                                                            |                                                                                      | RXAD/2                                                                                                                     |
| Error No. 24 | RTX memory free error                                                                                  |                                                                                      |                                                                                                                            |
| Error No. 25 | RTX communication pool exhausted                                                                       |                                                                                      |                                                                                                                            |
| Error No. 26 | RTX send signal error                                                                                  |                                                                                      |                                                                                                                            |
| Error No. 27 | RTX interrupt handling error                                                                           |                                                                                      |                                                                                                                            |
| Error No. 28 | RTX semaphore waiting list full                                                                        |                                                                                      |                                                                                                                            |
| Error No. 29 | RTX pool create error                                                                                  |                                                                                      |                                                                                                                            |
| Error No. 35 | Download done correctly, but<br>board not initialized, restart<br>AQS when downloading has<br>finished |                                                                                      |                                                                                                                            |

Description of possible error messages:

Table 11.3 AQS RXAD error messages (Release AR)

# AQS RXAD/2

| Error No.     | Error Message                                                                   | Description                                                   | Possible cause                                                                                                                    |  |  |
|---------------|---------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|
| Error No. 36  | Flash Byte Program Error                                                        | failure during FLASH memory pro-                              | hardware error                                                                                                                    |  |  |
| Error No. 37  | Flash Erase Error                                                               | gramming                                                      |                                                                                                                                   |  |  |
| Error No. 40  | Flash Erase Timer expired                                                       |                                                               |                                                                                                                                   |  |  |
| Error No. 41  | Error in Flash Command<br>Sequence                                              |                                                               |                                                                                                                                   |  |  |
| Error No. 42  | Flash Page mismatch, stor-<br>ing terminated                                    |                                                               |                                                                                                                                   |  |  |
| Error No. 43  | calibration data invalid                                                        |                                                               |                                                                                                                                   |  |  |
| Error No. 50  | RAM selftest error                                                              | RAM test failed                                               | hardware failure                                                                                                                  |  |  |
| Error No. 51  | no app firmware found<br>(wrong FW checksum)                                    | RAM test failed                                               | hardware failure                                                                                                                  |  |  |
| Error No. 52  | no app firmware found<br>(wrong FW name)                                        | RAM test failed                                               | hardware failure                                                                                                                  |  |  |
| Error No. 53  | no app firmware found<br>(wrong FW id)                                          | RAM test failed                                               | hardware failure                                                                                                                  |  |  |
| Error No. 56  | boot can't be forced to sleep,<br>please download application<br>firmware first |                                                               | no application firmware is loaded                                                                                                 |  |  |
| Error No. 57  | Wrong filename,<br>expected ' rxs'                                              |                                                               |                                                                                                                                   |  |  |
| Error No. 58  | Corrupt BIS on board                                                            | BIS (Board Information System) test failed                    | hardware failure                                                                                                                  |  |  |
| Error No. 59  | BIS checksum error                                                              | BIS (Board Information System) test failed                    | hardware failure                                                                                                                  |  |  |
| Error No. 60  | Unknown rack code                                                               |                                                               |                                                                                                                                   |  |  |
| Error No. 61  | Board Number exceeds valid range                                                |                                                               |                                                                                                                                   |  |  |
| Error No. 100 | Serial DAC bus (SPI, 8420)<br>error                                             |                                                               |                                                                                                                                   |  |  |
| Error No. 101 | Serial ASIC bus (JTAG) error                                                    |                                                               |                                                                                                                                   |  |  |
| Error No. 102 | Missing valid configuration page                                                | configuration data (calibration data) not available           | hardware failure                                                                                                                  |  |  |
| Error No. 105 | Flash table does not exist, using default table                                 | configuration data (calibration data) not available           | hardware failure                                                                                                                  |  |  |
| Error No. 107 | Table address or identifier out of range                                        |                                                               |                                                                                                                                   |  |  |
| Error No. 128 | input value out of range                                                        | entered input value out of range                              | spectrometer control software fail-<br>ure or faulty input using Unitool                                                          |  |  |
| Error No. 129 | Error in LO generation<br>(coarse tuning)                                       | LO synthesizer was not able to set<br>its frequency correctly | hardware failure                                                                                                                  |  |  |
| Error No. 130 | Error in LO generation (VCO gradient fail)                                      |                                                               |                                                                                                                                   |  |  |
| Error No. 131 | Error in LO generation<br>(PLL lock lost)                                       | LO synthesizer was not able to set its frequency correctly    | LO IN cable from SGU/3 not con-<br>nected<br>REF IN cable from REF/3 not<br>connected<br>spectrometer control software<br>failure |  |  |

Table 11.3 AQS RXAD error messages (Release AR)

| Error No.     | Error Message                                                                                                    | Description                                                                                               | Possible cause                                                                                                                                                     |
|---------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Error No. 133 | Wrong RF-switch value                                                                                            | faulty input using Unitool                                                                                | faulty input using Unitool                                                                                                                                         |
| Error No. 134 | Wrong IF-switch value                                                                                            |                                                                                                           |                                                                                                                                                                    |
| Error No. 135 | Wrong AF-switch value                                                                                            |                                                                                                           |                                                                                                                                                                    |
| Error No. 136 | Wrong PLL-gain-adjust value                                                                                      |                                                                                                           |                                                                                                                                                                    |
| Error No. 137 | Wrong PLL-level value                                                                                            |                                                                                                           |                                                                                                                                                                    |
| Error No. 138 | Enable/Disable expected                                                                                          |                                                                                                           | spectrometer control software fail-<br>ure or faulty input using Unitool                                                                                           |
| Error No. 139 | No oscillator selected                                                                                           | faulty input using Unitool                                                                                | faulty input using Unitool                                                                                                                                         |
| Error No. 140 | Power Diagnostic failed                                                                                          | on-board diagnostic detected<br>faulty power supply voltages                                              | check power LED on AQS RXAD/<br>2 and other AQS boards to deter-<br>mine if AQS RXAD/2 hardware<br>failed or fuses on the power sup-<br>plies need to be exchanged |
| Error No. 141 | RGP_RX-Error occurred                                                                                            | receiver has been gated while the<br>on-board microcontroller was<br>running – spectra may show<br>spikes | spectrometer control software failure                                                                                                                              |
| Error No. 142 | Frequency invalid                                                                                                |                                                                                                           | spectrometer control software fail-                                                                                                                                |
| Error No. 143 | Gain invalid                                                                                                     |                                                                                                           | ure or faulty input using Unitool                                                                                                                                  |
| Error No. 144 | Gain distribution scheme not found                                                                               |                                                                                                           | hardware failure                                                                                                                                                   |
| Error No. 145 | Gain table not found                                                                                             |                                                                                                           |                                                                                                                                                                    |
| Error No. 146 | PLL table not found                                                                                              |                                                                                                           |                                                                                                                                                                    |
| Error No. 147 | VCO gradient too low                                                                                             |                                                                                                           |                                                                                                                                                                    |
| Error No. 148 | VCO gradient too high                                                                                            |                                                                                                           |                                                                                                                                                                    |
| Error No. 149 | I2C bus fail                                                                                                     |                                                                                                           |                                                                                                                                                                    |
| Error No. 150 | wrong IF-gain-adjust value                                                                                       |                                                                                                           | faulty input using Unitool                                                                                                                                         |
| Error No. 151 | wrong gain distribution table-<br>index                                                                          |                                                                                                           | faulty input using Unitool                                                                                                                                         |
| Error No. 152 | invalid row number in loop-<br>table                                                                             |                                                                                                           | spectrometer control software fail-<br>ure or faulty input using Unitool                                                                                           |
| Error No. 153 | invalid amount of rows in loop table                                                                             |                                                                                                           |                                                                                                                                                                    |
| Error No. 154 | Wrong PLL-tune value                                                                                             |                                                                                                           | faulty input using Unitool                                                                                                                                         |
| Error No. 155 | On/Off expected                                                                                                  |                                                                                                           | spectrometer control software fail-                                                                                                                                |
| Error No. 156 | Frequency too high for this type of RX                                                                           |                                                                                                           | ure or faulty input using Unitool                                                                                                                                  |
| Error No. 157 | DC offset correction table full,<br>offset setting is stored tem-<br>porally only                                |                                                                                                           | too many entries in the dc offset correction table                                                                                                                 |
| Error No. 158 | DC offset correction table<br>can't be deleted - delete DC<br>offset correction table in RAM<br>then save config |                                                                                                           | faulty input using Unitool                                                                                                                                         |
| Error No. 159 | No ADC board available                                                                                           |                                                                                                           |                                                                                                                                                                    |
| Error No. 160 | Command not accepted<br>while RF input is disabled,<br>init RX/RXAD first                                        |                                                                                                           | RF input was disabled via Disable-<br>RF-Input-Command                                                                                                             |

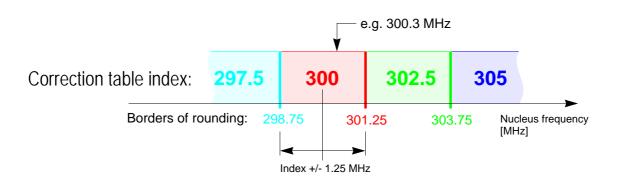
Table 11.3 AQS RXAD error messages (Release AR)

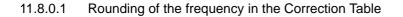
# 11.7 Diagnostic Tests

The AQS RXAD/2 has no special written diagnostic program. The AQS RXAD/2 can be accessed with the UniTool that is accessible from BRUKER Utilities:

With UniTool you can

- 1. read and write the AQS RXAD/2 receiver gain
- 2. adjust the gain, phase and baseline for the quad module
- 3. adjust DC offset
- 4. measure the quad module temperature
- 5. read actual firmware version, ECL and hardware version
- 6. download new firmware


Be aware that UniTool is a hardware level tool and improper operation may void the calibration data. UniTool should be used by service personnel only.


# 11.8 DC Offset and Quadrature Correction Table

The DC offset of the AQS RXAD/2 variants running with TOPSPIN can be adjusted by software and stored in the on-board FLASH non-volatile memory. The offset values are handled for each frequency/gain pair and will automatically be adjusted each time the receiver gain (rg) or the observe frequency (the nucleus) is changed.

**1** NOTE: The frequency value in the correction table is rounded to the next 2.5 MHz indexstep (see ). As a consequence of this rounding, a drifting magnet can cause a nucleus frequency to fall into another 2.5 MHz index-step where the RXAD/2 is not adjusted. In this case a readjustment is necessary.

(This difficulty can occur in unlocked magnet systems only. In locked magnet systems the nucleus frequency does not drift away.)





If quad image gain/phase adjustment is necessary (initial quad image in qsim mode is factory pre-adjusted), do that before adjusting DC offset. See chapter 11.9 "Quadrature Phase/Gain Adjust – Useful Pulse Programs"

The following description was put together on the basis of TopSpin 2.n.

To fill a DC offset correction table you have to do a 'gs'-experiment with TOPSPIN. Be sure TOPSPIN has selected the nucleus/frequency you want to adjust the DC offset correction for.

**1** Install the following au program with 'expinstall' if necessary and run it (in TOPSPIN's command line):

#### dccorr off

After selecting an experiment choose TOPSPIN's acquisition window (Fid) to see the time domain signal and select Unsh (Unshuffle Symbol is or is ) to see both channels.

Set the AQ\_mod (Acquisition mode) in the acquisition parameters (eda, AcquPars) to qsim.

Start your web browser (Internet Explorer, Mozilla Firefox, ...), type 'dru1' (respectively 149.236.99.89) into the URL field and hit <Enter>. Branch into --> 'Hosted Devices' --> 'AQS Overview' --> 'AQS RXAD/2 1'

Remember:

- 149.236.99.89 : DRU1
- 149.236.99.87 : DRU3
- 149.236.99.80 : DRU10
- 149.236.99.73 : DRU17
- 149.236.99.66 : DRU23

| 🔇 🖸 - 😋 🗙 🛛          | ☆ http://dru      | 1/RXAD.html?Button=Write+into-                             | RXAD&Frq=400.130&Gain=1&DcOf     | fsetChA_ts=0&DcC          | )ffsetChB_ts=0&QuadArr 🏠 🔹                                 | Google               |     |
|----------------------|-------------------|------------------------------------------------------------|----------------------------------|---------------------------|------------------------------------------------------------|----------------------|-----|
| Most Visited  Google | httpbrukweb-menu- |                                                            |                                  |                           |                                                            |                      |     |
| BRUKER               | BRUKER            | BRUKER                                                     | AQS RXAD                         | RUKER                     | BRUKER                                                     | BRUKER               | BRU |
| AUTION: This is a    | hardware level de | abug tool. Improper opera                                  | ation may damage your har        | rdware!                   |                                                            |                      |     |
| evice Status         |                   |                                                            |                                  |                           |                                                            |                      |     |
| ettings              |                   |                                                            |                                  |                           |                                                            |                      |     |
| BRUDER               | BRUDA             | BRURER                                                     | Version                          | 7                         | Date                                                       | Checksum             | 198 |
| RX_1                 |                   | App Firmware                                               | AU                               |                           | 2009-04-01                                                 | 000D                 |     |
| KA_I                 |                   | Boot Firmware                                              | AF                               |                           | 2006-08-22                                                 | OOFF                 |     |
|                      | SURER             | SURER                                                      |                                  | URER                      | SURER                                                      |                      |     |
|                      |                   | BRE                                                        | Board-Type                       | На                        | ardware-Version                                            | ECL                  | 2   |
|                      | R                 | XAD Basic Board                                            | 52                               |                           | 4                                                          | 2.00                 |     |
|                      | RUDER             | ADC                                                        | 56                               | RUNER                     | 2 ARUSER                                                   | RUKER                | aR  |
|                      |                   | Frequency<br>(5 1072.5 MHz)                                | 400.130                          |                           | AF Temperature<br>PLL Temperature                          | 60 °C<br>60 °C       |     |
| Write into RXAD      | BRUKER            | Gain<br>(1 2050 )                                          | 1.00<br>Next Gain                | RUKER                     | BRUKER                                                     | BRUKER               | BRI |
|                      |                   | DC Offset Channel A<br>(-4096 4095)<br>(+/- TopSpin Units) | 0                                |                           | DC Offset Channel B<br>(-4096 4095)<br>(+/- TopSpin Units) | 0                    |     |
|                      | BRUSEL            | Quad. Amplitude DAC<br>(-4096 4095)<br>(change by +/-)     | 0                                |                           | Quadrature Phase DAC<br>(-4096 4095)<br>(change by +/-)    | 0                    | BR  |
|                      | CARER             | Select max. F                                              | XAD Gain                         | TREP                      | Phased Array PreAmp                                        | olifier Power Supply |     |
|                      | BRO               | Select Gain Distri                                         | oution Scheme                    | 4                         | Select Offset Table                                        | Entries to erase     | 1   |
|                      |                   |                                                            |                                  |                           | Save Config into RXA                                       | D's Flash memory     |     |
| RUKER                | RUKER             | RUKER                                                      | RUKER                            | RUKER                     | RUKER                                                      | RUKER                | SRI |
|                      | -u-               | ▶ <u>Main</u> ▶ <u>Host</u>                                | ed Devices + AQS Control Ove     | anview + AQS RX           | (AD                                                        |                      |     |
|                      |                   | Main   Infor                                               | mation   Service   Setup   Hoste | ad Devices   <u>Hel</u> r | P                                                          |                      |     |
| SURER                | SUKER             | SURER                                                      | OBRUKER BIOSPIN AG               | TREFE                     | SUKER                                                      | SURER                | 5   |

Figure 11.4 AQS RXAD/2 web page

The AQS rack must be powered on at least for 30 minutes to guarantee a stable temperature of the RXAD/2 before adjusting any quad image or DC offset.

You can check the RXAD/2-temperature (AF and PLL). The temperature values should be written in green color (not red). The nominal temperature is 54 °C or 59 °C dependant on the internal hardware-version.

The 'offset and quad image' table handles entries (max. 900 entries) which are stored according to the selected nucleus/frequency (in steps of 2.5 MHz) and the selected gain (in steps of 1 dB).

Before adjusting the table for the actual nucleus frequency you should check the frequency to be correct and erase all entries of the actual frequency. In the AQS RXAD/2 overview window branch into

--> 'Select Offset Table entries to erase' --> 'Erase all Entries of ACTUAL frequency' in the below picture --> 'Cancel', do not 'Save Config into RXAD/2's Flash' at this time.

| < >> C ×                     | http://dru1/         | (RXAD.html?Frq=700.1348/Gai                                                  | n=0.358DcOffsetChA_ts=08DcC                             | )ffsetChB_ts | =0&QuadAmp | litudeDAC=0&QuadAmj 🏠 🔹 | Google   |     |
|------------------------------|----------------------|------------------------------------------------------------------------------|---------------------------------------------------------|--------------|------------|-------------------------|----------|-----|
| Most Visited <u>G</u> Google | httpbrukweb-menu     |                                                                              |                                                         |              |            |                         |          |     |
| BRUKER                       | BRUKER               | BRUKER                                                                       | AQS RXA                                                 | D            | KER        | BRUKER                  | BRUKER   | BRI |
| AUTION: This is              | a hardware level deb | oug tool. Improper ope                                                       | ration may damage your                                  | hardwar      | e!         |                         |          |     |
| e <b>vice Status</b><br>Bady |                      |                                                                              |                                                         |              |            |                         |          |     |
| ettings                      |                      |                                                                              |                                                         |              |            |                         |          |     |
| BRUKE                        | BROX                 |                                                                              | Version                                                 | BRY          | $\sum$     | Date                    | Checksum | BR  |
| RX_1                         | A                    | App Firmware                                                                 | AU                                                      |              | 2          | 2009-04-01              | 000D     |     |
|                              | в                    | oot Firmware                                                                 | AF                                                      |              | 2          | 2006-08-22              | OOFF     |     |
|                              | SURER                |                                                                              | SUKER                                                   | Sú           |            | SURER                   |          |     |
|                              |                      |                                                                              | Board-Type                                              | -U           | Har        | dware-Version           | ECL      | PL  |
|                              | RX                   | AD Basic Board                                                               | 52                                                      |              |            | 4                       | 2.00     |     |
|                              | BRUSER               | ADC                                                                          |                                                         | BRU          | SER        | 2. ARER                 | BRUKER   | BRI |
| Cancel                       | Era                  | ffset Table Entries to<br>se all OfsTableEntries<br>all Entries of ACTUAL Fr | of ACTUAL Frequency fr                                  | rom RXAD     | 's RAM     |                         |          |     |
|                              | BUT                  | se all OfsTableEntries<br>all Entries of ALL Frq's                           | of ALL Frequencies from                                 | RXAD'S F     | RAM        |                         |          |     |
| BRUKER                       | BRUKER               | BRUKER                                                                       | BRUKER                                                  | RU           | RER        | BRUKER                  | BRUKER   | R   |
| BRUKER                       | BRUKER               |                                                                              | ces  AQS Control Overview rmation   Service   Setup   E |              |            | ableEntries             | BRUKER   | BRI |
|                              |                      |                                                                              |                                                         | -            |            |                         |          |     |

Figure 11.5 Erase all Entries of ACTUAL Frq

To adjust the table for the actual nucleus frequency you must start with the lowest gain. Check the frequency to be correct (press F5 to refresh/reload if necessary) then fill in '1' into the Gain input field and press the 'Write into RXAD/2'-button.

| 🛃 Druker TOPSPIN 2.1 on DRUTEST as tmp                                                                                                                                                                                                             |                                                                                                                                                       |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                                                                                                                                                                                                                                    | essing Analysis Options Window Help                                                                                                                   |           |
|                                                                                                                                                                                                                                                    | (赤『 出 ≤ %眩天 ■ ▶ ■ ◎  ⊷ ▽ ♡ □  \$ ≤  出                                                                                                                 | •         |
| •2 /2 •8 /8 ቀ ፤ ₩ @ ⊕ ⊕ ⊝ @                                                                                                                                                                                                                        | い 段 🏪 ← ↔ → ⊨ → 〒 ‡ edasp ased zg                                                                                                                     |           |
| •2 <i>P</i> <b>P</b> ● <b>E P Q Q Q Q P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P</b> </td <td></td> <td></td> |                                                                                                                                                       |           |
|                                                                                                                                                                                                                                                    | Save Sigve all Bestore         8           Restore all Stop         0.01         0.02         0.03         (5)         0.01         0.02         0.03 | 03 [5]    |
|                                                                                                                                                                                                                                                    | Acquisition information<br>fid area: 14862228<br>scar. 113                                                                                            | Fid Flash |

Figure 11.6 Example figure

The graph's above or left half of the TOPSPIN's y-axis shows the offset correction of channel A. If the graph's y-value is negative you have to enter that value positively to converge to zero offset. If the graph's y-value is positive enter the value negatively.

Fill in the 'DC Offset Channel A' input field (in this example 118) and press the button 'Write into RXAD/2'.

The controller on the RXAD/2 will calculate the internal correction values needed. Repeat this once or twice and you will be within one percent of the uncorrected offset.

**1** There may be an inaccuracy between entered value and actually set correction due to scaling variation by chosen digital filter and SWH.

The graph's below or right half of the TOPSPIN's y-axis shows you the offset correction of channel B. In this example fill in -153 into the 'DC Offset Channel B' input field and press the 'Write into RXAD/2'-button.

Repeat the whole procedure for the next gain by pressing the 'Next Gain'-button. Repeat 'Next Gain' until all gains are adjusted including the highest gain (= 203 respectively 2050).

If you don't want your table entries to be lost after a power down of the AQS-rack you need to save the RXAD/2 configuration by branching into --> 'Save Config into RXAD/2's Flash memory', confirm with --> 'Save Config into RXAD/2's Flash'. Confirming will take a few seconds.

| <u> </u>                |            | http://dru1/                 | RXAD.html?Frq=700.134&Gair                                                                         | n=0.35&DcOffsetChA_ts=0&Dc0                                                    | OffsetChB_ts | =0&QuadAmpli  | tudeDAC=0&QuadAmj 🏠 🔹 | Google   |     |
|-------------------------|------------|------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------|---------------|-----------------------|----------|-----|
| A Most Visited G Google | 📄 httpbruk | web-menu                     |                                                                                                    |                                                                                |              |               |                       |          |     |
| BRUKER                  | BRUN       | ER                           | BRUKER                                                                                             | AQS RXA                                                                        | D            | KER           | BRUKER                | BRUKER   | BRI |
| AUTION: This is         | a hardware | level deb                    | ug tool. Improper ope                                                                              | ration may damage you                                                          | r hardwar    | e!            |                       |          |     |
| Device Status           |            |                              |                                                                                                    |                                                                                |              |               |                       |          |     |
| Settings                |            |                              |                                                                                                    |                                                                                |              |               |                       |          |     |
| BRUKE                   | BRO        |                              | BRUKE                                                                                              | Version                                                                        | BRY          | $\mathcal{D}$ | Date                  | Checksum | BRY |
| RX_1                    |            | A                            | pp Firmware                                                                                        | AU                                                                             |              | 2             | 009-04-01             | 000D     |     |
|                         | Ì          | В                            | oot Firmware                                                                                       | AF                                                                             |              | 2             | 006-08-22             | OOFF     |     |
|                         | Sur        |                              | SUKER                                                                                              | SUKER                                                                          | Sú           |               | SUKER                 |          |     |
|                         |            |                              | BRY                                                                                                | Board-Type                                                                     | PU           | Hard          | Iware-Version         | ECL      | 20  |
|                         | Γ          | RXA                          | AD Basic Board                                                                                     | 52                                                                             |              |               | 4                     | 2.00     |     |
|                         | C.         | ER                           | ADC                                                                                                | 0                                                                              | 07           | SER           | 2                     | Cher     | Ó   |
|                         | BRU        |                              | BRUT                                                                                               | BRUT                                                                           | BRU          |               | BRUT                  | BRUT     | BR  |
| Cancel                  | CA         | Saves act<br>• Ma×<br>• Dist | nfig into RXAD's Flas<br>tual<br>K. RXAD Gain setting<br>ribution scheme<br>set (and Quad) table e |                                                                                |              |               |                       |          |     |
|                         | BRU        | (this will t                 | ''s Flash memory<br>cake 8 seconds)<br>Config into RXAD's Flash                                    | BRUKER                                                                         |              |               |                       |          |     |
| RUKER                   | BRU        | ER                           | RUKER                                                                                              | RRUKER                                                                         | RU           | KER           | BRUKER                | BRUSER   | R   |
| BRUKER                  | BRU        | ER                           |                                                                                                    | s ▶ <u>AQS Control Overview</u><br>rmation   <u>Service</u>   <u>Setup</u>   ! |              |               | fig into flash        | BRUKER   | BRI |
|                         |            |                              |                                                                                                    | OBRUKER BIOSPIN                                                                |              |               |                       |          |     |

Figure 11.7 Save Config into RXAD/2 Flash

Stop the TOPSPIN experiment, select the next nucleus/frequency you want to adjust and start another 'gs'-experiment. Adjust in the same way as above...

**1** If you have finished DC offset correction run the following au program (in TOPSPIN command line):

dccorr **on** 

Check and set the AQ\_mod as it was before the adjustment.

## 11.9 Quadrature Phase/Gain Adjust – Useful Pulse Programs

For quadrature phase/gain adjustment the following pulse program is useful:

```
;zgcw.mod
;avance-version (04/02/08)
;1D sequence with CW decoupling
```

```
#include <Avance.incl>
"d11=30m"
1 ze
2 dll reset:fl reset:f2
 d11 pl26:f2
 dll cw:f2 ph30
 d1
 pl phl
 go=2 ph31
 wr #0
 dll do:f2
  exit
 ph1=0 2 2 0 1 3 3 1
 ph31=0 2 2 0 1 3 3 1
 ph30=0
  ;pl1 : f1 channel - power level for pulse (default)
  ;pl26: f2 channel - power level for cw decoupling
  ;p1 : f1 channel - high power pulse
  ;d1 : relaxation delay; 1-5 * T1
  ;d11: delay for disk I/O [30 msec]
```

In  $\tt edasp$  select two identical nucleus for F1 and F2 and set the offset frequency OFS2 of the second one to e.g. 1000.0 Hz

Figure 11.8 Example of eda for RXAD/2 Quadrature Adjustment

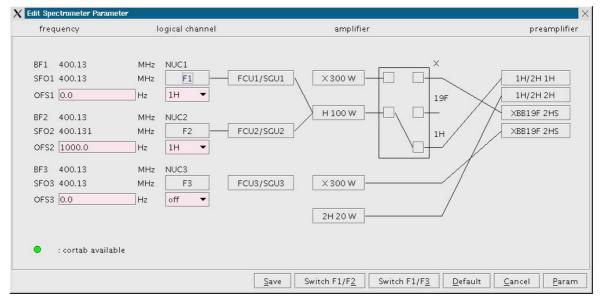



Figure 11.9 Proposed setup for quad image adjustment

Set phmod to mc.

Connect now the RF OUT of SGU/3 with the RF IN of the RXAD/2 directly and start acquisition in 'gs' mode (pl26  $\approx$  40 dB).

Check the input signal level in the acquisition window. Check for appropriate amplitude of the ADC and do not overdrive it.

Press in TOPSPIN the button "Execute real-time ft and show spectrum" (Symbol  $\mathbf{M}$ ) and adjust the quadrature image signal with the RXAD/2 web page.

The adjustment procedure is similar to that one for dc offset correction.

For phase/amplitude adjustments modify the 'Quad. Amplitude DAC' and/respectively the 'Quadrature Phase DAC' input field(s) and press the 'Write into RXAD/2' button.

# 11.10 Specifications

| Frequency Range:<br>RXAD/2 600                                                               | 5647.5          | MHz    |
|----------------------------------------------------------------------------------------------|-----------------|--------|
| RXAD/2 1000                                                                                  | 51072.5         | MHz    |
| Frequency Stability:<br>This is governed by the stability of the crystal oscillator on the F | ₹EF/3 unit      |        |
| Frequency Resolution:<br>The local oscillator synthesizer in the AQS RXAD/2 follows the      | SGU/3 LO signal |        |
| LO Phase Settling Time:                                                                      | max.2           | μs     |
| Audio Signal Settling Time:                                                                  | <2              | μS     |
| Gain:                                                                                        |                 |        |
| Range: (linear 0.25203)                                                                      | 058             | dB     |
| Resolution                                                                                   | 1               | dB     |
| ADC Resolution:                                                                              |                 |        |
| depends on oversampling rate on AQS DRU:<br>up to 200 kHz bandwidth                          | 20              | bit    |
| up to 5 MHz bandwidth                                                                        | 16              | bit    |
|                                                                                              |                 |        |
| ADC Output Data Rate:<br>28 bit / 20 Mwords per second                                       | 560             | Mbit/s |
|                                                                                              | 000             | WDIU'S |

### 11.10.1 Timing Definitions

Turn on or settling time of the AQS RXAD/2 are defined as follows:

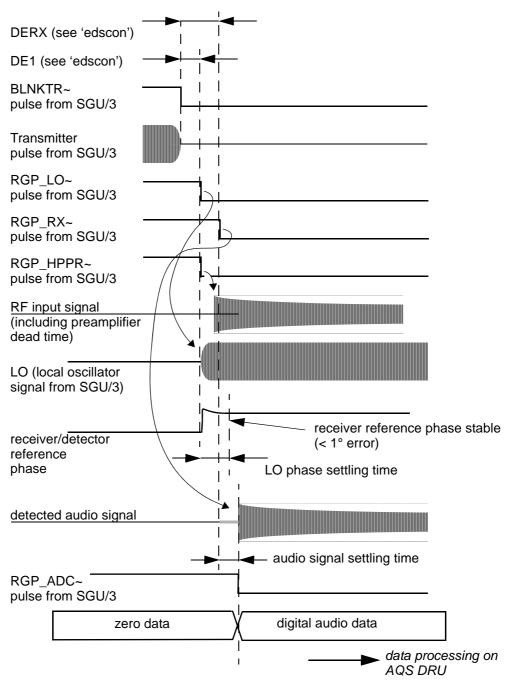



Figure 11.10 AQS RXAD/2 timing definitions

# 11.11 Power Supply / Fuses

See 11.4.1

# 11.11.1 Backplane Connector

|    | z   | а           | b             | с                | d                | е         | f   |
|----|-----|-------------|---------------|------------------|------------------|-----------|-----|
| 1  | GND | GND         | INTRA_STATUS~ | NC               | GND              | NC        | GND |
| 2  | GND | NC          | GND           | NC               | NC               | NC        | GND |
| 3  | GND | GND         | NC            | NC               | GND              | NC        | GND |
| 4  | GND | 20MHZ_CLK_X | GND           | INTERLEAVE_INCR~ | NC               | NC        | GND |
| 5  | GND | GND         | 20MHz_CLK_X~  | NC               | GND              | RGP_LO~   | GND |
| 6  | GND | NC          | GND           | NC               | NC               | NC        | GND |
| 7  | GND | NC          | NC            | NC               | GND              | NC        | GND |
| 8  | GND | NC          | GND           | NC               | NC               | NC        | GND |
| 9  | GND | NC          | NC            | NC               | GND              | RGP_RX~   | GND |
| 10 | GND | SBS_TTL_TX  | GND           | SBS_TTL_RX       | SBS_TTL_TX_ENAB~ | NC        | GND |
| 11 | GND | LOCAL_TX    | LOCAL_RX      | SBS_TTL_WUP~     | GND              | RGP_HPPR~ | GND |

# Key Area

| 15 | GND | SLOT2 | SLOT1 | SLOT0 | GND           | RESERVE_ADC_1 | GND |
|----|-----|-------|-------|-------|---------------|---------------|-----|
| 16 | GND | SLOT3 | GND   | NC    | RESERVE_ADC_2 | GND           | GND |
| 17 | GND | NC    | NC    | NC    | GND           | ADC_I2C_SDA   | GND |
| 18 | GND | NC    | GND   | NC    | NC            | GND           | GND |
| 19 | GND | NC    | NC    | NC    | GND           | ADC_I2C_SCL   | GND |
| 20 | GND | NC    | GND   | NC    | NC            | GND           | GND |
| 21 | GND | P5V   | P35V  | P9V   | P9V           | P9V           | GND |
| 22 | GND | P5V   | RACK0 | N9V   | N9V           | N9V           | GND |
| 23 | GND | P5V   | P19V  | N19V  | RACK1         | P12V          | GND |
| 24 | GND | P5V   | P19V  | N19V  | RACK2         | P12V          | GND |
| 25 | GND | P5V   | P19V  | N19V  | RACK3         | P12V          | GND |

Table 11.4 RXAD/2 backplane connector

|    | Z   | а           | b         | С         | d         | е         | f   |
|----|-----|-------------|-----------|-----------|-----------|-----------|-----|
| 1  | GND | P5V         | P5V       | P5V       | P5V       | P5V       | GND |
| 2  | GND | RESERVE_4   | RESERVE_5 | GND       | RESERVE_3 | GND       | GND |
| 3  | GND | ADC_I2C_SDA | GND       | L3_OPT    | GND       | LCLK_OPT  | GND |
| 4  | GND | ADC_I2C_SCL | GND       | L3_OPT~   | GND       | LCLK_OPT~ | GND |
| 5  | GND | GND         | L_CLK     | GND       | L_DATA_3  | GND       | GND |
| 6  | GND | GND         | L_CLK~    | GND       | L_DATA_3~ | GND       | GND |
| 7  | GND | L_OVR0      | GND       | L_DATA_2  | GND       |           | GND |
| 8  | GND | L_OVR1      | GND       | L_DATA_2~ | GND       |           | GND |
| 9  | GND | GND         | L_DATA_1  | GND       | L_DATA_0  | GND       | GND |
| 10 | GND | GND         | L_DATA_1~ | GND       | L_DATA_0~ | GND       | GND |
| 11 | GND | RESERVE_0   | GND       | RESERVE_1 | GND       | RESERVE_2 | GND |

Table 11.5 RXAD/2 extension connector

# 11.12 RXAD/2 Accessory

# 11.12.1 MRI Array-Preamp Supply 10V

Do not use such a converter box with the RXAD/2 units. The RXAD/2 units already have the appropriate 10  $V_{DC}$  supply voltage built-in.

# 12 AQS DRU

### 12.1 Introduction

The AQS DRU (Digital Receiver Unit) is a digital signal processing board implementing an enhanced digital receiver in comparison to the RCU introduced in 1994. It incorporates the digital mixing (LO3) stage for DQD and the ,on the fly' digital signal processing block for a variety of digital filters within the AQS/3+ receiver system.

To achieve a more flexible spectrometer integration (especially with extended multiple receiver systems), accumulation and data buffering is done on board. This allows for data transfer to the workstation to run across a commercial local area network (Fast Ethernet LAN). The omnipresent transfer control protocol / internet protocol (TCP/IP) is used to build the loosely coupled, standardized spectrometer environment, thus allowing flexible extensions.

Distributed communication between the workstation and one or more DRU runs on common object remote broker architecture (CORBA). CORBA is a modern and reliable distributed object middle ware. By implementing a hardware- and operating system independent software interface, it allows to communicate with the DRU by any workstation topology (Intel architecture, SGI, etc.) and operating system (JAVA, .NET, etc.)

Diagnosis and servicing access to the DRU relies on hypertext transfer protocol (HTTP) and hypertext markup language (HTML), enabling service access just by any web browser (e.g. Mozilla Firefox), without the need for special training of service people like the former UniTool.

The AQS DRU includes interfaces for automatic tuning and matching (ATMA), probe identification and control system (PICS) and AQS integrated preamplifier modules.

The AQS DRU comes in three versions, the DRU, the DRU-E and the DRU-M:

#### AQS DRU, P/N Z100977

The AQS DRU is an open frame PCB design and should be handled with care. A realtime pulse (RCP) input is used to switch the 2H preamplifier module transmit and receive switch according to the lock operation (TP\_F0).

From ECL 7 the AQS DRU allows to operate a Prodigy Cryo Probe with a Nanobay V3.

#### AQS DRU-E, P/N Z102520

The AQS DRU-E is enclosed in an aluminum metal case allowing seamless integration in the AQS chassis - concerning minimized RF interference and design.

The AQS DRU-E from ECL 6 no longer contains the 28 bit very high speed interface which has never been used. This functionality has been replaced by an 48 bit interface on the DRU-M which feeds the R-Controller board of the IPSO.

From ECL 6 the DRU-E contains the same preamplifier and ATMA interfaces as the DRU and thus can be used as a direct replacement for the DRU.

#### AQS DRU-M, P/N Z106185

The AQS DRU-M is enclosed in an aluminum metal case allowing seamless integration in the AQS chassis - concerning minimized RF interference and design. This version includes a very high speed interface to stream the received data to further signal processing systems for applications requiring more than the 50MBit/s, e.g. for real time decision capability or just for user oriented dedicated solutions.

The protocol has not been defined yet but may be fixed later by downloading new firmware. Such protocols could be CameraLinkTM or similar.

This version does not include interfaces for ATMA, PICS or preamplifier modules. The HPPR/2 system is required for these purposes instead.

A real-time pulse (RCP) output is available to trigger future experiments upon acquiring NMR data (to be defined).

# 12.2 Functions/Description

The basic digital receiver concept of the DRU is designed to fulfill the following tasks:

- 1. Interface to different types of AD converters (for future)
- 2. Propagate a digitizer overflow condition
- 3. Capture digitizer peak values (i.e. used for receiver gain adjust)
- 4. Automatic DC offset calibration (used for AutoZeroCompensation)
- 5. Digital receiver phase control
- 6. Digital quadrature detection (LO3)
- 7. Digital filtering of NMR signals
- 8. Decimation of NMR signals
- 9. Accumulation and acquisition, multi buffer handling
- 10. Data transfer to workstation via ethernet (write to disk, online display)
- 11. Special fast functions (i.e wobble display, RGA, AutoZeroCompensation)
- 12. Integration of AQS preamplifier controller
- 13. Real Time Trigger output (RCP, for debugging)

Most of these operations (scan control) are under real time control by the pulse program via the so called ,SampleInfo' bus. With this it is possible to handle the ADC data, in the extreme cases each sample, by the information given via this acquisition synchronous system bus. The scan control runs in parallel with the DWELL clock and the RGP\_ADC of the digitizer.

14. High Speed LVDS data output (DRU-M only)

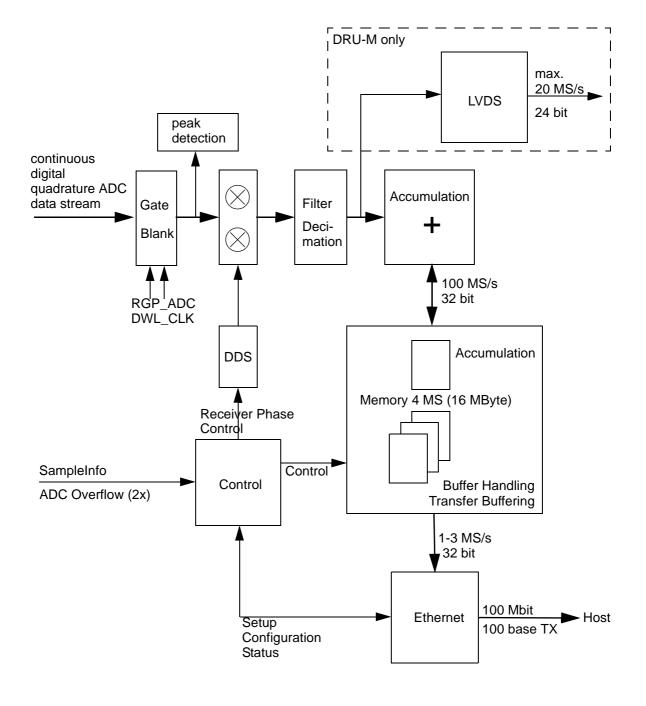



Figure 12.1 DRU Block diagram ,Digital Receiver'

### 12.2.1 Power Supply and Monitoring LEDs

Operation of the on-board power stabilization is monitored by the two green LED on the front labeled ,POWER'.

The LED labeled ,DRU' monitors the internal DRU supplies (3.3V, 2.5V, 1.5V). These are all derived from a single 5V AQS backplane supply.

The LED labeled ,ATMA' monitors the +9V ATMA voltage which is connected to the HPPR\_9V AQS backplane supply.

### 12.2.2 Front Panel Wiring / Display

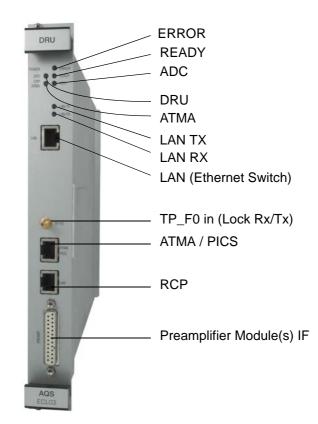



Figure 12.2 AQS DRU-E and AQS DRU front-side view

### 12.2.3 Reset and Operation LED Display

#### ERROR LED

The red ,ERROR' LED indicates a pending ERROR.

#### **READY LED**

Normal operation is indicated by the green ,READY' LED.

Every 500ms this LED is turned off for 20ms, resulting in a faint flicker. If this flicker is missing, the DRU is not running properly and must be reset by switching off the AQS chassis for about 10 seconds.

#### ADC LED

This green ,ADC' LED indicates a running Acquisition.

#### LAN TX LED

This green ,LAN TX' LED indicates outgoing LAN traffic.

#### LAN RX LED

This green ,LAN RX' LED indicates incoming Reset and Operation LED Display

#### ERROR LED

The red ,ERROR' LED indicates a pending ERROR.

#### **READY LED**

Normal operation is indicated by the green ,READY' LED.

Every 500ms this LED is turned off for 20ms, resulting in a faint flicker. If this flicker is missing, the DRU is not running properly and must be reset by switching off the AQS chassis for about 10 seconds.

#### ADC LED

This green ,ADC' LED indicates a running Acquisition.

#### LAN TX LED

This green ,LAN TX' LED indicates outgoing LAN traffic.

#### LAN RX LED

This green ,LAN RX' LED indicates incoming LAN traffic.LAN traffic.

# 12.3 Servicing the DRU

Diagnosis and servicing access to the DRU relies on HTTP, enabling service access just by any web browser. This is possible because only basic HTTP V1.1 protocol elements have been used.

## 12.3.1 Accessing the DRU

Depending on the slot and the rack code, the DRU adopts one of the following IP addresses. Any illegal or unknown configuration is mapped to DRU1 and the message "Illegal Rack/Slot configuration. Fallback to DRU1 address." is written to the DRU Log.

| IP Address    | DRU Name |
|---------------|----------|
| 149.236.99.89 | dru1     |
| 149.236.99.88 | dru2     |
| 149.236.99.87 | dru3     |
| 149.236.99.86 | dru4     |
| 149.236.99.85 | dru5     |
| 149.236.99.84 | dru6     |
| 149.236.99.83 | dru7     |
| 149.236.99.82 | dru8     |

Table 12.1 IP Addresses for DRU

It might be useful to edit the hosts file.

In case of problems:

- check the RJ45 cabling between DRU, Ethernet switch and the workstation
- check the ethernet switch power if appropriate
- check the DRU heart beat (flicker of ,READY LED)
- ping DRU1 (DRU2...)
- check LAN ,RX/TX' LED while pinging

If you have a working Topspin installation type "ha" and select "DRU". This opens a browser window and loads the DRU start page.

To access the DRU without Topspin, start your favorite web browser and type "149.236.99.89" as URL.

## 12.3.2 Downloading New Firmware

#### Main $\rightarrow$ DRU Information $\rightarrow$ DRU Firmware

leads you to a page giving information about the current firmware.

**1** The document caching of the browsers can be tricky - make sure your browser doesn't fool you with old data. Most browsers have some "Reload" button for this purpose.

#### Main $\rightarrow$ AQS Firmware Setup $\rightarrow$ Program new DRU firmware

leads you to a page allowing to download new firmware. The current firmware file name is displayed together with a prompt for the new firmware file.

The following example explains the naming convention:

DRU\_firmware\_040325.hex

040325 is a date code for March 25, 2004. Alphabetically sorted, the newest file is found at the bottom line.

**1** Do not download an older firmware than the currently installed one, except you want to roll back in time.

#### $\textbf{Main} \rightarrow \textbf{DRU Service} \rightarrow \textbf{Display logged messages}$

shows a page containing the main log. If you are in the situation to report a software bug, it's a good idea to include this log. You can copy the text part into an explaining mail or you can save the whole HTML page and attach it.

# AQS DRU

# 12.4 Technical Data

| ADC Data Input<br>Data Rate                                       | 2*20               | MS/s                      |
|-------------------------------------------------------------------|--------------------|---------------------------|
| NMR Data Output (Ethernet)                                        | 0.0 400000         | LO/-1                     |
| Data Rate<br>Data Word Width                                      | 0.3 - 10'000<br>32 | kS/s <sup>1</sup><br>bits |
| Acquisition Modes                                                 |                    |                           |
| Quadrature off acquisition (only channel A, analog and digital mo | odes)              | QF                        |
| Quadrature simultaneous acquisition (analog and digital modes)    |                    | QSIM                      |
| Acquisition with Digital Quadrature Detection (digital mode only) |                    | DQD                       |
| Digital Quadrature Detection (Digital Down Conversion)            |                    |                           |
| DDS frequency range (LO3)                                         | +/-(05)            | MHz                       |
| Digital Mixer Operation                                           | SSB                |                           |
| Digital Filter type ,smooth'                                      |                    |                           |
| Passband Error                                                    | 0.01 %             | max                       |
| Transition Region                                                 | 15 %               | SWH                       |
| Stoppband Attenuation                                             | 86 dB              | min                       |
| Group Delay                                                       | 20                 | samples                   |
| Bandwidth (SWH)                                                   | 5 MHz              | max                       |
| Digital Filter type ,medium'                                      |                    |                           |
| Passband Error                                                    | 0.001 %            | max                       |
| Transition Region                                                 | 10 %               | SWH                       |
| Stoppband Attenuation                                             | 103 dB             | min                       |
| Group Delay                                                       | 36                 | samples                   |
| Bandwidth (SWH)                                                   | 2.222 MHz          | max                       |
| Digital Filter type ,sharp'                                       |                    |                           |
| Passband Error                                                    | 0.001 %            | max                       |
| Transition Region                                                 | 5 %                | SWH                       |
|                                                                   |                    |                           |

1. complex data points

# AQS DRU

| Stoppband Attenuation<br>Group Delay<br>Bandwidth (SWH)               | 104 dB<br>68<br>1.25 MHz | min<br>samples<br>max |
|-----------------------------------------------------------------------|--------------------------|-----------------------|
| Miscellaneous                                                         |                          |                       |
| Direct accessible Scan Memory Size                                    | 4M                       | samples               |
| Banked Scan Memory Size                                               | 16M<br>45                | samples<br>Mbit/s     |
| Sustained LAN data rate (depending on Workstation)<br>Trigger output: | 45                       | MDII/S                |
| Voltage Level                                                         | 5                        | V                     |
| Impedance                                                             | 50                       | Ohm                   |
| max Frequency                                                         | 1                        | MHz                   |
|                                                                       |                          |                       |
| Trigger Output                                                        |                          |                       |
| Voltage Level                                                         | 5                        | V                     |
| Impedance                                                             | 50                       | Ohm                   |
| max Frequency                                                         | 1                        | MHz                   |
|                                                                       |                          |                       |

# AQS DRU

# 12.5 Backplane Connectors

|    | Z   | а           | b             | С                | d                | e             | f   |
|----|-----|-------------|---------------|------------------|------------------|---------------|-----|
| 1  | GND | GND         | INTRA_STATUS~ | NC               | GND              | SAMPLE_INFO0~ | GND |
| 2  | GND | NC          | GND           | SAMPLE_INFO3~    | SAMPLE_INFO2~    | SAMPLE_INFO1~ | GND |
| 3  | GND | GND         | NC            | I2C_STATUS~      | GND              | SAMPLE_INFO4~ | GND |
| 4  | GND | 20MHZ_CLK_X | GND           | INTERLEAVE_INCR~ | NC               | ADC_SEL0      | GND |
| 5  | GND | GND         | 20MHz_CLK_X~  | NC               | GND              | NC            | GND |
| 6  | GND | NC          | GND           | NC               | NC               | INTRA_WUP~    | GND |
| 7  | GND | NC          | NC            | NC               | GND              | RGP_ADC~      | GND |
| 8  | GND | NC          | GND           | NC               | NC               | DWELL_EN~     | GND |
| 9  | GND | NC          | NC            | NC               | GND              | NC            | GND |
| 10 | GND | SBS_TTL_TX  | GND           | SBS_TTL_RX       | SBS_TTL_TX_ENAB~ | NC            | GND |
| 11 | GND | LOCAL_TX    | LOCAL_RX      | SBS_TTL_WUP~     | GND              | RGP_HPPR~     | GND |

# Key Area

| 15 | GND | SLOT2           | SLOT1     | SLOT0    | GND           | RESERVE_ADC_1 | GND |
|----|-----|-----------------|-----------|----------|---------------|---------------|-----|
| 16 | GND | SLOT3           | GND       | I2C1_SDA | RESERVE_ADC_2 | GND           | GND |
| 17 | GND | EMERGENCY_STOP~ | NC        | I2C1_SCL | GND           | ADC_I2C_SDA   | GND |
| 18 | GND | NC              | GND       | I2C2_SDA | I2C2_SCL      | GND           | GND |
| 19 | GND | NC              | NC        | NC       | GND           | ADC_I2C_SCL   | GND |
| 20 | GND | NC              | GND       | NC       | NC            | GND           | GND |
| 21 | GND | P5V             | P35V      | HPPR_+9V | HPPR_+9V      | HPPR_+9V      | GND |
| 22 | GND | P5V             | RACK0     | N9V      | N9V           | NC            | GND |
| 23 | GND | P5V             | HPPR_+19V | HPPR19V  | RACK1         | NC            | GND |
| 24 | GND | P5V             | HPPR_+19V | HPPR19V  | RACK2         | NC            | GND |
| 25 | GND | P5V             | HPPR_+19V | HPPR19V  | RACK3         | NC            | GND |

Table 12.2 DRU backplane connector

|    | Z   | а           | b         | С         | d         | е         | f   |
|----|-----|-------------|-----------|-----------|-----------|-----------|-----|
| 1  | GND | P5V         | P5V       | P5V       | P5V       | P5V       | GND |
| 2  | GND | NC          | NC        | GND       | NC        | GND       | GND |
| 3  | GND | ADC_I2C_SDA | GND       | L3_OPT    | GND       | LCLK_OPT  | GND |
| 4  | GND | ADC_I2C_SCL | GND       | L3_OPT~   | GND       | LCLK_OPT~ | GND |
| 5  | GND | GND         | L_CLK     | GND       | L_DATA_3  | GND       | GND |
| 6  | GND | GND         | L_CLK~    | GND       | L_DATA_3~ | GND       | GND |
| 7  | GND | L_OVR0      | GND       | L_DATA_2  | GND       | NC        | GND |
| 8  | GND | L_OVR1      | GND       | L_DATA_2~ | GND       | NC        | GND |
| 9  | GND | GND         | L_DATA_1  | GND       | L_DATA_0  | GND       | GND |
| 10 | GND | GND         | L_DATA_1~ | GND       | L_DATA_0~ | GND       | GND |
| 11 | GND | NC          | GND       | RESERVE_1 | GND       | RESERVE_2 | GND |

Table 12.3 DRU extension connector

## 13.1 Introduction

The AQS SGU/3 is a dual channel broadband synthesizer for Avance III HD spectrometers. The AQS SGU/3 is available for three different nuclei ranges (SGU/3 LF, SGU/3 600 and SGU/3 1200).

Compared to the former AQS SGU/2 the AQS SGU/3 has improved rf performance, e.g. phase noise. It consists of two independent channels. One AQS/3+ chassis can be equipped with up to six SGU/3 channels.

The AQS SGU/3 is controlled by the AQS Controller Software which is part of the AQS DRU firmware. The communication between the AQS DRU and the SGU/3 goes via a synchronous serial rack bus (SSRB).

One SGU/3 channel is selected to be the observing channel and generates the LO and the receiver timing. This can be any SGU/3 channel in the chassis depending on the frequency channel chosen as the OBS (observe) in the edsp menu.

Each SGU/3 channel has a dedicated hard-wired LVDS link to an F-Controller of the IPSO. The high-speed link transfers all NMR relevant real-time events in two 12.5ns time slots to the corresponding SGU/3 channel (e.g. pulses, amplitude, phase, frequency etc.). Each rf channel is controlled by a separate high-speed link. It is connected via a LVDS cable on the front panels of the two units (point to point connection).

# 13.2 Functions/Description

### 13.2.1 Important Functions

The AQS SGU/3 has the following important functions:

- Generation of the precise final transmission frequency using the on-board frequency synthesizer. Digital pulse generation and shaping. The real time instructions are received from the IPSO via LVDS.
- Generation of the blanking signals for the amplifiers
- Generation of the tune signal for ,wobb'
- Downloadable DDS functionality due to FPGA technology

Observing SGU/3 channel:

- Generation of gating pulses used in preamplifiers, receiver and DRU
- Generation of the dwell enable signal for the DRU
- Generation of LO signal for the receiver

## 13.2.2 LO Signal Routing

The LO signal for the receiver is generated on the observing SGU/3 channel and daisychained through all the succeeding SGU/3 to the receiver. This daisy chain is unidirectional in the direction of the receiver. E.g. in a six channel system with SGU channel 3 set OBS, SGU/3 channel 1 will generate the LO and is daisy-chained through the third SGU/3 to the receiver (see Figure 13.1).

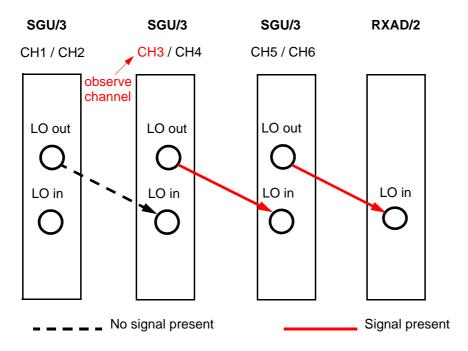
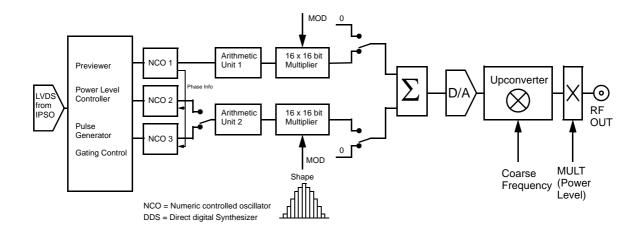




Figure 13.1 LO Dasy-chain for channel 3 (channel 1 of SGU 2) configured as observe channel

## 13.2.3 Signal Generation Inside the SGU/3

The RF signal generation is shown schematically in . Note that the signal path switching is controlled via the LVDS Interface.



Signal generation inside an SGU/3 channel

The core of each SGU/3 channel consists of three NCOs (Numerically Controlled oscillators) NCO1, NCO2, NCO3. NCO0 is used for zero transmission. NCO1 is always used for the OBS frequency. Any shifts in frequency are implemented using NCO2.

NCO3 is always used for the LO frequency.

The advantage of using multiple NCOs is that frequency, amplitude and phase information can be loaded simultaneously. This facilitates instantaneous switching from one phase or frequency to another etc.

The timing of the NCO output is controlled by a series of instructions transmitted by the IPSO via LVDS with a 12.5ns timing resolution.

The output of the different NCOs is a digital representation of all characteristics of the required signal. This digital signal can be modulated using the 'MOD' input to implement the shape of the signal. At this point the signal is still digital which is then passed through a DAC to generate an analog output. The signal at this stage has still not the final frequency. This is obtained with the up converter which mixes the oscillator frequency with the appropriate frequency from the REF unit to produce the final transmission frequency. The last step is the power level adjust ('MULT') which sets the overall amplitude of the RF output.

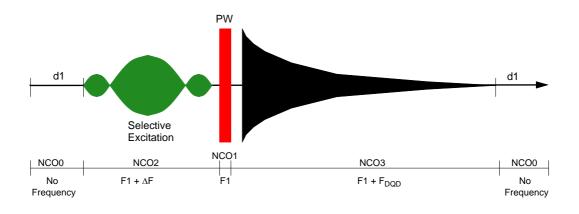



Figure 13.2 NCO allocation

## 13.2.4 RF Routing Inside the SGU/3

Depending on the observe configuration of the two SGU/3 channels the RF routing of the LO and transmit signal is set differently. The possible settings are shown below.

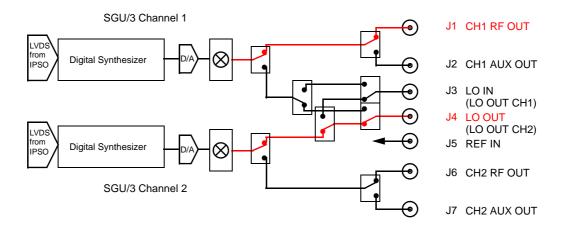



Figure 13.3 Channel 1 transmit, channel 2 observe

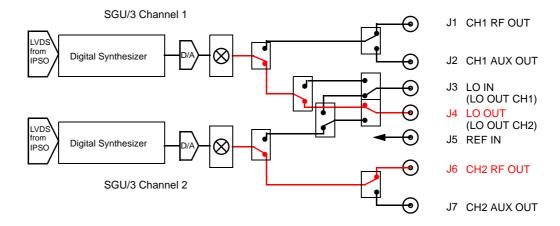



Figure 13.4 Channel 1 observe, channel 2 transmit

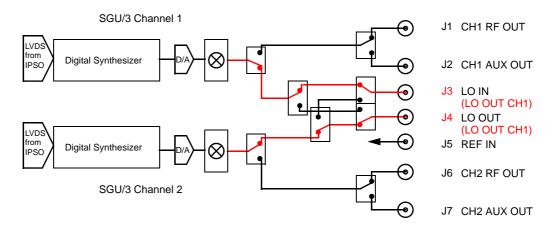



Figure 13.5 Channel 1 observe, channel 2 observe (dual receive mode)

### 13.2.5 Intelligent Pulse Generation

A built-in previewer manages all delays required by the different hardware. Pre- and postdelays for transmitter, preamplifier and receiver are generated automatically and can be configured on the SGU/3 (Figure 13.6).

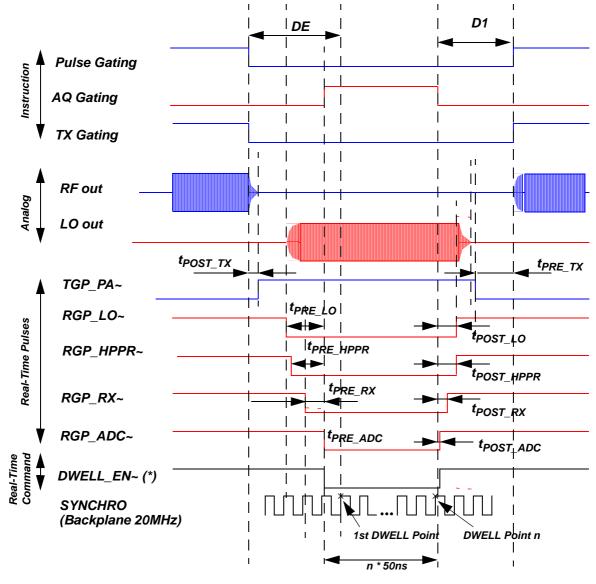



Figure 13.6 Pulse generation inside the SGU/3

# 13.3 Front Panel Wiring / Display

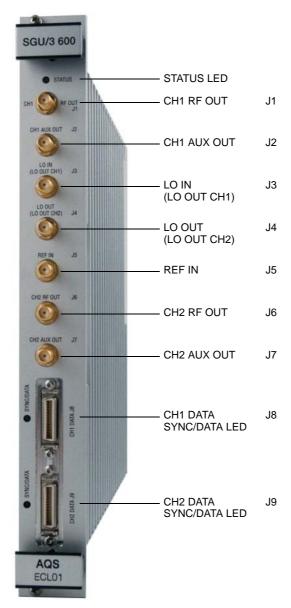



Figure 13.7 SGU/3 front panel

## 13.3.1 LED Display

| STATUS   | SYNC/DATA<br>CH1 | SYNC/DATA<br>CH2 | Description                                                |
|----------|------------------|------------------|------------------------------------------------------------|
| off      | off              | off              |                                                            |
| •        |                  |                  | Power is off or at least one of the power supplies is low  |
| blinking | off              | off              |                                                            |
| •        |                  |                  | Board is in diagnostic mode                                |
| blue     | off              | off              |                                                            |
|          |                  |                  | REF-Signal missing / Synchronisation reset sequence active |
| green    | green            | green            |                                                            |
|          |                  |                  | SGU/3 is ready, both Channels are ready for operation      |
| green    | yellow           | green            |                                                            |
|          |                  |                  | SGU/3 is ready, data link on Channel 1 active              |
| green    | green            | yellow           |                                                            |
|          |                  |                  | SGU/3 is ready, data link on Channel 2 active              |
| green    | off              | green            |                                                            |
|          |                  |                  | SGU/3 is ready, Channel 1 not synchronized with IPSO       |
| green    | green            | off              |                                                            |
|          |                  |                  | SGU/3 is ready, Channel 2 not synchronized with IPSO       |
| red      | red              | green            |                                                            |
|          |                  |                  | Error on SGU/3 Channel 1                                   |

| STATUS | SYNC/DATA<br>CH1 | SYNC/DATA<br>CH2 | Description                                                                                                |
|--------|------------------|------------------|------------------------------------------------------------------------------------------------------------|
| red    | green            | red              | Error on SGU/3 Channel 2                                                                                   |
| yellow | green            | green            | Serial communication to SGU/3 active<br>In case of static yellow LED: status mes-<br>sage pending on SGU/3 |

## 13.3.2 Front Panel Connectors

#### J1 CH1 RF OUT

Channel 1 RF output for transmitter signal

#### J2 CH1 AUX OUT

Channel 1 auxiliary output for wobble/transmitter signal

#### J3 LO IN (CH1 LO OUT)

LO signal input for receiver LO daisy chain

In case of a dual receiver system the connector is used as output for the first channel's LO signal.

#### J4 LO OUT (CH2 LO OUT)

Output of receiver LO signal LO signal output for second channel's LO signal in dual receiver configuration

#### J5 REF IN

Reference signal input from REF/3 unit

#### J6 CH1 RF OUT

Channel 2 RF output for transmitter signal

### J7 CH2 AUX OUT

Channel 2 auxiliary output for wobble/transmitter signal

# 13.4 SGU/3 FPGA Firmware

In contrast to the SGU/2 the SGU/3 needs only one firmware called the SGU/3 FPGA software. The firmware can be downloaded via the DRU web page.

## 13.4.1 SGU/3 Firmware Version Encoding

The FPGA firmware for the AQS SGU/3 is compressed data with file name syntax <SGU3\_YYMMDD.gz> YY = Year, MM = Month, DD = Day

### **13.4.2** Identification of the Firmware Release

The AQS Firmware setup page (Main>AQS Firmware setup>Download new Firmware into AQS Devices) lists the active and the required firmware version for each unit in the AQS system.

## 13.4.3 SGU/3 Firmware Download

To update the AQS SGU/3 firmware please follow these instructions:

- 1. Click on "Select SGU/3 Firmware" on the AQS Firmware setup page and select the SGU/3 firmware file SGU3\_120130.gz.
- 2. Tick "Downloading" in the corresponding SGU/3 row.
- 3. Select button "Download ticked AQS Firmware"

## 13.5 Part Numbers

Z117129 SGU/3 600 (Frequency range 5...650 MHz)

Z117130 SGU/3 1200 (Frequency range 5...1290 MHz)

Z117131 SGU/3 LF (Frequency range 0.003...440.0 MHz)

# **13.6 Error Messages**

Description of possible error messages:

| Error No.    | Error Message               | Description                                                           | Possible cause                                                                             |
|--------------|-----------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Error No. 5  | Selected board not inserted | SBSB address does not match with the device identifier of the command | Hardware and software configu-<br>ration are different; reconfigura-<br>tion ('cf') needed |
| Error No. 13 | Power failed                | A power up has occurred and the system is not initialized             | Ordinary power up or a power breakdown during an experiment                                |

| Error No.    | Error Message                                                                                 | Description                                                                            | Possible cause                                                                                                         |
|--------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Error No. 15 | Parameter exceeds valid range                                                                 | Value out of range                                                                     | Spectrometer control software<br>failure or faulty input using DRU<br>Web-Tool                                         |
| Error No. 17 | Function not supported by board hardware version                                              |                                                                                        | SGU/3 with newer ECL required                                                                                          |
| Error No. 20 | Syntax error                                                                                  | Selected feature not supported by actual firmware, board does not understand command   | Spectrometer control software<br>failure, wrong board selected,<br>hardware feature not supported<br>by actual version |
| Error No. 21 | Command not available for this HW version                                                     |                                                                                        | SGU/3 with newer ECL required                                                                                          |
| Error No. 58 | Corrupt BIS on board                                                                          | BIS (Board Information System) test failed                                             | Hardware failure                                                                                                       |
| Error No. 59 | BIS checksum error                                                                            | BIS (Board Information System) test failed                                             | Hardware failure                                                                                                       |
| Error No. 64 | LVDS data link: parity bit fault                                                              | Parity bit fault on LVDS data link                                                     | LVDS data link disconnected and reconnected                                                                            |
| Error No. 65 | LVDS data link: synchroni-<br>zation bit fault                                                | Synchronization bit fault on LVDS data link                                            | LVDS data link disconnected and reconnected                                                                            |
| Error No. 66 | LVDS data link: instruction alignment fault                                                   | Alignment error on LVDS data link                                                      | FPGA reset on SGU/3                                                                                                    |
| Error No. 67 | Real-time instruction timing violation: DE time too short                                     | Timing check error while changing to acquisition state                                 | Time between transmit and acquisition too short                                                                        |
| Error No. 69 | Real-time instruction timing<br>violation: SGU pre-delay 1<br>time too short                  | Timing check error while changing to tune state                                        | Time between two tune sequences too short                                                                              |
| Error No. 70 | Real-time instruction timing<br>violation: SGU pre-delay 2<br>time too short                  | Timing check error while changing to homo decoupling state                             | Time between transmit and homo decoupling too short                                                                    |
| Error No. 71 | Real-time instruction fault:<br>invalid gating state transi-<br>tion                          | Invalid state transition of the gating state machine                                   | Error in gating instruction from IPSO                                                                                  |
| Error No. 72 | Real-time instruction fault:<br>unknown instruction                                           | Unknown real time instruction                                                          | Invalid real time instruction from IPSO                                                                                |
| Error No. 73 | Overflow in NCO combiner detected                                                             | Sum of amplitudes of NCO1 and NCO2 exceeds maximum value                               | NCO Amplitudes to high, pulse programming failure                                                                      |
| Error No. 74 | Scan Info lost                                                                                | Timing violation while sending a<br>Scan Info Instruction from IPSO via<br>SGU to DRU. | Time between two Scan Info<br>instructions too short.                                                                  |
| Error No. 75 | Global frequency offset:<br>overflow or underflow in<br>adder                                 | Sum of SGU frequency and global<br>frequency offset (from FRED unit)<br>out of range   | Pulse programming failure                                                                                              |
| Error No. 76 | Real-time instruction fault:<br>wrong coarse frequency                                        | SGU PLL frequency out of range                                                         | Spectrometer control software failure                                                                                  |
| Error No. 77 | Real-time instruction fault:<br>both channels are observe                                     | Wrong observe setting                                                                  | Spectrometer control software failure                                                                                  |
| Error No. 78 | Overflow in amplitude com-<br>biner                                                           | Internal NCO combining overflow                                                        | Pulse programming failure                                                                                              |
| Error No. 87 | 20MHZ_CLK clock / phase<br>fault. Check clock distribu-<br>tion, cable length of<br>REF_IN J5 | Deviance in clock phase between 20 MHz and REF_IN                                      | Check length of REF cable between REF/3 and SGU/3                                                                      |

| Error No.     | Error Message                                                                                                                 | Description                                                                 | Possible cause                                                                                     |
|---------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Error No. 88  | DUC sync fail                                                                                                                 | Internal synchronization error                                              | Hardware failure                                                                                   |
| Error No. 89  | DUC CCI overflow                                                                                                              | Internal data transmission error                                            | Real time instruction error / Hard-<br>ware failure                                                |
| Error No. 90  | DCM DUC sync clock fail                                                                                                       | Internal synchronization error                                              | Hardware failure                                                                                   |
| Error No. 91  | DCM DUC pd clock fail                                                                                                         | Internal clock error                                                        | Hardware failure                                                                                   |
| Error No. 92  | PLL DDS sync fail                                                                                                             | Internal synchronization error                                              | Hardware failure                                                                                   |
| Error No. 93  | DCM PLL DDS sync clock fail                                                                                                   | Internal clock error                                                        | Hardware failure                                                                                   |
| Error No. 94  | Synchro 20MHz (back-<br>plane) fail                                                                                           | 20 MHz clock signal missing                                                 | Signal path REF/3 -> Backplane<br>-> SGU/3 interrupted                                             |
| Error No. 95  | SSRB address error in<br>reply                                                                                                | Communication error DRU <-><br>SGU/3                                        | DRU firmware error / hardware error                                                                |
| Error No. 96  | Corrupt data in flash                                                                                                         | Internal configuration data cor-<br>rupted or missing                       | Hardware failure                                                                                   |
| Error No. 97  | 80MHZ clock error. Check if<br>REF IN (J5) is connected to<br>a Reference Board and<br>restart the system                     | Reference signal from REF/3 low<br>or missing                               | Inadequate connection between<br>REF/3 and SGU/3                                                   |
| Error No. 98  | SSRB last command failed                                                                                                      | Communication error DRU <-><br>SGU/3                                        | DRU firmware error / SGU/3<br>FPGA error                                                           |
| Error No. 99  | SSRB time-out error                                                                                                           | Communication error between DRU and SGU/3                                   | Clock signal missing on SGU/3<br>Check REF connection on J5                                        |
| Error No. 103 | Can not set both channels<br>to observe (Only allowed in<br>Multi-RX configurations or<br>in interleaved acquisition<br>mode) | Hardware and software configura-<br>tion do not match                       | Spectrometer control software<br>failure, reconfiguration ('cf')<br>needed                         |
| Error No. 104 | Flash table does not exist.                                                                                                   | Flash table for hardware configura-<br>tion on SGU/3 missing                | Hardware failure                                                                                   |
| Error No. 106 | SGU Multi-RX configuration not possible in that slot                                                                          | SGU/3 in wrong slot for dual receive configuration                          | Put SGU/3 in slot 0 for dual receive configuration, reconfiguration, reconfiguration ('cf') needed |
| Error No. 108 | SGU PLL lock lost or PLL unlock error                                                                                         | Phase-locked loop unlocked                                                  | Hardware failure                                                                                   |
| Error No. 109 | SGU frequency out of range                                                                                                    | The set frequency is not in the valid range for the present board           | Spectrometer control software<br>failure, reconfiguration ('cf')<br>needed                         |
| Error No. 110 | Emergency stop activated,<br>SGU forced to reset. Hint:<br>Check HPPR/2 for emer-<br>gency stop occurrence first              | An emergency stop signal from<br>backplane was detected                     | Emergency stop signal activated by any spectrometer unit                                           |
| Error No. 114 | Command not available for this channel                                                                                        | An SGU/3 board command was sent to an SBSB address of a sin-<br>gle channel | spectrometer control software failure, wrong channel selected                                      |
| Error No. 116 | Power supply failure detected                                                                                                 | One or more (internal) power sup-<br>plies are low                          | failure of external or internal power supply                                                       |

# 13.7 Important Signals

All signals described below are active low with TTL level. An exception are the blanking signals which use an open drain configuration.

#### BLKTR (Amplifier Blanking Pulses)

The SGU/3 can control up to eight power amplifiers with the corresponding BLKTR. The timing of the blanking pulses is controlled by the pulse gating from the IPSO and the configured pre and post delays of the SGU/3. All SGU/3 channels are capable of generating blanking pulses.

The internal amplifiers receive the blanking directly from the backplane, whereas the external amplifiers receive the signals from the PSM/A which receives the signals from the backplane.

#### **RGP\_HPPR~ (Preamplifier Receiver Gating Pulse)**

This pulse is generated by the observe SGU/3 channel and is used to gate the OBS module on the HPPR (transmit / receive switching). The timing of the pulse can be modified with the 'edscon' parameters. This signal is routed via the PSM/A to the observe module in the preamplifier HPPR/2. All other non-lock HPPR modules are left in transmission mode permanently.

#### RGP\_LO~ (Local Oscillator Gating Pulse)

This pulse is generated by the observe SGU/3 channel. It indicates a valid LO signal for the receiver.

#### **RGP\_RX~ (Receiver Gating Pulse)**

This pulse generated by the observing SGU/3 channel enables the receiver and is transmitted directly over the backplane. The timing of the pulse can be modified with the 'edscon' parameters.

#### RGP\_ADC~ (ADC Gating Pulse)

This pulse (also driven by the observe SGU/3 channel) controls the ADC data. If the pulse goes low and a dwell enable is active the ADC is sampling data. If the pulse is high and a dwell enable is active the ADC generates zero-data. The RGP\_ADC is routed over the backplane to the ADC. This signal is also used for digital homo decoupling with oversampling.

#### DWELL\_ENABLE~

The signal is driven by the observe SGU/3 channel and is used to control the timing of the A/D conversion. A low level of this signal enables ADC conversion. The signal is generated on the SGU/3. The timing is controlled by the IPSO. The pulse is routed over the backplane to the DRU.

# 13.8 Specifications

### 13.8.1 Timing

Minimum Pulse or delay duration: see specification of IPSO.

#### **Time Resolution: 12.5ns**

The resolution is given by the internal 80MHz clocking frequency of the SGU/3. Thus pulses or delays between pulses can be set to multiples of 12.5ns.

#### 13.8.2 Frequency

#### **Frequency Range:**

 SGU/3 600:
 5.0
 650.0 MHz

 SGU/3 1200:
 5.0
 1290.0 MHz

 SGU/2 LF:
 0.003
 440.0 MHz

#### **Frequency Stability:**

This is governed by the stability of the crystal oscillator on the REF unit which is specified to  $\pm 0.5 \times 10^{-9}$ /day and  $\pm 5 \times 10^{-8}$ /year.

#### **Frequency Resolution:**

The DDS is clocked by 80MHz and the frequency setting is stored in a 34 bit register  $\rightarrow$  80 MHz/234 <0.005 Hz.

#### Frequency Switching Time:

Instruction time for frequency steps: 25 ns with resolution of 12.5 ns. Further information on response time of analog hardware: see section "Hardware Response" on page 165

### 13.8.3 Phase

#### Phase Resolution:

A 16 bit register is used to store phase values.  $\rightarrow$  360°/2<sup>16</sup> < 0.006°

#### **Phase Switching Time:**

Instruction time for phase steps: 25 ns with resolution of 12.5 ns.

Total response time for any phase step to a phase error with less than 1° < 300ns. Further information on phase settling time: see section "Hardware Response" on page 165

### 13.8.4 Amplitude

#### **Modulator Range:**

The Modulator values are stored in a 16 bit register which equates to a voltage dynamic range of 96dB. ( $20 \log(2^{16}) = 96 \text{ dB}$ ).

#### Power Level Range:

The Power Level values are stored in a 15 bit register which equates to a voltage dynamic range of 90dB.  $(20 \log(2^{15}) = 90 \text{ dB})$ 

Power Level resolution: 0.1 dB

#### **Amplitude Switching Time:**

Instruction time for amplitude: 25ns

Response time of analog hardware: <100ns

### 13.8.5 Hardware Response

The SGU/3 frequency, amplitude (MOD) and power level (MULT) registers can be set within 12.5ns, the actual update rate is limited by the serial link and the event synchronization to 25ns. The time until the new values are set on the output can be much longer because of the limited bandwidth in the analog sections inside the SGU/3.This additional time is called response time or settling time.

The settling time is independent of change frequency or phase. A quite hard test is to change phase by  $180^{\circ}$  and measure the time elapsed to achieve a remaining error of < $1^{\circ}$ .

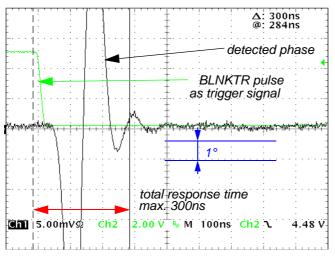



Figure 13.8 Response 180° phase step

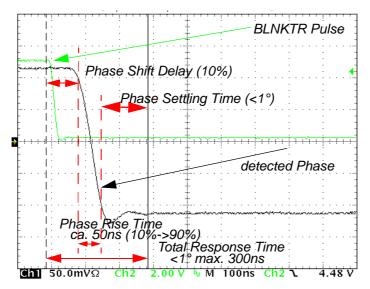



Figure 13.9 Response 90° step (45°/+135°)

# 13.9 Power Supply / Fuses

see 13.3.1

# 13.9.1 Backplane Connector

|    | z   | а           | b            | с                | d             | е             | f   |
|----|-----|-------------|--------------|------------------|---------------|---------------|-----|
| 1  | GND | GND         | NC           | NC               | GND           | SAMPLE_INFO0~ | GND |
| 2  | GND | P3V6        | GND          | SAMPLE_INFO3~    | SAMPLE_INFO2~ | SAMPLE_INFO1~ | GND |
| 3  | GND | GND         | P3V6         | NC               | GND           | SAMPLE_INFO4~ | GND |
| 4  | GND | 20MHZ_CLK_X | GND          | INTERLEAVE_INCR~ | RESERVE(0)    | P3V6          | GND |
| 5  | GND | GND         | 20MHz_CLK_X~ | P3V6             | GND           | RGP_LO~       | GND |
| 6  | GND | BLNKTR1~    | GND          | BLNKTR2~         | NC            | P3V6          | GND |
| 7  | GND | BLNKTR3~    | BLNKTR4~     | RESERVE(1)       | GND           | RGP_ADC~      | GND |
| 8  | GND | BLNKTR5~    | GND          | BLNKTR6~         | NC            | DWL_ENAB~     | GND |
| 9  | GND | BLNKTR7~    | BLNKTR8~     | NC               | GND           | RGP_RX~       | GND |
| 10 | GND | NC          | GND          | NC               | NC            | P3V6          | GND |
| 11 | GND | NC          | NC           | NC               | GND           | RGP_HPPR~     | GND |

## Key Area

| 15 | GND | SLOT2           | SLOT1     | SLOT0       | GND | NC  | GND |
|----|-----|-----------------|-----------|-------------|-----|-----|-----|
| 16 | GND | SLOT3           | GND       | NC          | NC  | GND | GND |
| 17 | GND | EMERGENCY_STOP~ | NC        | NC          | GND | NC  | GND |
| 18 | GND | P3V6            | GND       | NC          | NC  | GND | GND |
| 19 | GND | SSRB_STXD       | SSRB_SCLK | SSRB_SINTR~ | GND | NC  | GND |
| 20 | GND | SSRB_SRXD       | GND       | NC          | NC  | GND | GND |
| 21 | GND | P5V             | P35V      | P9V         | P9V | P9V | GND |
| 22 | GND | P5V             | NC        | N9V         | N9V | N9V | GND |
| 23 | GND | P5V             | P19V      | N19V        | NC  | NC  | GND |
| 24 | GND | P5V             | P19V      | N19V        | NC  | NC  | GND |
| 25 | GND | P5V             | P19V      | N19V        | NC  | NC  | GND |

Table 13.1 SGU/3 backplane connector

|    | z   | а                 | b                 | С                 | d                 | е                    | f   |
|----|-----|-------------------|-------------------|-------------------|-------------------|----------------------|-----|
| 1  | GND | RX2_SAMPLE_INFO0~ | RX2_SAMPLE_INFO1~ | RX2_SAMPLE_INFO2~ | RX2_SAMPLE_INFO3~ | RX2_SAMPLE_INFO4~    | GND |
| 2  | GND | RX2_RGP_LO~       | RX2_RGP_HPPR~     | RX2_RGP_RX~       | RX2_RGP_ADC~      | RX2_INTERLEAVE_INCR~ | GND |
| 3  | GND | RX2_DWL_ENAB~     | NC                | NC                | NC                | NC                   | GND |
| 4  | GND | NC                | NC                | NC                | NC                | NC                   | GND |
| 5  | GND | NC                | NC                | NC                | NC                | NC                   | GND |
| 6  | GND | NC                | NC                | NC                | NC                | NC                   | GND |
| 7  | GND | NC                | NC                | NC                | NC                | NC                   | GND |
| 8  | GND | NC                | NC                | NC                | NC                | NC                   | GND |
| 9  | GND | NC                | NC                | NC                | NC                | NC                   | GND |
| 10 | GND | NC                | NC                | NC                | NC                | NC                   | GND |
| 11 | GND | NC                | NC                | NC                | NC                | NC                   | GND |

Table 13.2 SGU/3 extension connector

# 14 AQS Pulse & RF-Splitter

## 14.1 Introduction

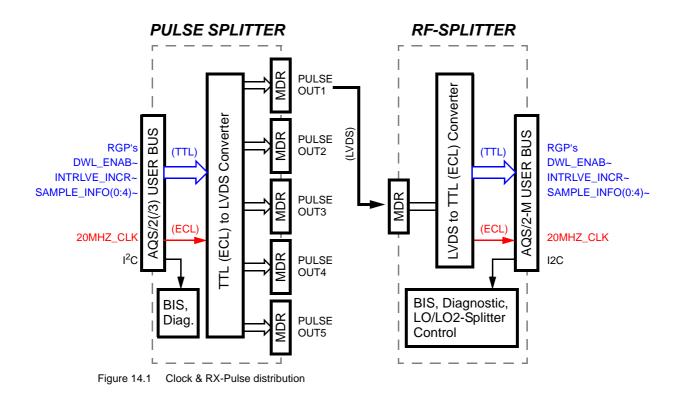
The AQS PULSE SPLITTER and AQS RF-SPLITTER boards are used for the following signal distribution between AQS/2 or AQS/3 and AQS/2-M chassis:

- 20MHz clock
- 11 receiver (RX) pulses: RGP\_LO~, RGP\_ADC~, RGP\_RX~, RGP\_HPPR~, DWL\_ENAB, INTRLEAVE\_INCR~, SAMPLE\_INFO[0:4] ~
- LO-signal
- LO2-signal

The PULSE SPLITTER board is situated in one of the AQS slots in the front of the AQS/ 2 or AQS/3 chassis, the RF-SPLITTER in the rear of the AQS/2-M chassis.

PULSE and RF-SPLITTER are connected via a twisted pair cable with Mini-Delta-Ribbon (MDR) connectors. The cable has a differential impedance of  $100\Omega$ .

One PULSE SPLITTER can support up to 5 AQS/2-M chassis. Each AQS/2-M chassis needs one RF-SPLITTER board.

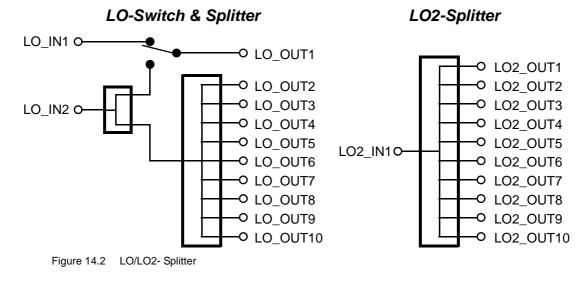

LO- and LO2-signals are split in the RF-SPLITTER. Each splitter has one input and 10 outputs. The LO-splitter has an additional input and LO-switch. All splitters are unity gain calibrated. Up to 3 RF-SPLITTER boards can be cascaded.

Both units are equipped with I2C-bus and LED indicator diagnostic features. Gain calibration and LO-switch of the splitters are I2C-bus controlled.

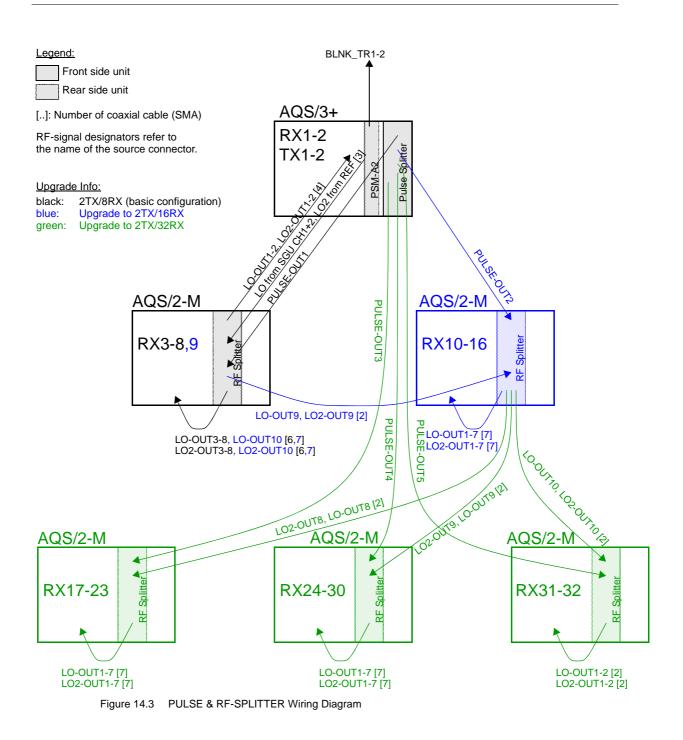
# 14.2 Functions/Description

### 14.2.1 20MHz Clock and RX-Pulse Distribution

The PULSE SPLITTER board receives both clock and RX-pulses from the user bus and converts them to LVDS-logic level signals. These are transmitted via the MDR-cable to the RF-SPLITTER. It converts them back to their former logic levels and routs them to the user bus.




## 14.2.2 LO- & LO2-Splitter


Both LO- and LO2-splitters are integrated into the RF-SPLITTER unit.

The LO-output signals from SGU1 and SGU2 are fed into the inputs LO\_IN1 and LO\_IN2. The outputs are either connected to a RXAD or a LO-splitter input on another RF\_SPLITTER unit.

The LO2 output signal from the REFERENCE board is fed into the LO2\_IN1. The outputs are either connected to a RXAD or a LO2-splitter input on another RF\_SPLITTER unit.



# 14.3 RF and Pulse Wiring



# **AQS Pulse & RF-Splitter**

# 14.4 Front Panel

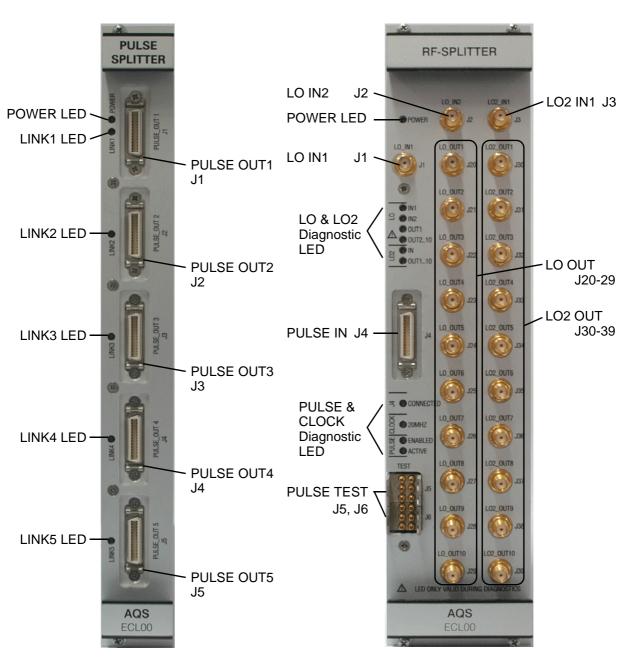



Figure 14.4 AQS PULSE- & RF-SPLITTER boards front panel view

## 14.4.1 LED Indicators

| LED Name                                  | Color | Error Description (LED OFF)                |
|-------------------------------------------|-------|--------------------------------------------|
| POWER                                     | green | power supply failure                       |
| LINK1<br>LINK2<br>LINK3<br>LINK4<br>LINK5 | green | MDR cable not connected to AQS RF-SPLITTER |

Table 14.1 PULSE SPLITTER LED Error Description

| LED Name |                               | Color                                             | Error Description (LED OFF)                                                            |
|----------|-------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------|
| POWER    |                               | green                                             | power supply failure                                                                   |
| LO       | IN1<br>IN2<br>OUT1<br>OUT2-10 | yellow <sup>a</sup><br>yellow<br>yellow<br>yellow | no RF-input signal<br>no RF-input signal<br>no RF-output signal<br>no RF-output signal |
| LO2      | IN<br>OUT1-10                 | green<br>green                                    | no RF-input signal<br>no RF-output signal                                              |
| J4       | CONNECTED                     | green                                             | MDR cable not connected to AQS<br>PULSE SPLITTER, no pulse output                      |
| CLOCK    | 20MHZ                         | green                                             | no clock output signal                                                                 |
| PULSE    | ENABLED<br>ACTIVE             | green<br>yellow                                   | pulse buffer disabled, no pulse output no pulse active                                 |

 Table 14.2
 RF-SPLITTER LED Error Description

a. Short pulses may not be visible in OBSERVE mode.

## 14.4.2 Front Panel Connectors PULSE SPLITTER

#### J1-J5 PULSE OUT1-5

Pulse and clock output to RF-SPLITTER board. All signals are in LVDS logic (Low Voltage Differential Signal). These signals can only be measured with proper LVDS termination ( $100\Omega$  differential).

## 14.4.3 Front Panel Connectors RF-SPLITTER

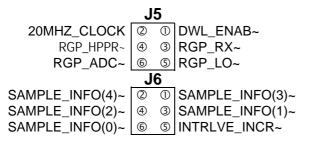
#### J1 LO\_IN1

LO input signal (1Vpp at  $50\Omega$  load) from SGU1 or SGU LO-chain. This signal is only present during observe. It can be routed via the internal LO-switch to LO\_OUT1 (J20).

#### J2 LO\_IN2

LO input signal (1Vpp at  $50\Omega$  load) from SGU2 or SGU LO-chain. This signal is only present during observe. It is split and routed to LO\_OUT2-10 (J21-29). It can also be routed via the internal LO-switch to LO\_OUT1 (J20).

#### J3 LO2\_IN1


LO2 input signal (1Vpp at 50 $\Omega$  load) from REFERENCE board. This signal is split and routed to LO2\_OUT1-10 (J30-39).

#### J4 PULSE IN

Pulse and clock input from PULSE SPLITTER. All signals are in LVDS logic.

#### J5/J6 TEST

Pulse and clock output test connector. Signal level = 1/10 TTL at  $50\Omega$  load. Pin numbers are according to test cable HZ10124 (CABLE 6P300 COAXIPACK ADAP BNC)



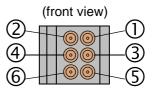



Figure 14.5 Pining J5/J6 Pulse Test Connector

#### J20-29 LO\_OUT1-10

LO output signal (1Vpp at  $50\Omega$  load) to RXAD or another RF-SPLITTER. These signals are only present during observe.

#### J30-39 LO2\_OUT1-10

LO2 output signal (1Vpp at  $50\Omega$  load) to RXAD or another RF-SPLITTER.

## 14.5 Diagnostics

The input signals of the PULSE SPLITTER and the output signals of the RF-SPLITTER are monitored by diagnostic circuits. Their status is displayed with LED indicators on the front panel of the units. Please refer to "LED Indicators" on page 173.

The same information is accessible for the AQS controller via I2C bus. The information may be accessed via the DRU web interface. (Service web of DRU in Slot 1, see Main / <u>Hosted Devices</u>)

| Ready<br>Diagnostic  |                                |      |                     |                          |
|----------------------|--------------------------------|------|---------------------|--------------------------|
| Diagnostic Testpoint | Description                    |      | Status              |                          |
| 0                    | Power Supply Monitor (+3.3V, - | +5V) | o.k.                | Da An                    |
| 2                    | Pulse Input *                  | BRU  | all pulses inactive | 15 BRUKS                 |
| 3                    | 20MHz Clock Input              |      | o.k.                | - Coran                  |
| <b>a</b>             | LINK 1 (PULSE_OUT 1 J1)        | 07   | connected           |                          |
| 6                    | LINK 2 (PULSE_OUT 2 J2)        | aRy  | not connected       |                          |
| 6                    | LINK 3 (PULSE_OUT 3 J3)        |      | not connected       | click picture to enlarge |
| 0                    | LINK 4 (PULSE_OUT 4 J4)        | 07   | not connected       | LAR CARR                 |
| 8                    | LINK 5 (PULSE_OUT 5 J5)        | 383  | not connected       | P BRUD                   |
| Refresh              | Refresh F5                     |      |                     |                          |

Figure 14.6 Pulse Splitter Device and Diagnostic Status

| Ready<br>Diagnostic  |                                  |                     |                          |
|----------------------|----------------------------------|---------------------|--------------------------|
| Diagnostic Testpoint | Description                      | Status              |                          |
| 0                    | LO IN1 *                         | inactive or failed  | De ne                    |
| 2                    | LO IN2 *                         | inactive or failed  | TO BROKS                 |
| 3                    | LO OUT1 *                        | inactive or failed  |                          |
| <b>(4</b> )          | LO OUT 2-10 *                    | inactive or failed  |                          |
| 6                    | LO2 IN                           | failed              |                          |
| 6                    | LO2 OUT 1-10                     | failed              |                          |
| 0                    | Pulse Output *                   | all pulses inactive | click picture to enlarge |
| 8                    | 20MHz Clock Output               | lok                 | TO BRUD                  |
| 9                    | Power Supply Monitor (+3.3V, +5V | ) lok               |                          |
| Refresh              | Refresh F5                       | BER C               | DER SER                  |

Figure 14.7 RF-Splitter Device and Diagnostic Status

|                                 | Ready<br>Setup             |                            |        |
|---------------------------------|----------------------------|----------------------------|--------|
| ſ                               | LO IN 1 Frequency          | 500 MHz                    |        |
| LO frequency and $\langle$      | LO IN 2 Frequency          | 500 MHz                    | ch.    |
| switch setup                    | LO IN select               |                            | BRUT   |
| -                               | Adjust DAC Values          |                            |        |
| ſ                               | 500 MHz                    | LO OUT 1 149 (0255)        | p Down |
| LO gain adjust <                | 500 MHz                    | LO OUT 2-4 133 (0255)      | p Down |
| (frequency                      | 500 MHz                    | LO OUT 5-7 151 (0255)      | p Down |
| dependant)                      | 500 MHz                    | LO OUT 8-10 48 (0255)      | p Down |
| ſ                               | 720 MHz                    | LO2 OUT 1 159 (0255)       | p Down |
|                                 | 720 MHz                    | LO2 OUT 2-4 163 (0255)     | p Down |
| LO2 gain adjust {               | 720 MHz                    | LO2 OUT 5-7 170 (0255)     | p Down |
| l                               | 720 MHz                    | LO OUT 8-10 171 (0255)     | p Down |
| Pulse driver setup $ ightarrow$ | Pulse Driver               |                            | -      |
|                                 | Set/Update modified Values | Set/Update modified Values | BRUM   |
|                                 | Write/Save Values into BIS | Write/Save Values into BIS |        |

# 14.6 RF-Splitter Setup and Gain Adjust

Figure 14.8 RF-Splitter Setup Window

## 14.6.1 Setup

#### LO IN 1, LO IN 2 Frequency:

• Enter SGU frequency and press [Set/Update modified Values]

The adjust DAC values are set according to the calibration data list stored in the unit BIS. The controller uses the calibration data closest to the entered frequency value. The frequency display changes to the chosen data set.

#### LO IN select:

LO switch setting (see also "LO- & LO2-Splitter" on page 170)

- LO\_IN1 = LO\_IN1  $\rightarrow$  LO\_OUT1 and LO\_IN2  $\rightarrow$  LO\_OUT2-10
- $LO_{IN2} = LO_{IN2} \rightarrow LO_{OUT1-10}$

#### **Pulse Driver:**

- ENABLE = pulse driver from RF-Splitter to backplane enabled (Default)
- DISABLE = pulse driver from RF-Splitter to backplane disabled (only used when SGU in AQS/2-M Chassis)

## 14.6.2 Gain Adjust

The gain off the LO and LO2 splitters is adjusted to unity gain at the factory. This includes the connecting cables<sup>1</sup>. However if other cables are used or several RF-Splitters are cascaded, a fine adjust may be necessary. The gain adjusts are bundled as follows:

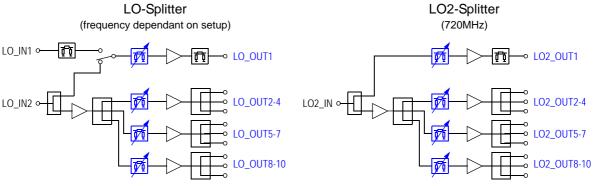



Figure 14.9 RF-Splitter gain adjust DAC

#### **Gain Adjust Procedure:**

- 1. Disconnect the LO(2)\_OUT cable from the RXAD and connect it to a power meter
- 2. Check/set the correct RF-Splitter frequency
- 3. Adjust the gain of the LO channel with the [Up] and [Down] buttons (Adjust value see "LO-Performance:" on page 178)
- 4. Save the DAC values with [Write/Save Values into BIS]
- 5. Repeat the procedure for other frequencies or other LO channels
- **1** Make sure that all unused outputs are properly terminated (50 $\Omega$ )

The four gain adjusts of the splitters are somewhat dependent on each other. If one channel is coarse adjusted, the other channels may detune slightly.

## 14.7 Part Numbers and Cables

- Z104431 AQS PULSE SPLITTER
- Z104432 AQS RF-SPLITTER
- HZ13238 CABLE RD 26P 3M MDR

#### **Test Equipment:**

• HZ10124 CABLE 6P300 COAXIPACK ADAP BNC

<sup>1. 2</sup>x CABLE COAX ELSPEC 2000 SMA/SMA (HZ04329)

# AQS Pulse & RF-Splitter

# 14.7.1 Technical Data

# 14.7.2 PULSE SPLITTER

| Pulse Performance:                      |      |
|-----------------------------------------|------|
| Pulse Input: Logic Level +5V            | TTL  |
| 20MHz Clock Input: Logic Level +2/-2.5V | ECL  |
| LVDS Output: Logic Level                | LVDS |

### 14.7.3 RF-SPLITTER

| LO-Performance:                                                    |              |      |
|--------------------------------------------------------------------|--------------|------|
| Input Power:                                                       | +4.5 ±0.5    | dBm  |
| Frequency Range:                                                   | 50800        | MHz  |
| Insertion Loss: LO_IN1 $\rightarrow$ LO_OUT1 (dual LO mode)        | 0 ±0.5       | dB   |
| Insertion Loss: LO_IN2 $\rightarrow$ LO_OUT110                     | 0 ±0.5       | dB   |
| LO-Switch Isolation: LO_IN1 $\rightarrow$ LO_OUT1 (single LO mode) | > 20         | dB   |
| LO-Switch Isolation: LO_IN1 $\rightarrow$ LO_IN2 (dual LO mode)    | > 20         | dB   |
| VSWR: all Ports                                                    | ≤ <b>1.4</b> |      |
|                                                                    |              |      |
| LO2-Performance:                                                   |              |      |
| Input Power:                                                       | +4 ±0.5      | dBm  |
| Frequency:                                                         | 720          | MHz  |
| Insertion Loss : LO2_IN $\rightarrow$ LO2_OUT110                   | 0 ±0.5       | dB   |
| VSWR: all Ports                                                    | ≤ <b>1.4</b> |      |
|                                                                    |              |      |
| Pulse Performance:                                                 |              |      |
| LVDS Input: Logic Level                                            |              | LVDS |
| Pulse OUT: Logic Level                                             | +5V          | TTL  |
| 20MHz Clock OUT: Logic Level                                       | +2/-2.5V     | ECL  |
| Pulse & Clock Test OUT: (Logic Level at $50\Omega$ load)           | 1/10         | TTL  |
|                                                                    |              |      |

# 14.8 Power Supply / Fuses

Both units are powered via their backplane connector from the user bus. For power supply status see 14.4.1. The units do not contain any fuses.

## 14.8.1 Backplane Connector

|    | z   | а                        | b            | С                | d            | е            | f   |
|----|-----|--------------------------|--------------|------------------|--------------|--------------|-----|
| 1  | GND | GND                      |              |                  | GND          | SAMPLE_INFO0 | GND |
| 2  | GND |                          | GND          | SAMPLE_INFO3     | SAMPLE_INFO2 | SAMPLE_INFO1 | GND |
| 3  | GND | GND                      |              | I2C_STATUS_INT~  | GND          | SAMPLE_INFO4 | GND |
| 4  | GND | 20MHZ_CLK_X <sup>a</sup> | GND          | INTERLEAVE_INCR~ |              |              | GND |
| 5  | GND | GND                      | 20MHz_CLK_X~ |                  | GND          | RGP_LO~      | GND |
| 6  | GND |                          | GND          |                  |              |              | GND |
| 7  | GND |                          |              |                  | GND          | RGP_ADC~     | GND |
| 8  | GND |                          | GND          |                  |              | DWL_ENAB~    | GND |
| 9  | GND |                          |              |                  | GND          | RGP_RX~      | GND |
| 10 | GND |                          | GND          |                  |              |              | GND |
| 11 | GND |                          |              |                  | GND          | RGP_HPPR~    | GND |

# Key Area

| 15 | GND | SLOT(2) | SLOT(1)      | SLOT(0)   | GND       |     | GND |
|----|-----|---------|--------------|-----------|-----------|-----|-----|
| 16 | GND | SLOT(3) | GND          | I2C_SDA   |           | GND | GND |
| 17 | GND |         | I2C_BUS_REQ~ | I2C_SCL   | GND       |     | GND |
| 18 | GND |         | GND          | I2C_2_SDA | I2C_2_SCL | GND | GND |
| 19 | GND |         |              |           | GND       |     | GND |
| 20 | GND |         | GND          |           |           | GND | GND |
| 21 | GND | P5V     |              |           |           |     | GND |
| 22 | GND | P5V     |              |           |           |     | GND |
| 23 | GND | P5V     |              |           |           |     | GND |
| 24 | GND | P5V     |              |           |           |     | GND |
| 25 | GND | P5V     |              |           |           |     | GND |

Table 14.3 User Bus Connector PULSE-SPLITTER

a. x = Slot-Nb.

|    | z   | а          | b          | С                 | d               | е         | f   |
|----|-----|------------|------------|-------------------|-----------------|-----------|-----|
| 1  | GND | SLOT4      | SLOT3      | SLOT2             | SLOT1           | SLOT0     | GND |
| 2  | GND | I2C_SCL    | I2C_SDA    | I2C_BUS_REQ~      | I2C_2_SCL       | I2C_2_SDA | GND |
| 3  | GND | LOCAL_TX   | LOCAL_RX   | INTRA_STATUS_INT~ | I2C_STATUS_INT~ |           | GND |
| 4  | GND |            |            |                   |                 |           | GND |
| 5  | GND | GND        | GND        | GND               | GND             | GND       | GND |
| 6  | GND | P12V       | P12V       | P12V              | P12V            | P12V      | GND |
| 7  | GND |            |            |                   |                 |           | GND |
| 8  | GND | RESERVE(5) | RESERVE(4) | EMERGENCY_STOP~   |                 |           | GND |
| 9  | GND |            |            |                   |                 |           | GND |
| 10 | GND | P5V        | P5V        | P5V               | P5V             | P5V       | GND |
| 11 | GND | GND        | GND        | GND               | GND             | GND       | GND |

# Key Area

| 15 | GND | GND           | GND            | GND            | GND           | GND       | GND |
|----|-----|---------------|----------------|----------------|---------------|-----------|-----|
| 16 | GND | P9V           | P9V            | P9V            | P9V           | P9V       | GND |
| 17 | GND | N9V           | N9V            | N9V            | N9V           | N9V       | GND |
| 18 | GND | GND           | GND            | GND            | GND           | GND       | GND |
| 19 | GND |               |                |                |               |           | GND |
| 20 | GND |               |                |                |               |           | GND |
| 21 | GND | GND           | GND            | GND            | GND           | GND       | GND |
| 22 | GND |               |                | SAMPLE_INFO(0) | DWL_ENAB~     | RGP-LO~   | GND |
| 23 | GND | GND           | SAMPLE_INFO(2) | SAMPLE_INFO(1  | GND           | RGP_ADC~  | GND |
| 24 | GND | 20MHZ_BACK_IN | GND            | SAMPLE_INFO(3) | INTRLVE_INCR~ | RGP_RX~   | GND |
| 25 | GND | GND           |                | SAMPLE_INFO(4) | GND           | RGP_HPPR~ | GND |

Table 14.4 User Bus Connector RF-SPLITTER

# **15 AQS 2H TX**

# 15.1 Function/Description

This AQS unit serves as a 80W power amplifier for deuterium. The unit is available in two frequency ranges for 300-400 and 500-1000MHz systems. This 2H-TX are intended to fit into the AQS/3 chassis in combination with a BLA2BB or in combination with external power amplifiers.

### Features:

- 6TE wide AQS unit
- Included Lock switch
- Blanking pulse direct from AQS backplane (source software switchable, for setting amplifier housing see "Default Values" on page 196)
- Overheat protection
- Software readable RF input detector
- Software readable RF output detector

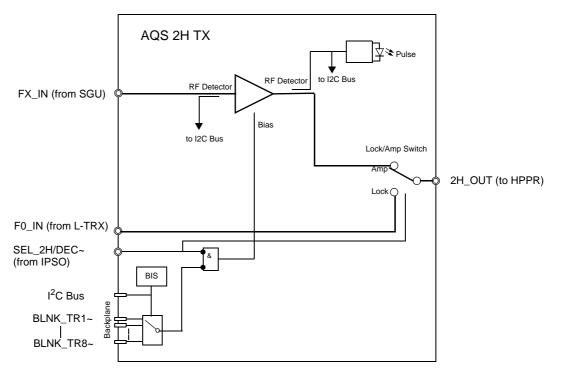



Figure 15.1 2H TX Blockdiagram

# AQS 2H TX

# 15.2 Front Panel

All RF input and output signals of the AQS 2H TX are connected via SMA connectors on the front panel.

Two LEDs indicate the correct DC power supply (28V) and an output RF pulse exceeding approximately 1W. The pulse LED will be on at least about one second even for a very short RF pulse.



Figure 15.2 2H-TX front panel

# 15.3 Part Numbers

| Part    | Description           |
|---------|-----------------------|
| Z103550 | AQS 2H-TX BD 200-400  |
| Z103551 | AQS 2H-TX BD 500-1000 |

Table 15.1 2H-TX part numbers

# 15.4 Technical Data

|                             | <b>Z103550</b><br>ECL>=01<br>(200-400) | <b>Z103551</b><br>ECL>=00<br>(500-1000) |
|-----------------------------|----------------------------------------|-----------------------------------------|
| Minimum pulsed Output Power | > 80 W                                 | > 80W                                   |
| 1dB compression             | 80 W typ.                              | 80 W typ.                               |
| RF Rise and Fall Time       | < 100 ns                               | < 100 ns                                |
| Noise Figure                | < 7 dB                                 | < 7dB                                   |
| Amplitude Droop             | < ± 5 %                                | < ± 5%                                  |
| Blanking Delay              | < 1 us                                 | < 1 us                                  |

Table 15.2 2H-TX specifications

# AQS 2H TX

# 16 AQS 1 to 4 Router

### 16.1 Introduction

The AQS 1 to 4 Router Board is an optional unit for AVANCE III HD spectrometers. For automated work the RF signal routing has to be switched electronically. For configurations with two or more single amplifiers an external router is needed to be installed. This router conducts the RF signal from an SGU/3 channel to one of four amplifier inputs. In addition, the input signal can be extracted for the probe tuning. The location of the AQS 1 to 4 Router depends on the configuration. In principal it can be placed in any user slot 4..10. See "AVANCE III HD Configurations" for configurations with an optional 1 to 4 router.

## 16.2 Functions/Description

The AQS 1 to 4 Router switches an RF signal on INPUT to one of the four outputs and in addition to the output TUNE. The controlling of the switches is handled by the AQS Controller and transmitted by the  $I^2C$  Bus.

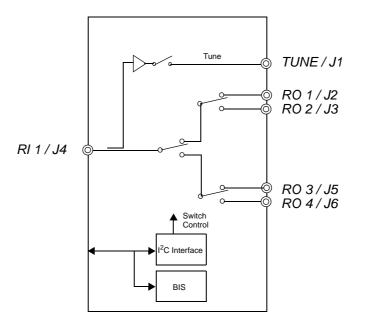



Figure 16.1 Block diagram of AQS 1 to 4 Router

### 16.2.1 Switching 1 to 4

Switching the input to one of the four outputs is done by ultra low loss devices, whereby two of them acting in series. One of the four outputs will always be connected with the RI 1 input.

# AQS 1 to 4 Router

### 16.2.2 Tune Signal

The tune signal is derived from the input signal. Therefore a small amount of power will be picked up and hereafter amplified again. The tune signal can be switched on and off. It will be activated only during probe head tuning.

### 16.2.3 Bus Interfaces

The AQS 1 to 4 Router Board is controlled by the  $I^2C$  bus on the backplane. This bus is used to

- read the BIS data (Bruker information system)
- control of the switches and the signal at the tuning path

# 16.3 Front Panel Wiring / Display

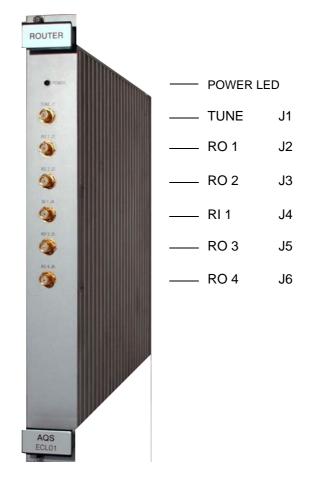



Figure 16.2 AQS 1 to 4 Router front panel

### **J1 TUNE**

The Signal has approx. the same RF level as on INPUT J4 and can deliver up to +4 dBm @ 50 W.

### J2, J3, J5 and J6 RO\_X

RF output to power amplifiers. The insertion loss is approx. 0.5 dB, and the isolation is >= 45dB.

### J4 RI 1

Input of the RF signal to the 1 to 4 router and also to the tuning path. Source is RF OUT/ AUX OUT from SGU/3. The router can handle 1W RF, but for tuning the level has to be <= +4dBm.

### 16.3.1 Power LED

See "Power Supply / Fuses" on page 189.

# AQS 1 to 4 Router

# 16.4 Backplane Connector

|    | z   | а   | b   | С  | d   | е  | f   |
|----|-----|-----|-----|----|-----|----|-----|
| 1  | GND | GND | NC  | NC | GND | NC | GND |
| 2  | GND | NC  | GND | NC | NC  | NC | GND |
| 3  | GND | GND | NC  | NC | GND | NC | GND |
| 4  | GND | NC  | GND | NC | NC  | NC | GND |
| 5  | GND | GND | NC  | NC | GND | NC | GND |
| 6  | GND | NC  | GND | NC | NC  | NC | GND |
| 7  | GND | NC  | NC  | NC | GND | NC | GND |
| 8  | GND | NC  | GND | NC | NC  | NC | GND |
| 9  | GND | NC  | NC  | NC | GND | NC | GND |
| 10 | GND | NC  | GND | NC | NC  | NC | GND |
| 11 | GND | NC  | NC  | NC | GND | NC | GND |

### Key Area

| 15 | GND | SLOT2 | SLOT1 | SLOT0   | GND | NC   | GND |
|----|-----|-------|-------|---------|-----|------|-----|
| 16 | GND | NC    | GND   | I2C_SDA | NC  | GND  | GND |
| 17 | GND | NC    | NC    | I2C_SCL | GND | NC   | GND |
| 18 | GND | NC    | GND   | NC      | NC  | GND  | GND |
| 19 | GND | NC    | NC    | NC      | GND | NC   | GND |
| 20 | GND | NC    | GND   | NC      | NC  | GND  | GND |
| 21 | GND | P5V   | NC    | P9V     | P9V | P9V  | GND |
| 22 | GND | P5V   | NC    | N9V     | N9V | N9V  | GND |
| 23 | GND | P5V   | P19V  | NC      | NC  | P12V | GND |
| 24 | GND | P5V   | P19V  | NC      | NC  | P12V | GND |
| 25 | GND | P5V   | P19V  | NC      | NC  | P12V | GND |

Table 16.1 Backplane Connector AQS 1 to 4 Router

# 16.5 Part Numbers and Cables

AQS 1 TO 4 ROUTER BOARD: P/N Z101247

The cables for RF connections are:

- CABLE KOAX ELSPEC 320 SMA/SMA P/N HZ03804
- CABLE KOAX ELSPEC 400 SMA/SMA P/N HZ10105/A

# 16.6 Troubleshooting / Unit replacement / Tips 'n' Tricks

If the power LED shows a permanently reduced brightness or does not light, then check the +5V, -5V, +9V and the +12V on board and the incoming voltages +9V, -9V, +12V on the main power supply.

The path from INPUT to the selected output can be tested by an ohm meter. Do not use the ohm meter to test isolation because the unselected outputs show a resistance of approx. 35  $\Omega$  to ground.

The AQS 1 to 4 Router Board can be replaced without necessary adjustments.

Unused outputs must not be terminated with  $50\Omega$ .

# 16.7 Power Supply / Fuses

The AQS 1 to 4 Router uses P5V, P9V, N9V, P12V and P19V from the backplane (see Table 16.1). The power LED on the front panel is fully lightening when the AQS 1 to 4 Router is proper working. That means that all internal supply voltages are in the valid range.

# **17 AQS Controller**

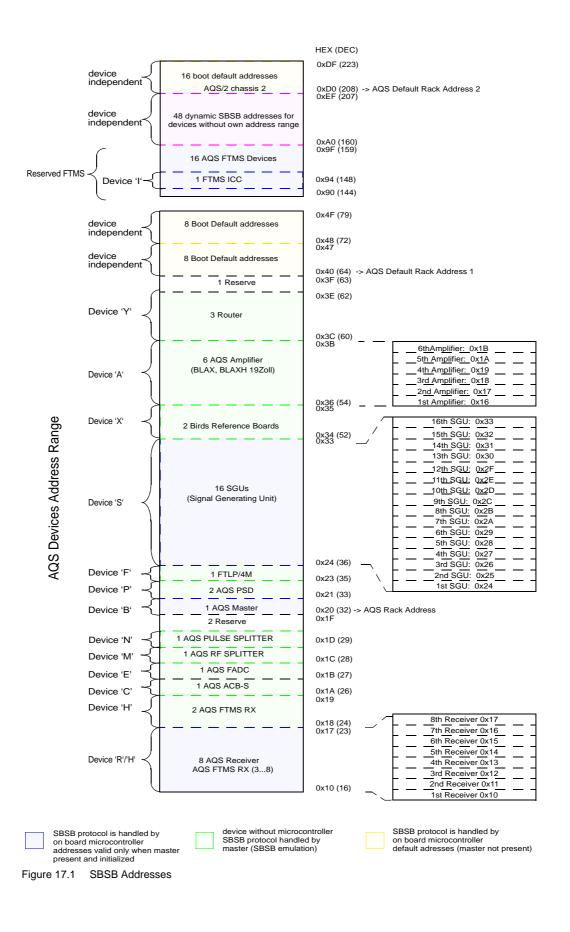
# 17.1 Introduction

The AQS controller is a part of the DRU firmware. It acts as a communication router for all RF boards inside the AQS Chassis. Furthermore the AQS controller hosts the firmware of all I2C boards, e.g. reference board, AQS internal amplifiers, routers and splitters.

In case of a multiple receiver system, only the DRU placed in Slot 1 will start the AQS Controller.

At power-up of the AQS Chassis, the AQS controller executes a rack scan and initializes all boards.

All boards can be accessed using the AQS service web.


# 17.2 AQS Address Mapping

Configuration and SBSB addresses can be found in

the ../conf/instr/<curinst> directory in the file uxnmr.info

or by "Identify Your Chassis Configuration" (see 17.3) using the AQS Service Web.

# **AQS Controller**



# 17.3 Identify Your Chassis Configuration

Use the AQS service web to identify the AQS Chassis configuration.

### 17.3.1 AQS Service Web

The web page "AQS Control Overview" ("Hosted Devices"  $\rightarrow$  "AQS Overview") shows all devices in the chassis controlled by the AQS Controller.

If there are internal preamplifiers (preamps directly connected to the DRU) then they will be shown on the web page "HPPR/2 Control Overview" ("Hosted Devices"  $\rightarrow$  "HPPR/2 Overview").

### 17.3.2 AQS Board Type Codes

Board type codes are shown in Table 17.1. Older Boards that are usually not in a IPSO based system are marked gray.

| Board Type<br>HEX (DEZ)                           | Board Description                                                                              | BRUKER<br>Part Number |
|---------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------|
| 0x00 (0)                                          | SGU-C (frequency range 5430MHz, PCB index C)<br>SGU (frequency range 5<643.45MHz, PCB index D) | Z003329<br>Z003642    |
| 0x01 (1)                                          | Board not inserted                                                                             |                       |
| 0x02 (2)                                          | AQS REFERENCE BOARD 400                                                                        | Z003265               |
| 0x03 (3)                                          | AQS REFERENCE BOARD RX22 400                                                                   | Z003351               |
| 0x04 (4)                                          | AQS 3-CHANNEL ROUTER BOARD                                                                     | Z003624               |
| 0x05 (5)                                          | AQS BLA2BB 150-60 dual amplifier 20-400MHz                                                     | W1345049              |
| 0x06 (6)                                          | AQS BLAX300 single 300W X amplifier                                                            | W1345052              |
| 0x07 (7)                                          | AQS Controller (AQS rack master)                                                               |                       |
| 0x08 (8)                                          | AQS FTLP/4M filter board                                                                       | Z002812               |
| 0x09 (9)                                          | AQS ACB standard                                                                               | H9488                 |
| 0x0A (10) AQS PSD power supply distribution board |                                                                                                | H9530                 |
| 0x0B (11)                                         | (11) AQS RECEIVER BOARD RXAD FTMS                                                              |                       |
| 0x0C (12)                                         | AQS FTMS PSD power supply distribution board                                                   | A3142                 |
| 0x0D (13)                                         | AQS FADC                                                                                       | H9685                 |
| 0x10 (14)                                         | AQS SGU 400 (DRU is AQS Controller in AQS/2<br>PharmaScan / BioSpec)                           | Z003642               |
| 0x11 (17)                                         | AQS SGU/2 400                                                                                  | Z103080               |
| 0x18 (24)                                         | AQS SGU 600 (DRU is AQS Controller in AQS/2<br>PharmaScan / BioSpec)                           | Z003831               |
| 0x19 (25)                                         | AQS SGU/2 600                                                                                  | Z103081               |

| Table 17.1 | AQS Board Type Identifier Codes |
|------------|---------------------------------|
|------------|---------------------------------|

| Board Type<br>HEX (DEZ) | Board Description                                                     | BRUKER<br>Part Number |
|-------------------------|-----------------------------------------------------------------------|-----------------------|
| 0x20 (32)               | AQS SGU 1000 (SGU-E, print index D, bis ECL02.00)                     | Z003330               |
| 0x28 (40)               | AQS SGU 1000 (DRU is AQS Controller in AQS/2<br>PharmaScan / BioSpec) | Z003330               |
| 0x29 (41)               | AQS SGU/2 1000                                                        | Z103082               |
| 0x30 (48)               | AQS SGU-FTMS (ICR frequency range 5XXXMHz, print index D)             | Z003643               |
| 0x31 (49)               | AQS SGU/2-FTMS (ICR frequency range 5XXX-<br>MHz, print index D)      | Z103083               |
| 0x32 (50)               | AQS SGU/3 600                                                         | Z117129               |
| 0x33 (51)               | AQS SGU/3 1200                                                        | Z117130               |
| 0x34 (52)               | AQS SGU/3 LF                                                          | Z117131               |
| 0x40 (64)               | AQS RECEIVER BOARD RX600                                              | Z003925               |
| 0x42 (66)               | AQS RECEIVER BOARD RXAD600                                            | Z102117               |
| 0x43 (67)               | AQS RECEIVER BOARD RXAD/2 600                                         | Z130588               |
| 0x50 (80)               | AQS RECEIVER BOARD RX1000                                             | Z003926               |
| 0x52 (82)               | AQS RECEIVER BOARD RXAD1000                                           | Z102118               |
| 0x53 (83)               | AQS RECEIVER BOARD RXAD/2 1000                                        | Z130589               |
| 0x60 (96)               | AQS RECEIVER BOARD RX-BB (RX-E)                                       | Z003689               |
| 0x61 (97)               | AQS RECEIVER BOARD RX-BB (RX-BB)                                      | Z003689               |
| 0x62 (98)               | AQS RECEIVER BOARD RXAD-BB                                            | Z102119               |
| 0x70 (112)              | AQS RECEIVER BOARD RX400                                              | Z003688               |
| 0x72 (117)              | AQS RECEIVER BOARD RXAD400                                            | Z102116               |
| 0x80 (128)              | AQS DRU (DRU is not an SBSB Device)                                   | Z100977               |
| 0x81 (129)              | AQS DRU-E                                                             | Z102520               |
| 0x82 (130)              | AQS LVDS TX                                                           | Z103710               |
| 0x90 (144)              | AQS PSM-A POWER SUPPLY MODULE                                         | Z121623               |
| 0x91 (145)              | AQS PSM-D POWER SUPPLY MODULE                                         | Z121625               |
| 0x92 (146)              | AQS BLA200 42.5MHz                                                    | W1346829              |
| 0x93 (147)              | AQS PSM-A2 POWER SUPPLY MODULE                                        | Z133424               |
| 0x94 (148)              | AQS INES PSM-BLA POWER SUPPLY                                         | Z128045               |
| 0xC0 (192)              | AQS REFERENCE BOARD 600                                               | Z003936               |
| 0xC1 (193)              | AQS REFERENCE BOARD 1000                                              | Z003937               |
| 0xC2 (194)              | AQS Reference Board with 22MHz IF output for RX22 (REF600-22)         | Z003938               |
| 0xC3 (195)              | AQS Reference Board with 22MHz IF output for RX22 (REF1000-22)        | Z003939               |

Table 17.1 AQS Board Type Identifier Codes

| Board Type<br>HEX (DEZ) | Board Description                                           | BRUKER<br>Part Number |
|-------------------------|-------------------------------------------------------------|-----------------------|
| 0xC4 (196)              | AQS BLA2BB150/60 20-600 Dual Amplifier (IntG2 ab Ecl 08.00) | W1345072              |
| 0xC5 (197)              | AQS 1 TO 4 ROUTER                                           | Z101247               |
| 0xC6 (198)              | AQS/2 Chassis                                               | Z101618               |
| 0xC7 (199)              | AQS 2H-TX BD 200-400                                        | Z103550               |
| 0xC8 (200)              | AQS 2H-TX BD 500-1000                                       | Z103551               |
| 0xC9 (201)              | AQS REFERENCE BOARD/2 1000                                  | Z104236               |
| 0xCA (202)              | AQS RF SPLITTER BOARD                                       | Z104432               |
| 0xCB (203)              | AQS PULSE SPLITTER BOARD                                    | Z104431               |
| 0xCC (204)              | AQS BLAXH300 300/50 500-600                                 | W1345056              |
| 0xCD (205)              | AQS PSD/2                                                   | H14107                |
| 0xCE (206)              | AQS/2-M CHASSIS WIRED                                       | Z103493               |
| 0xCF (207)              | AQS PSD/3                                                   | H14109                |
| 0xD0 (208)              | AVANCE CONSOLE NB-E WIRED                                   | Z108356               |
| 0xD1 (209)              | AQS/3 CHASSIS WIRED                                         | Z106171               |
| 0xD2 (210)              | AVANCE ACQ SYSTEM NANOBAY FTMS                              | Z105194               |
| 0xD3 (211)              | AVANCE ACQ SYSTEM NANOBAY-N FTMS                            | Z113415               |
| 0xD4 (212)              | AVANCE ACQ SYSTEM NANOBAY-E FTMS                            | Z114151               |
| 0xD5 (213)              | AQS REFERENCE BOARD/2-M 1000                                | Z117593               |
| 0xD6 (214)              | AQS REFERENCE BOARD/3 600                                   | Z116985               |
| 0xD7 (215)              | AVANCE CONSOLE NB-E WIRED V2 (AQS Nano-<br>Bay / INES)      | Z119572               |
| 0xD8 (216)              | AQS/3 CHASSIS WIRED                                         | Z106171               |
| 0xD9 (217)              | AVANCE CONSOLE NB-E WIRED V3<br>(INES/3 AQS USER BUS)       | Z126037<br>(Z128068)  |
| 0xF0 (240)              | AQS ICC/2 BASIC NO ECD                                      |                       |
| 0xF1 (241)              | xF1 (241) AQS ICC/2 BASIC ECD (AQS ICC FTMS BASIC Z103801)  |                       |
| 0xF2 (242)              | AQS ICC/2 EXTENDED NO ECD                                   |                       |
| 0xF3 (243)              | AQS ICC FTMS (AQS ICC FTMS EXTENDED BOARD Z104099)          | Z103800               |

Table 17.1 AQS Board Type Identifier Codes

# **17.4** New Configuration of the AQS Amplifiers

**1** Remember that the AQS Service Web is a hardware level debug tool. Improper operation may damage your hardware. Please read the following lines carefully.

According to the document "BIS Groups and Values" (Andreas Hünnebeck (AH), version 2.6 and higher), the amplifiers provide a housing information in its BIS that allows the software to determine an SBSB address.

Later versions of the amplifiers have this entry in their BIS. If an error message like

"no amplifier housing information in BIS, using default address" or

"multiple amplifier housing information in BIS, using default address"

is printed out you should read the following lines.

For future 3 channel configurations with internal AQS amplifiers, housing information must be programmed in the BIS.

### 17.4.1 Default Values

Default values in the amplifier BIS should be:

BLA2BB: Housing, Hsg = 1 (amplifier 1)

BLAX300: Housing, Hsg = 2 (amplifier 2)

AQS 2H-TX: Housing, Hsg = 3 (amplifier 3) for NanoBay console

Housing, Hsg = 8 (amplifier 8) for all other console types

To change the housing setting see

In a 2 channel AV with one BLA2BB without a housing entry, no error or warning message is given (backward compatibility to most used configurations). BLA2BB is amplifier 1.

For a 3 channel AV with BLA2BB and BLAX300, where both amplifier do not have a housing entry, warning messages are given and default values are set. These values can be modified using the UniTool with the BLA SBSB address.

Default SBSB addresses, when no housing is originally programmed

BLA2BB in slot 8: 0x36

BLA2BB in slot 8, BLAX300 in slot 6 (on the left side of BLA2BB):

BLA2BB: 0x36 (decimal 54)

BLAX300: 0x37 (decimal 55)

AQS 2H-TX in slot 9: 0x38 for NanoBay console

0x36 for all other console types

Check the addresses before changing any entry. This can be done with the AQS Service Web as follows:

Start a web browser and open the AQS Service Web page. (see 17.5)

Go to the "AQS Control Overview" page ("Hosted Devices"  $\rightarrow$  "AQS Overview").

### 17.4.2 Adding Housing Setting (Via AQS Service Web)

- 1. Power up the AQS Chassis
- 2. Start a web browser and open the AQS Service Web page. (see 17.5)
- 3. Go to the "AQS Control Overview" page ("Hosted Devices"  $\rightarrow$  "AQS Overview"). There you can see a table entry for each amplifier. Follow the links to the device configuration page.
- 4. Select the housing and write the settings into the Amplifier.
- 5. Go back to the "AQS Control Overview" page and perform a complete AQS-Rack scan or power the AQS Chassis down and up again.
- 6. Check the addresses of all amplifiers on the "AQS Control Overview" page.
- 7. Remember that you have now changed the configuration and you have to perform a "cf".

# 17.5 AQS Service Web

The following AQS devices in the AQS Chassis are currently supported by the AQS Service Web:

- Chassis (AQS/2, AQS/2-M, AQS/3 and AQS/3+)
- AQS SGU/2 and AQS SGU/3
- AQS RXAD and AQS RXAD/2
- Reference Boards REF, REF/2 and REF/3
- Amplifiers (BLA2BB, BLAX300, BLA2HTX)
- Internal preamplifiers (HPPR/2)
- RF Splitter (in AQS/2-M Chassis)
- Pulse Splitter

When a DRU is AQS Controller the "DRU service web" will become the "AQS service web". You can get access to the "AQS Service Web" like to a "DRU Service Web" (see). The web pages have been tested with Microsoft Internet Explorer and Mozilla Firefox.

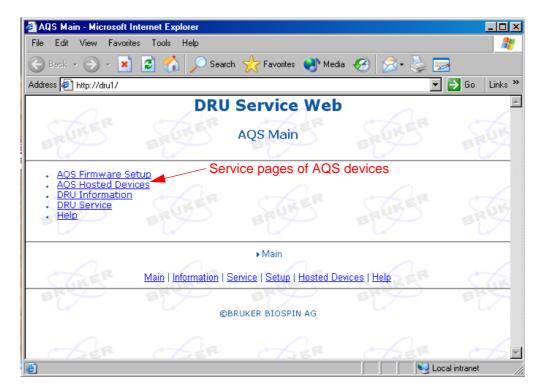



Figure 17.2 Access to the devices in the AQS Chassis



Figure 17.3 Hosted Devices

# 18 Transport, Packaging and Storage

# 18.1 Symbols on the Packaging

The following symbols are affixed to the packaging material. Always observe the symbols during transport and handling.

Тор



The arrow tips on the sign mark the top of the package. They must always point upwards; otherwise the content may be damaged.

Fragile



Marks packages with fragile or sensitive contents. Handle the package with care; do not allow the package to fall and do not allow it to be impacted.

**Protect Against Moisture** 

Protect packages against moisture and keep dry.



### **Component Sensitive to Electrostatic Charge**



The packaging contains components which are sensitive to an electrostatic charge.

Only allow packaging to be opened by trained personnel. Establish potential equalisation before opening.

# **18.2** Inspection at Delivery

Upon receipt, immediately inspect the delivery for completeness and transport damage.

Proceed as follows in the event of externally apparent transport damage:

- Do not accept the delivery, or only accept it subject to reservation.
- Note the extent of the damage on the transport documentation or the shipper's delivery note.
- Initiate complaint procedures.
- **1** Issue a complaint in respect to each defect immediately following detection. Damage compensation claims can only be asserted within the applicable complaint deadlines.

# 18.3 Packaging

### **About Packaging**

The individual packages are packaged in accordance with anticipated transport conditions. Only environmentally friendly materials have been used in the packaging.

The packaging is intended to protect the individual components from transport damage, corrosion and other damage prior to assembly. Therefore do not destroy the packaging and only remove it shortly before assembly.

### Handling Packaging Materials

Dispose of packaging material in accordance with the relevant applicable legal requirements and local regulations.

## 18.4 Storage

### Storage of the Packages

Store the packages under the following conditions:

- Do not store outdoors.
- Store in dry and dust-free conditions.
- Do not expose to aggressive media.
- Protect against direct sunlight.
- Avoid mechanical shocks.
- Storage temperature: 15 to 35 °C.
- Relative humidity: max. 60%.

If stored for longer than 3 months, regularly check the general condition of all parts and the packaging. If necessary, top-up or replace preservatives.

# 19 Installation and Initial Commissioning

Installation, initial commissioning, retrofitting, repairs, adjustments or dismantling of the device must only be carried out by employees of the manufacturer or persons authorised by the manufacturer.

All the requirements concerning environment described in the technical specifications have to be met. To reduce the risk of electric shock and malfunctioning, install these devices in a temperature-controlled and humidity-controlled indoor area free of conductive contaminants.

## **19.1** Installation in Cabinet

The AQS mainframe must be installed at it's designated position in the electronics cabinet to ensure proper air ventilation for the cooling fans. The position may vary in different cabinet types and sizes. The mainframe must be fixed with at least 4 screws to the cabinet.

### 19.1.1 Air Ventilation

At least one height unit (1HU) above and below the mainframe must be reserved for cooling air supply. Special air baffle plates may be used to support efficient ventilation. Typically the air intake is from the front and the exhaust towards the back of the cabinet.

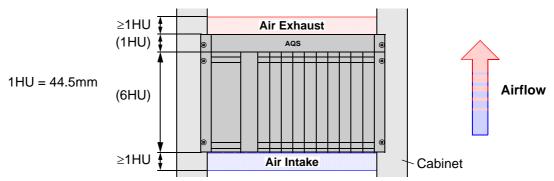



Figure 19.1 Cooling air supply to the mainframe

### 19.1.2 Power Cable

The power cable is included in the cabinet wiring. Make sure that cabling can not be a source of danger. All cables have to be connected before the AQS system is put into operation.

# **19.2** Initial Commissioning

The AQS system needs to be properly setup before the first power up. The setup mainly consists of rackcode and power-up delay settings described in the "AVANCE III HD Configurations" section of this manual.

### 19.2.1 AQS/2-M chassis Mains Selector

Prior to the first power-up of the AQS/2-M mainframe, it must be ensured that the mains selector switch is in the correct position.

The AQS/2-M is safe to operate at all settings within an input voltage range of  $208..230V \sim \pm 10\%$  according to IEC/EN 61010-1. However because the size of the linear power supply modules is designed for minimal power dissipation, the transformer input voltage should be matched to the mains voltage at the installation site. The input voltage ranges for optimal performance are as follows:

| Input voltage range | Mains selector setting |                  |
|---------------------|------------------------|------------------|
| 187 224 V~          | 208                    |                  |
| 202 238 V~          | 220                    |                  |
| 212 253 V~          | 230                    | = factory preset |

Table 19.1 Mains selector settings for optimal performance

# 20 Maintenance

# 20.1 Safety

With the exception of the Field Exchangeable Units (FEUs), all servicing must be performed by qualified service personnel.

Before service, repair or shipment, the unit must be completely switched off and unplugged or disconnected and dismounted from its rack.

### 20.2 General

The AQS system can be expected to have a long and trouble-free life without any preventive maintenance. Environmental issues are essential in determining the reliability. The temperature and humidity have to be within specifications. The area around should be kept relatively clean and dust free.

### 20.3 Software

In case of problems, check for the newest official firmware releases for the AQS units (DRU, SGU/3 and RXAD/2) on the CH ftp server.

### 20.4 Cleaning

Cleaning the surface of the enclosure and/or front panel can be carried out by the owner, if the following instructions are adhered to:

- 1. Switch off the equipment and unplug the power cable.
- 2. Clean up the outside surface with a soft, lint-free cloth dampened in water.
- Use only water. Do not use any detergent or other cleaning solvents.
  - 3. Let all surfaces completely dry before installing.
  - 4. Connect all cables and power up.

#### **Maintenance Work** 20.5

#### **Fan Tray Service Instructions** 20.5.1

The fan tray removal and reassembly is essentially the same in all AQS chassis since the introduction of AQS/2. The following description uses pictures of the AQS/3+ chassis.

#### 20.5.2 **Fan Tray Removal**



### **Electrical Hazard from Electrical Shock.**

A life threatening shock may result when the housing is opened when under power!

- Turn of the chassis with mains circuit breaker
- Disconnect the chassis from the mains power supply before opening.
- ▶ Be sure that the power supply cannot be reconnected without notice.

To remove the fan tray from the mainframe follow the steps exactly as described below:

1. Remove 4 screws on the rear side



with serrated lock washer

Figure 20.1 Fan Tray screws rear side

#### Remove 6 screws on the front side 2.



Figure 20.2 Fan Tray screws front side



3. Carefully pull the front panel away from the mainframe and place it towards the left side (dangling from the cable)

Front Panel with mains circuit breaker and cable Figure 20.3 Front panel removal

4. Remove the fan tray by pulling it gently towards the front

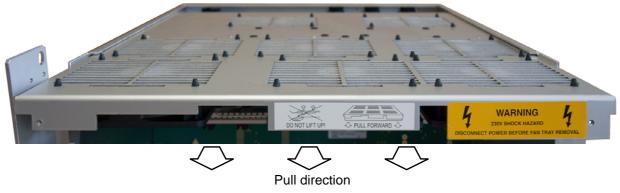



Figure 20.4 Fan Tray removal

### 20.5.3 Fan Tray Reassembly

To replace the fan tray in the mainframe follow the steps as described above in reverse order.

Make sure that:

- the fan tray sits flat on the guide rails on either side of the mainframe before final insertion
- no wires are squeezed in between the front panel and the fan tray
- all screws are secured and fastened properly (rear side screws with serrated lock washers)
- all fans turn freely after power up

# **21 Dismantling and Disposal**

Following the end of its useful life, the device must be dismantled and disposed of in accordance with the environmental regulations.

**1** Installation, initial commissioning, retrofitting, repairs, adjustments or dismantling of the device must only be carried out by employees of the manufacturer or persons authorised by the manufacturer.

## 21.1 Safety

### **Electrical System**



### Electrical hazard from electrical shock.

A life threatening shock may result when the housing is open during operation.

Disconnect the device from the electrical power supply before opening the device. Use a voltmeter to verify that the device is not under power!

**A**WARNING

Be sure that the power supply cannot be reconnected without notice.

#### Improper Dismanteling

# **A** WARNING

### Danger of injury due to improper dismantling!



Stored residual energy, angular components, points and edges on and in the device or on the tools needed can cause injuries.

- Ensure sufficient space before starting work.
- Handle exposed, sharp-edged components with care.
- Dismantle the components properly.
- Secure components so that they cannot fall down or topple over.
- Consult the manufacturer if in doubt.

# 21.2 Dismantling

Before starting dismantling:

- Shut down the device and secure to prevent restarting.
- Physically disconnect the power supply from the device; discharge stored residual energy.
- Remove consumables, auxiliary materials and other processing materials and dispose of in accordance with the environmental regulations.
- Dismantle the device by following the installation instructions in reverse.

Clean assemblies and parts properly and dismantle in compliance with applicable local occupational safety and environmental protection regulations.

# 21.3 Disposal Instructions

If no return or disposal agreement has been made, send the dismantled components for recycling.

- Scrap metals.
- Send plastic elements for recycling.
- Sort and dispose of other components in accordance with their material composition.

# NOTICE

### Danger to the environment from incorrect handling of pollutants!

Incorrect handling of pollutants, particularly incorrect waste disposal, may cause serious damage to the environment.

- Always observe the instructions below regarding handling and disposal of pollutants.
- ► Take the appropriate actions immediately if pollutants escape accidentally into the environment. If in doubt, inform the responsible municipal authorities about the damage and ask about the appropriate actions to be taken.

# **A** Appendix

# A.1 Warning Signs

### CAUTION

### DANGER

This combination of symbol and signal word indicates an immediately hazardous situation which could result in death or serious injury unless avoided. .. 13

### NOTICE

| Chassis restart timeout72                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Danger to the environment from incorrect handling of pollutants                                                                                                        |
| This combination of symbol and signal word indicates a possibly hazardous sit-<br>uation which could result in damage to property or the environment unless<br>avoided |

### WARNING

| Danger of injury due to improper dismantling!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Electrical hazard from electrical shock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79, 208, 211 |
| Risk to life for unauthorized personnel due to hazards in the dang zone!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 0          |
| The second tendence of a control of the second seco |              |

# A.2 Figures

| Figure 4.1  | AQS/3+ and AQS/2-M chassis rating plate                          | 22   |
|-------------|------------------------------------------------------------------|------|
| Figure 5.1  | Three Channel configuration for 200 – 600 MHz with AQS IPSO      |      |
| Figure 5.2  | AQS channel concept                                              |      |
| Figure 5.3  | AQS/3+ buses for a two channel system                            |      |
| Figure 5.4  | Explanation of Dwell_Clk~ and RGP_ADC~                           |      |
| Figure 5.5  | Pulse distribution of a two channel AVANCE III HD                |      |
| Figure 5.6  | RF Distribution                                                  |      |
| Figure 5.7  | 20 MHz Clock Distribution                                        |      |
| Figure 6.1  | AQS/3+ chassis rear view: rackcode switch location               |      |
| Figure 6.2  | AQS/3+ for 2 channel AVANCE III HD (internal IPSO)               |      |
| Figure 6.3  | AQS/3+ for 2 to 6 channel AVANCE III HD (external IPSO)          |      |
| Figure 6.4  | AQS/3+ for 2 RX/TX AVANCE III HD.                                |      |
| Figure 6.5  | LO2 splitter and AUX combiner                                    |      |
| Figure 6.6  | AQS/3+ for 2+2 RX/TX AVANCE III HD                               |      |
| Figure 6.7  | 20 MHz, LO2 and REF distribution                                 |      |
| Figure 6.8  | AQS/3+ for 2+2+2 RX/TX AVANCE III HD                             |      |
| Figure 6.9  | AQS/3+ for 1 channel (RX/TX) PharmaScan AVANCE III HD            |      |
| Figure 6.10 | AQS/3+ for 2 channel (2-4TX/1RX) BioSpec AVANCE III HD           |      |
| Figure 6.11 | AQS/3+ for 2 channel BioSpec with mRX Option (2 TX / 4,8,16 RX). |      |
| Figure 6.12 | AQS/3+ for 2 channel BioSpec with pTX Option (2+8TX/2RX)         |      |
| Figure 6.13 | 20 MHz, LO2 and REF distribution                                 |      |
| Figure 6.14 | AQS/3+ for 2 channel Dual RX AVANCE III HD                       |      |
| Figure 7.1  | AQS/3+ Chassis front view                                        |      |
| Figure 7.2  | AQS/3+ Chassis rear view                                         |      |
| Figure 7.3  | DRU Service Web: AQS Chassis Diagnostic                          |      |
| Figure 7.4  | Safety Stop State Diagram                                        |      |
| Figure 7.5  | AQS/3+ AC Wiring                                                 |      |
| Figure 7.6  | AQS/3+ User Bus (front view)                                     |      |
| Figure 7.7  | AQS/3+User Bus (rear view without PSM-48V)                       |      |
| Figure 7.8  | Pulse switch function                                            |      |
| Figure 7.9  | DRU Service Web: AQS Chassis Setup                               | . 77 |
| Figure 7.10 | Fan Tray (Bottom view)                                           |      |
| Figure 7.11 | PSM-48V removal from mainframe                                   |      |
| Figure 8.1  | AQS/2-M Chassis front view                                       | . 82 |
|             |                                                                  |      |

| Figure 8.2  | AQS/2-M Chassis rear view                                                     | 83  |
|-------------|-------------------------------------------------------------------------------|-----|
| Figure 8.3  | DRU Service Web: AQS Chassis Diagnostic                                       | 85  |
| Figure 8.4  | Safety Stop State Diagram                                                     | 86  |
| Figure 8.5  | AQS/2-M AC Wiring                                                             | 87  |
| Figure 8.6  | AQS/2 Transformer                                                             | 88  |
| Figure 8.7  | AQS/2-M User Bus (front view)                                                 | 89  |
| Figure 8.8  | AQS/2-M User Bus (rear view)                                                  | 89  |
| Figure 8.9  | DRU Service Web: AQS Chassis Setup                                            | 90  |
| Figure 8.10 | Fan Tray (Bottom view)                                                        | 91  |
| Figure 9.1  | Power supply system overview                                                  | 93  |
| Figure 9.2  | Overview PSM-48V                                                              | 95  |
| Figure 9.3  | Overview PSM-A2                                                               | 96  |
| Figure 9.4  | Front view BLNKTR~ OUT connector J3 / J4                                      | 97  |
| Figure 9.5  | Overview PSM-D                                                                | 98  |
| Figure 9.6  | View POWER SUPPLY DIGITAL                                                     | 99  |
| Figure 9.7  | Overview PSM1                                                                 | 100 |
| Figure 9.8  | Overview PSM5                                                                 | 101 |
| Figure 9.9  | View PSM HPLNA                                                                | 102 |
| Figure 9.10 | View PSM ADM                                                                  | 103 |
| Figure 9.11 | View PS BLA 28V                                                               | 104 |
| Figure 10.1 | Block diagram of AQS Reference Board 3                                        | 106 |
| Figure 10.2 | Overall synchronisation of a 3 channel spectrometer with an AQS/3-<br>chassis |     |
| Figure 10.3 | REF/3 front panel                                                             | 108 |
| Figure 10.4 | Waveform of signal at J2                                                      | 109 |
| Figure 10.5 | Waveform of signal at J3                                                      | 110 |
| Figure 10.6 | Waveform of signal at J4                                                      | 110 |
| Figure 10.7 | Waveform of signal at J5                                                      | 111 |
| Figure 10.8 | Waveform of signal at J6J9                                                    | 111 |
| Figure 11.1 | RXAD/2 Block diagram                                                          | 116 |
| Figure 11.2 | Circular Table: Mode of operation                                             | 118 |
| Figure 11.3 | AQS RXAD/2 front panel                                                        | 121 |
| Figure 11.4 | AQS RXAD/2 web page                                                           | 130 |
| Figure 11.5 | Erase all Entries of ACTUAL Frq                                               | 131 |
| Figure 11.6 | Example figure                                                                | 132 |
| Figure 11.7 | Save Config into RXAD/2 Flash                                                 | 133 |

| Figure 11.8  | Example of eda for RXAD/2 Quadrature Adjustment                                |
|--------------|--------------------------------------------------------------------------------|
| Figure 11.9  | Proposed setup for quad image adjustment 135                                   |
| Figure 11.10 | AQS RXAD/2 timing definitions                                                  |
| Figure 12.1  | DRU Block diagram ,Digital Receiver' 143                                       |
| Figure 12.2  | AQS DRU-E and AQS DRU front-side view                                          |
| Figure 13.1  | LO Dasy-chain for channel 3 (channel 1 of SGU 2) configured as observe channel |
| Figure 13.2  | NCO allocation                                                                 |
| Figure 13.3  | Channel 1 transmit, channel 2 observe 154                                      |
| Figure 13.4  | Channel 1 observe, channel 2 transmit 155                                      |
| Figure 13.5  | Channel 1 observe, channel 2 observe (dual receive mode) 155                   |
| Figure 13.6  | Pulse generation inside the SGU/3156                                           |
| Figure 13.7  | SGU/3 front panel 157                                                          |
| Figure 13.8  | Response 180° phase step 165                                                   |
| Figure 13.9  | Response 90° step (45°/+135°) 166                                              |
| Figure 14.1  | Clock & RX-Pulse distribution 170                                              |
| Figure 14.2  | LO/LO2- Splitter                                                               |
| Figure 14.3  | PULSE & RF-SPLITTER Wiring Diagram 171                                         |
| Figure 14.4  | AQS PULSE- & RF-SPLITTER boards front panel view 172                           |
| Figure 14.5  | Pining J5/J6 Pulse Test Connector 174                                          |
| Figure 14.6  | Pulse Splitter Device and Diagnostic Status 175                                |
| Figure 14.7  | RF-Splitter Device and Diagnostic Status                                       |
| Figure 14.8  | RF-Splitter Setup Window 176                                                   |
| Figure 14.9  | RF-Splitter gain adjust DAC 177                                                |
| Figure 15.1  | 2H TX Blockdiagram                                                             |
| Figure 15.2  | 2H-TX front panel                                                              |
| Figure 16.1  | Block diagram of AQS 1 to 4 Router                                             |
| Figure 16.2  | AQS 1 to 4 Router front panel 186                                              |
| Figure 17.1  | SBSB Addresses                                                                 |
| Figure 17.2  | Access to the devices in the AQS Chassis                                       |
| Figure 17.3  | Hosted Devices                                                                 |
| Figure 19.1  | Cooling air supply to the mainframe                                            |
| Figure 20.1  | Fan Tray screws rear side 208                                                  |
| Figure 20.2  | Fan Tray screws front side 208                                                 |
| Figure 20.3  | Front panel removal                                                            |
| Figure 20.4  | Fan Tray removal                                                               |
|              |                                                                                |

# A.3 Tables

| Table 2.1  | Overview Installation and Operation Requirements for Personnel | 16 |
|------------|----------------------------------------------------------------|----|
| Table 4.1  | Product name and part number                                   | 21 |
| Table 4.2  | Technical data: General information                            | 21 |
| Table 4.3  | Technical data: Electrical connection values                   | 22 |
| Table 4.4  | Technical data: Environment conditions                         | 22 |
| Table 5.1  | Data format of the 6 sample info words (5 bits each)           | 32 |
| Table 6.1  | List of configurations                                         | 39 |
| Table 6.2  | Bill of material                                               | 40 |
| Table 6.3  | Bill of material                                               | 42 |
| Table 6.4  | Bill of material                                               | 44 |
| Table 6.5  | Bill of material: rack 1                                       | 47 |
| Table 6.6  | Bill of material: rack 2                                       | 48 |
| Table 6.7  | Bill of material: rack 1                                       | 50 |
| Table 6.8  | Bill of material: rack 2                                       | 51 |
| Table 6.9  | Bill of material: rack 3                                       | 52 |
| Table 6.10 | Bill of material                                               | 54 |
| Table 6.11 | Bill of material                                               | 56 |
| Table 6.12 | Bill of material: rack 1                                       | 58 |
| Table 6.13 | Bill of material: rack 2                                       | 59 |
| Table 6.14 | Bill of material: rack 3 (for 16 RX option only)               | 60 |
| Table 6.15 | Bill of material: rack 1                                       | 62 |
| Table 6.16 | Bill of material: rack 2                                       | 63 |
| Table 6.17 | Bill of material                                               | 66 |
| Table 7.1  | Power-Up Delay                                                 | 72 |
| Table 7.2  | Rackcode Switch Function                                       | 77 |
| Table 8.1  | Power-Up Delay                                                 | 84 |
| Table 8.2  | Rackcode Switch Function                                       | 90 |
| Table 9.1  | AQS/3+ power supply part numbers                               | 93 |
| Table 9.2  | AQS/2-M power supply part numbers                              | 94 |
| Table 9.3  | Power supply module output specification (short form)          | 94 |
| Table 9.4  | Fuses PSM-A2                                                   | 96 |
| Table 9.5  | Pinout HPPR connector J1                                       | 97 |
| Table 9.6  | Pinout BLNKTR~ OUT connector J3 / J4                           | 97 |
| Table 9.7  | Fuses PSM-D                                                    | 98 |

| Table 9.8  | Fuses PSM1                                      | 100 |
|------------|-------------------------------------------------|-----|
| Table 9.9  | Fuses PSM5                                      | 101 |
| Table 9.10 | Pinout ADM POWER connector                      | 102 |
| Table 9.11 | Fuses PSM ADM                                   | 103 |
| Table 9.12 | Pinout ADM POWER connector                      | 103 |
| Table 10.1 | Backplane Connector REF/3                       | 113 |
| Table 11.1 | Possible gain steps of the AQS RXAD/2           | 119 |
| Table 11.2 | LED States                                      | 122 |
| Table 11.3 | AQS RXAD error messages (Release AR)            | 125 |
| Table 11.4 | RXAD/2 backplane connector                      | 138 |
| Table 11.5 | RXAD/2 extension connector                      | 139 |
| Table 12.1 | IP Addresses for DRU                            | 146 |
| Table 12.2 | DRU backplane connector                         | 150 |
| Table 12.3 | DRU extension connector                         | 150 |
| Table 13.1 | SGU/3 backplane connector                       | 167 |
| Table 13.2 | SGU/3 extension connector                       | 168 |
| Table 14.1 | PULSE SPLITTER LED Error Description            | 173 |
| Table 14.2 | RF-SPLITTER LED Error Description               | 173 |
| Table 14.3 | User Bus Connector PULSE-SPLITTER               | 179 |
| Table 14.4 | User Bus Connector RF-SPLITTER                  |     |
| Table 15.1 | 2H-TX part numbers                              |     |
| Table 15.2 | 2H-TX specifications                            |     |
| Table 16.1 | Backplane Connector AQS 1 to 4 Router           |     |
| Table 17.1 | AQS Board Type Identifier Codes                 | 193 |
| Table 19.1 | Mains selector settings for optimal performance |     |

#### Z33083\_001

# Bruker your solution partner

Bruker provides a world class, market leading range of analytical solutions for your molecular and material research needs.



info@bruker.com www.bruker.com