This manual was written by

Rolf Spreiter, Peter Baur and Stephan Heiss

© January 6, 2015: Bruker Corporation

Faellanden, Switzerland

ZTKS0264 / Z33037 / Rev.: 16

For further technical assistance on the Magnet Information and Control System (MICS), please do not hesitate to contact your nearest BRUKER dealer or contact us directly at:

BRUKER BioSpin AG
Industriestrasse 26
CH–8117 Faellanden
Switzerland

Phone: + 41 44 825 91 11
FAX: + 41 44 825 96 96
E-mail: magnetics@bruker.ch
Internet: www.bruker.com
Contents

1 **Introduction** ... 5
 1.1 Limitation of Liability ... 5
 1.2 Installation Requirements ... 5

2 **Safety** ... 7
 2.1 Approved Persons .. 7
 2.2 Intended Use .. 7

3 **Main Functions** ... 9
 3.1 Overview .. 9
 3.2 Helium .. 10
 3.3 Nitrogen .. 11
 3.4 Magnet Information .. 13
 3.5 Service ... 14
 3.6 Event Log ... 14
 3.7 Notification .. 15
 3.7.1 Events .. 16
 3.7.2 Actions .. 16
 3.7.3 Mail Settings ... 16
 3.8 Help .. 17
 3.9 Administration ... 18

4 **Optional Functions** .. 19
 4.1 BSNL – Bruker Smart Nitrogen Liquefier ... 19
 4.2 BNL – Bruker Nitrogen Liquefier ... 20
 4.3 Gyrotron Magnet .. 22
 4.4 Aeon /RS Systems ... 24
 4.4.1 Radiation Shield Temperature Monitoring with CMU 24
 4.4.2 Radiation Shield Temperature Monitoring without CMU 26
 4.5 Aeon /RZ Systems ... 27
 4.6 Aeon 2K Systems ... 29
 4.7 Web Overview .. 30

5 **Frequently Asked Questions** ... 31

A **Appendix** ... 35
 A.1 Abbreviations ... 35
1 Introduction

The Magnet Information and Control System (MICS) supports the user to check the state of a magnet system and can give a reminder if a service operation is due (e.g. refill of cryogenic liquids).

1.1 Limitation of Liability

The information in this manual will take into account the current state of the technology. The manufacturer assumes no liability for damages resulting from:

- non-compliance with the instructions and all applicable documentation,
- use for purposes not intended,
- not sufficiently approved persons,
- arbitrary changes or modifications and
- use of not approved spare parts or accessories.

1.2 Installation Requirements

The installation of MICS is done by Bruker Service personnel.

MICS can be used together with TopSpin 2.1 and newer (type 'mics' in the TopSpin command prompt). It is possible though to install MICS on a computer with a TopSpin Version prior to TopSpin 2.1. In these cases MICS can not be started from within TopSpin but must be started standalone (batch file / shell script or desktop shortcut).

To use the full MICS functionality, it is necessary to install MICS together with a BIS file (Bruker Identification System) that matches the magnet system.
Introduction
2 Safety

2.1 Approved Persons

Bruker BioSpin AG identifies the following qualifications for personnel performing tasks on the magnet system or its components:

Approved Customer Personnel
As a result of professional training by Bruker Service personnel, experience and knowledge of applicable regulations these persons are qualified to perform the specific tasks on the magnet system and its components assigned to them in this manual. Approved Customer Personnel are qualified to identify possible hazards and risks associated with the tasks assigned to them and to perform all possible steps to eliminate or minimize these risks.

Bruker Service Personnel
These persons are qualified by appropriate qualification and professional training and experience (including all necessary knowledge of applicable regulations and regulatory requirements) to perform specific tasks on the magnet system and its components. Bruker Service Personnel are qualified to identify possible hazards and risks and to perform all possible steps to eliminate or minimize these risks.

2.2 Intended Use

The Magnet Information and Control System (MICS) is an information utility, designed and intended for support of the user to check the state of a magnet system and its components.

Damage claims from damages caused by other than the intended use of the Magnet Information and Control System are excluded and the customer is held liable.

MICS is an information utility and not a system service. MICS does not automatically run in the background, but must be started by the user, either manually or via an auto-start script. Note that MICS will be terminated if the user logs out.

Note that MICS can only be started once. If multiple users are logged in at the same time (user switching), MICS can only be used by the user who started MICS and any message dialogs will appear on the screen of this user only.

The user cannot solely rely on MICS to ensure the safety of the magnet system. It is still important to observe and to check regularly the data of the magnet system.
3 Main Functions

3.1 Overview

Screenshots shown in this manual are meant to be general and informative and may not be representative for the specific magnet type or software version you are working with.

The “Overview” tab displays basic magnet information and an overall status of the cryogenic agents of the magnet system. It is possible to change the magnet name according to individual needs. This name will be used in email notifications and other MICS messages.
3.2 Helium

The “Helium” tab displays information about the current helium level, the refill history, the helium hold time and other important parameters related to the helium vessel of the magnet system.

The “Helium” tab does not exist for Aeon /RZ magnet systems (refer to section "Aeon /RZ Systems" on page 27).

After helium refill, the refill information needs to be entered on the “Helium” tab. Press the button “New Entry” to access the editor and to enter the helium refill information.
Press the button “He-Level Plot” to display an updated plot of the helium level as a function of time. The next estimated refill date is calculated based on the present helium level and on previous helium levels. It is also displayed in the helium level plot.

3.3 Nitrogen

The “Nitrogen” tab displays information about the current nitrogen level (either calculated or measured), the refill history, the nitrogen hold time and the next scheduled nitrogen refill.

Each time after refilling nitrogen, it is important to enter this information in MICS. Start MICS and select the “Nitrogen” tab. Update the refill table by pressing “New Entry”. This is particularly important if the magnet system is not equipped with a nitrogen level measurement device (see information below).

The nitrogen level displayed in the “Nitrogen” tab is a **measured** value only if the magnet system is equipped with a nitrogen level sensor. In magnet systems, that are not equipped with a nitrogen level sensor, the nitrogen level as well as the next pending refill date is a **calculated** value. It is based on the last refill date and on the known nitrogen loss rate of the cryostat.
3.4 Magnet Information

The “Magnet” tab gives detailed information about the magnet system and the cryostat. The section “Cryo Shims” provides data of the factory defaults and an editable table of the actual settings of the cryo shims.
3.5 Service

The “Service” tab lists all the performed service operations and announces the next scheduled service for the magnet system if any. New entries in the “Service” tab are typically generated only by Bruker Service personnel.

3.6 Event Log

The tab “Event Log” displays the history of all Notifications, Warnings, Alerts and Errors.
3.7 Notification

The “Notification” tab allows the MICS behavior to be customized according to individual needs.

Select the event category and customize the actions to be taken by the system for each category (notification, warning, alert, error).

To change any of the settings on this tab, press the button “Edit” and insert the changes. The button will then change to “Save”. Press it again to save the changes.
3.7.1 Events

Every event is of a particular category: notification, warning, alert or error. This classification can be changed by the user. The event category defines the notification behavior of MICS (refer to section "Actions" on page 16). For some of the events you can define how many days in advance of certain occurrences you want to be informed. Certain events are raised only once, others are raised every day as long as the problem persists.

3.7.2 Actions

Here you define how you want to be informed if an event of a particular category (notification, warning, alert, error) occurs. To use the email function, an outgoing mail server (SMTP) must be defined (refer to section "Mail Settings" on page 16). It is possible to enter multiple email recipients in one line, separated by a semi-colon.

3.7.3 Mail Settings

Note that the email function is an important part of the notification concept in MICS. The email function should be configured carefully and it is recommended to send a test email after a configuration change. A test email can be sent in the "Notification" tab via the button (Configure MICS EMail).

MICS Support Address

The MICS support address (service_magnetics@bruker.ch) is used to contact Bruker Service in case of problems with the magnet system or with MICS. Refer to section "Help" on page 17 for additional information.

SMTP Server and Sender Address

To enable MICS to send emails, an outgoing mail server (SMTP) needs to be configured as well as a valid sender address. Please ask your IT department for the proper configuration and whether authentication and/or encryption is required for SMTP or not. MICS uses the standard SMTP port 25 to send emails and provides basic support for authentication (SMTP-Auth) and encryption (SSL/TLS).

If your IT environment requires to use authentication, it is recommended to use a designated email account for MICS. Do not use your personal account settings here, since password protection is only weak.
3.8 Help

This tab provides links to important manuals.

The “Support” section provides a tool to create a zip archive of the current MICS configuration and logdata. Press the button “System Status” to create an archive containing the following data:

- Your system data as displayed by MICS
- Logdata (N2, He, etc.)
- Configuration files

The generated archive can either be stored on the disk or can be sent directly to the support email address specified in the “Notification” tab (refer to section "Mail Settings" on page 16). This is usually the email address of your Bruker Service representative. In addition please also send an email or call Bruker Service to describe your problem.
3.9 Administration

The “Administration” tab contains the basic settings for the MICS configuration. Settings in this tab are typically changed only by Bruker Service personnel.

Additional information will be displayed in the administration tab, depending on the system configuration.
4 Optional Functions

4.1 BSNL – Bruker Smart Nitrogen Liquefier

If the magnet system is equipped with a Bruker Smart Nitrogen Liquefier (BSNL), it is required to perform a system check within MICS every second day. This consistency check is necessary to detect whether the vital parts of the magnet system are working properly. It can be initiated using the Button “Check now” in the “Administration” tab.

The consistency check also connects to the Cryo Controller device (CRCO) to make a cross-check of the system status information.

After completion of the check, a summary dialog is displayed which informs about the current state of the magnet system:
4.2 BNL – Bruker Nitrogen Liquefier

If the magnet system is equipped with a BNL nitrogen liquefier device, MICS displays a “Nitrogen (BNL)” tab instead of the standard nitrogen tab.

MICS relays messages from the CMU to the user. The MICS behavior for CMU messages can be configured in the “Notification” tab.

Note that MICS is part of the redundant monitoring design and therefore needs to be running permanently in order to ensure mutual supervision between the CMU and MICS.

MICS can also be used to START or STOP the BNL device. Note that the Bruker Service Password is required to STOP the BNL device.

For operating the BNL refer to the supplied BNL User Manual.
Optional Functions

Emails

The Java Controller (JAC) of the CMU is capable of sending emails on its own. This is a fallback strategy and only used if the JAC detects that MICS is not running.

To configure the email configuration on the JAC device, use the button “JAC email settings” in the “Notification” tab. Be aware that the email configuration of the JAC device is independent from the MICS email configuration.

Administration

The MICS “Administration” tab provides a CMU/BNL section, which displays the current IP address of the CMU device. It is also possible to open the CMU Service Web page or start the CMU Service Tool from there.
4.3 **Gyrotron Magnet**

If the magnet system is equipped with an auxiliary magnet for Gyrotron applications, MICS displays an additional “Gyrotron” tab.

MICS relays messages from the gyrotron magnet CMU to the user. The MICS behavior for CMU messages can be configured in the “Notification” tab.

Note that MICS is part of the redundant monitoring design and therefore needs to be running permanently in order to ensure mutual supervision between the CMU and MICS.

For operating the gyrotron magnet refer to the supplied Gyrotron User Manual (ZTKS0267).
Optional Functions

EMails

The Java Controller (JAC) of the CMU is capable of sending emails on its own. This is a fallback strategy and only used if the JAC detects that MICS is not running.

To configure the email configuration on the JAC device, use the button “JAC email settings” in the “Notification” tab. Be aware that the email configuration of the JAC device depends on the MICS email configuration.

Administration

The MICS “Administration” tab provides a CMU/GYR section, which displays the current IP address of the CMU device. It is also possible to open the CMU Service Web page or to start the CMU Service Tool from there.
4.4 Aeon /RS Systems

For nitrogen free 4K magnet systems, MICS displays a “Radiation Shield” tab instead of the standard “Nitrogen” tab.

4.4.1 Radiation Shield Temperature Monitoring with CMU

To activate the radiation shield temperature monitoring with CMU in MICS, a BSMS/2 system with BSVT is needed.

MICS relays messages from the CMU to the user. The MICS behavior for CMU messages can be configured in the “Notification” tab.

Note that MICS is part of the redundant monitoring design and therefore needs to be running permanently in order to ensure mutual supervision between the CMU and MICS.
MICS displays the radiation shield temperature in Kelvin as a temperature gauge. The shield temperature and other parameters can also be displayed in a 2D plot, using the button “Plots”.

EMails

The Java Controller (JAC) of the CMU is capable of sending emails on its own. This is a fallback strategy and only used if the JAC detects that MICS is not running.

To configure the email configuration on the JAC device, use the button “JAC email settings” in the “Notification” tab. Be aware that the email configuration of the JAC device is independent from the MICS email configuration.

Administration

The MICS “Administration” tab provides a CMU/RS section, which displays the current IP address of the CMU device. It is also possible to open the CMU Service Web page or to start the CMU Service Tool from there.
Optional Functions

4.4.2 Radiation Shield Temperature Monitoring without CMU

To activate the radiation shield temperature monitoring in MICS, a BSMS/2 system with ELCB and SLCB/3 is needed.

MICS displays the radiation shield temperature in Kelvin. The shield temperature can also be displayed in a 2D plot, using the button “Temperature Plot”.

An alarm temperature will be configured during the installation process by the Bruker Service personnel. If the alarm temperature limit is exceeded, the event “Shield temperature too high” will be raised.
4.5 **Aeon /RZ Systems**

For Aeon /RZ systems MICS displays the tabs “Radiation Shield” and “He Liquefaction” instead of the tabs “Nitrogen” and “Helium”.

MICS relays messages from the CMU to the user. The MICS behavior for CMU messages can be configured in the “Notification” tab.

Information

Note that MICS is part of the redundant monitoring design and therefore needs to be running permanently in order to ensure mutual supervision between the CMU and MICS.

MICS displays the radiation shield temperature in Kelvin as a temperature gauge. The shield temperature and other parameters can also be displayed in a 2D plot, using the button “Plots”.

Optional Functions

The “He Liquefier” tab displays all relevant information regarding the He liquefaction unit. Heater power, He pressure, He level and other parameters can also be displayed in a 2D plot, using the button “Plots”.

MICS can also be used to START or STOP the He liquefaction. Note that the Bruker Service Password is required to STOP the liquefaction device.
Optional Functions

Emails

The Java Controller (JAC) of the CMU is capable of sending emails on its own. This is a fallback strategy and only used if the JAC detects that MICS is not running.

To configure the email configuration on the JAC device, use the button “JAC email settings” in the “Notification” tab. Be aware that the email configuration of the JAC device is independent from the MICS email configuration.

Administration

The MICS “Administration” tab provides a CMU/RZ section, which displays the current IP address of the CMU device. It is also possible to open the CMU Service Web page or start the CMU Service Tool from there.

4.6 Aeon 2K Systems

Monitoring and alarming for Aeon 2K systems is done entirely by the BMPC/2 unit. MICS only displays the helium level as provided by the BSMS/ELCB or the TopSpin logfile. Refer to section "Helium" on page 10 and refer to the BMPC/2 Technical Manual (Z31823) for additional information.
4.7 Web Overview

MICS contains an embedded web-server which lets you monitor your system state with a web browser from within your company's network.

It can be enabled in the “Administration” tab as an option. Make sure you specify a port that is available (e.g. 8080).

You might need to configure your firewall to allow http communication on the specified port.

The webserver provides the system status in an XML format, which is transformed into HTML and displayed by the browser.

Example Webpage

![Example Webpage](image)
5 Frequently Asked Questions

General:

1. How can MICS be started?
 MICS can either be started from within TopSpin or as a standalone application from the Start menu shortcut.
 - To start MICS from TopSpin, invoke the command `mics` in the TopSpin command prompt.

2. Is there any guaranty that MICS issues warnings and alerts if the TopSpin computer is running?
 No. MICS is a Java application designed for informational purposes and not a security tool. It does not run as a system device and therefore needs to be started by the user either manually or by means of a startup script.

Helium and Nitrogen Levels:

3. My system is not equipped with a nitrogen level sensor. How is the nitrogen level in MICS being calculated?
 MICS calculates the current nitrogen level based on the last refill date and the specified loss. The last refill date needs to be specified by the user in the Nitrogen tab.

4. What is the update interval of the He/N2 level displayed in MICS?
 MICS does no real time monitoring of the magnet system and does not trigger any He/N2 measurement by itself. The level data in MICS is updated once an hour. However the actual measurement might be older than that, depending on the measurement interval of the hardware or the TopSpin helium transfer background process.

 If MICS is configured to read the level data directly from the BSMS (recommended), it displays the actual date of the measurement as indicated by the hardware.

 To get an accurate He/N2 level reading it is recommended to initiate a measurement manually (BSMS keyboard or service web).
5. How does the level on the MICS N2 gauge correspond with the vessel volume?

Systems with Nitrogen Level Sensor:

For systems with nitrogen sensor, the minimum allowed level (MAL) and therefore the refill and residual volume depend on the information in the magnet BIS file.

As of MICS version 2.03, the MAL is indicated on the nitrogen gauge.

Systems without Nitrogen Level Sensor:

As of MICS version 1.74, the required residual volume, which is essential for safe operation of the magnet system, will no longer be part of the volume covered by the level gauge.
BSNL (BRUKER Smart Nitrogen Liquefier):

6. Why am I required to perform a “manual check” in MICS every couple of days?
This is a cross-check between MICS and the BSNL Laptop to verify that the various components of the BSNL system are up and running.

Installation Issues:

7. Why do I have to specify the location of my TopSpin installation?
For older BSMS systems without ELCB hardware, MICS has to rely on the helium-log file which is written by the TopSpin background process and stored in the TopSpin installation directory.

To make sure MICS is correctly provided with level data, it is essential to check and adjust the path to the TopSpin heliumlog file after each TopSpin installation. This can be done in the MICS Administration Tab.

If your system is equipped with an ELCB board, MICS can be configured to read the level data directly from the BSMS. This is the recommended setting for newer systems.

8. E-Mailing in MICS is not working. What can I do?
Check the settings according to the following procedure:
1) ask your IT department to confirm the following settings:
 a) SMTP server (e.g. mail.yourcompany.com)
 b) Port (e.g. 25, 465 or 587)
 c) is authentication (Login with username + password) required?
 d) is encryption required (SSL or TLS)?
2) based on the information above, check whether a connection to the given server and port on the network layer can be established:
 use the command 'telnet smtpserver port' from the commandline to connect to the server (note that on Windows 7 you might need to activate the telnet client first).
 • If no connection with telnet is possible, the problem seems to be on the network or configuration side. In this case your IT needs to check on this (e.g. security restrictions or wrong settings). If you see the welcome prompt from the mailserver, then quit the telnet connection.
3) if the above test was successful, start MICS, configure it accordingly and try the testmail function.
4) if the testmail fails, select the MICS help tab and create an archive of your configuration (logfiles, etc.). Send the files with the configuration to Bruker Support for further analysis.
A.1 Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIS</td>
<td>Bruker Identification System</td>
</tr>
<tr>
<td>BMPC/2</td>
<td>Bruker Magnet Pump Control 2</td>
</tr>
<tr>
<td>BNL</td>
<td>Bruker Nitrogen Liquefier</td>
</tr>
<tr>
<td>BSMS</td>
<td>Bruker Smart Magnet Control System</td>
</tr>
<tr>
<td>BSNL</td>
<td>Bruker Smart Nitrogen Liquefier</td>
</tr>
<tr>
<td>BSVT</td>
<td>Bruker Smart Variable Temperature System</td>
</tr>
<tr>
<td>CCA</td>
<td>Cryo Compressor Adaptor</td>
</tr>
<tr>
<td>CF</td>
<td>Cryogen free</td>
</tr>
<tr>
<td>CMU</td>
<td>Cryostat Monitoring Unit</td>
</tr>
<tr>
<td>CRCO</td>
<td>Cryo Controller</td>
</tr>
<tr>
<td>ELCB</td>
<td>Enhanced Lock Control Board</td>
</tr>
<tr>
<td>JAC</td>
<td>Java Controller</td>
</tr>
<tr>
<td>MAL</td>
<td>Minimum Allowed Level</td>
</tr>
<tr>
<td>MALE</td>
<td>Minimum Allowed Level at Energizing</td>
</tr>
<tr>
<td>MICS</td>
<td>Magnet Information and Control System</td>
</tr>
<tr>
<td>RS</td>
<td>Radiation Shield</td>
</tr>
<tr>
<td>/RS</td>
<td>1-stage cooled (N2 free)</td>
</tr>
<tr>
<td>/RZ</td>
<td>2-stage cooled (N2 free, He reliquefaction)</td>
</tr>
<tr>
<td>SLCB</td>
<td>Sample and Level Control Board</td>
</tr>
</tbody>
</table>

Table A.1: Abbreviations
Abbreviations
Revision History List

<table>
<thead>
<tr>
<th>Index</th>
<th>Date:</th>
<th>Alteration Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Nov 11, 2006</td>
<td>MICS user manual release.</td>
</tr>
<tr>
<td>02</td>
<td>Jan 12, 2007</td>
<td>Release of MICS version 1.1; added security.</td>
</tr>
<tr>
<td>03</td>
<td>April 27, 2007</td>
<td>Added description of events.</td>
</tr>
<tr>
<td>04</td>
<td>June 19, 2007</td>
<td>Release of MICS version 1.3.3; added support for LN2 measurement and N2 liquefier.</td>
</tr>
<tr>
<td>05</td>
<td>March 17, 2009</td>
<td>Release of MICS version 1.8.8; added support for /RS temperature monitoring.</td>
</tr>
<tr>
<td>06</td>
<td>April 31, 2010</td>
<td>Release of MICS version 1.9.3; adapted for new BSMS firmware.</td>
</tr>
<tr>
<td>07</td>
<td>July 12, 2010</td>
<td>Minor changes (email addresses, screenshots).</td>
</tr>
<tr>
<td>08</td>
<td>Sept 10, 2010</td>
<td>Changed support email address.</td>
</tr>
<tr>
<td>09</td>
<td>Febr 08, 2011</td>
<td>Completed help section, added new chapter structure.</td>
</tr>
<tr>
<td>10</td>
<td>March 03, 2011</td>
<td>Added web overview.</td>
</tr>
<tr>
<td>11</td>
<td>Oct 19, 2011</td>
<td>Added BSNL.</td>
</tr>
<tr>
<td>13</td>
<td>May 25, 2012</td>
<td>Added “Radiation Shield Temperature Monitoring with CMU” chapter, updated BNL chapter, included new cover page layout.</td>
</tr>
<tr>
<td>14</td>
<td>November 18, 2013</td>
<td>Added monitoring of Aeon /RZ magnet systems.</td>
</tr>
<tr>
<td>15</td>
<td>June 12, 2014</td>
<td>Added monitoring of Aeon 2K subcooled, nitrogen free magnet systems.</td>
</tr>
<tr>
<td>16</td>
<td>January 6, 2015</td>
<td>Added description of “Gyrotron” tab.</td>
</tr>
</tbody>
</table>