Fourier 300

- NMR Experiments

User Manual
Version 004

Copyright © by Bruker Corporation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means without the prior consent of the publisher. Product names used are trademarks or registered trademarks of their respective holders.

This manual was written by

Peter Ziegler
© June 26, 2013: Bruker Corporation

Billerica, Massachusetts, USA

P/N: Z31979
DWG-Nr.: Z4D11519C

For further technical assistance on the Fourier 300 unit, please do not hesitate to contact your nearest BRUKER dealer or contact us directly at:

BRUKER BioSpin Corporation
15 Fortune Drive
Billerica, MA 01821
USA

Phone: (978) 667-9580 ext. 5444
FAX: (978) 667-2955
E-mail: applab@bruker-biospin.com
Internet: www.bruker.com
1 About 5
1.1 This Manual 5
1.2 Policy Statement 5
1.3 Symbols and Conventions 5
2 Introduction 7
2.1 General. 7
2.2 Disclaimer 7
3 Safety 9
3.1 Introduction 9
3.2 Magnetic Safety 9
3.3 Cryogenic Safety 10
3.3.1 What Is A Quench? 10
3.4 Emergency Planning 10
3.5 Fire Department Notification 11
3.6 Earthquake Safety 11
3.7 Country-Specific Safety Regulations 11
3.8 Observations 12
4 Spectrometer Basics 13
4.1 Fourier Connection Overview 13
4.2 Sample Preparation 14
4.3 Inserting the Sample with Spinner into the Magnet 14
4.4 Spinning the Sample 15
4.5 Locking the Sample 15
4.6 Shimming the Sample 16
4.6.1 Shimming using Gradshim 16
4.6.2 Shimming on the Lock Signal 16
4.6.3 Shimming on the FID (Free Induction Decay) 16
4.7 Optimizing Resolution and Lineshape 17
4.8 Observations 18
5 1-D Proton Experiment 19
5.1 Sample 19
5.2 1-D Proton Experiment 19
5.2.1 Introduction 19
5.2.2 Experiment Setup 20
5.2.3 Acquisition 22
5.2.4 Processing 23
5.2.5 Plotting 26
5.3 Observations 28
6 2-D Homonuclear Experiments 29
6.1 Sample 29
6.2 2-D Gradient COSY Experiment 29
6.2.1 Introduction 29
6.2.2 Preparation Experiment 30
6.2.3 Setting Up The 2-D COSY Experiment 30
6.2.4 Acquisition 34
6.2.5 Processing 34
6.2.6 Plotting 36
6.3 Observations 38
6.4 2-D Gradient NOESY Experiment 39
6.4.1 Introduction 39
6.4.2 Preparation Experiment 40
6.4.3 Setting Up The 2-D NOESY Experiment 40
6.4.4 Acquisition 44
6.4.5 Processing 44
6.4.6 Plotting 45
6.5 Observations 47
6.6 2-D Phase Sensitive TOCSY Experiment 48
6.6.1 Introduction 48
6.6.2 Preparation Experiment 49
6.6.3 Setting Up The 2-D TOCSY Experiment 49
6.6.4 Acquisition 53
6.6.5 Processing 53
6.6.6 Plotting 54
6.7 Observations 56
7 1-D Carbon Experiments 57
7.1 Sample 57
7.2 1-D Carbon Experiment 57
7.2.1 Introduction 57
7.2.2 Experiment Set Up 58
7.2.3 Acquisition 60
7.2.4 Processing 61
7.2.5 Plotting 63
7.3 Observations 65
7.4 DEPT-135 Experiment 66
7.4.1 Introduction 66
7.4.2 Experiment Set Up 67
7.4.3 Acquisition 68
7.4.4 Processing 69
7.4.5 Plotting 70
7.5 Observations 72
7.6 DEPT-90 Experiment 73
7.6.1 Introduction 73
7.6.2 Experiment Set Up 73
7.6.3 Acquisition 75
7.6.4 Processing 75
7.6.5 Plotting 76
7.7 Observations 78
8 2-D Heteronuclear Experiments 79
8.1 Sample 79
8.2 2-D HSQC Experiment 79
8.2.1 Introduction 79
8.2.2 Preparation Experiment 80
8.2.3 Setting Up The 2-D HSQC Experiment 80
8.2.4 Acquisition 85
8.2.5 Processing 85
8.2.6 Plotting 86
8.3 Observations 87
8.4 2-D HMBC Experiment 88
8.4.1 Introduction 88
8.4.2 Preparation Experiment 88
8.4.3 Setting Up The 2-D HMBC Experiment 89
8.4.4 Acquisition 94
8.4.5 Processing 94
8.4.6 Plotting 96
8.5 Observations 97
9 Determination Of 90 Degree Pulses 99
9.1 Introduction 99
9.2 Proton 90 Degree Transmitter Pulse 99
9.2.1 Parameter Setup 99
9.2.2 Acquisition 103
9.2.3 Processing 103
9.2.4 Determine The 90 Degree Pulse 105
9.3 Observations 109
9.4 Carbon 90 Degree Transmitter Pulse 110
9.4.1 Parameter Setup 110
9.4.2 Acquisition 113
9.4.3 Processing 113
9.4.4 Determine The 90 Degree Pulse 116
9.5 Observations 119
10 Sensitivity Tests 121
10.1 Introduction 121
10.2 Proton Sensitivity Test 121
10.2.1 Experiment Setup 121
10.2.2 Acquisition 124
10.2.3 Processing 124
10.2.4 Calculating The Signal To Noise Ratio 125
10.3 Observations 128
10.4 Carbon Sensitivity Test Without Proton Decoupling 129
10.4.1 Experiment Setup 129
10.4.2 Acquisition 132
10.4.3 Processing 132
10.4.4 Calculating The Signal To Noise Ratio 133
10.5 Observations 136
11 Spectrometer Configuration 137
11.1 Hardware Configuration 137
11.2 Expinstall 141
11.3 Set Up The Cron Job For NMR_save 145
11.4 Observations 148
12 Standard Parameter Set List 149
12.1 1-D Experiments 149
12.2 2-D Experiments 150
13 Contact 151

1 About

1.1 This Manual

This manual is intended to be a reference guide for operators and service technicians. It provides detailed information about the user level maintenance and service and overall use of the Bruker device.
The figures shown in this manual are designed to be general and informative and may not represent the specific Bruker model, component or software/firmware version you are working with. Options and accessories may or may not be illustrated in each figure.

Carefully read all relevant chapters before working on the device!
This manual describes parts and procedures relevant to the device version it is delivered with. For older hardware, please refer to the manual supplied at the time.

1.2 Policy Statement

It is the policy of Bruker to improve products as new techniques and components become available. Bruker reserves the right to change specifications at any time.

Every effort has been made to avoid errors in text and figure presentation in this publication. In order to produce useful and appropriate documentation, we welcome your comments on this publication. Support engineers are advised to regularly check with Bruker for updated information.

Bruker is committed to providing customers with inventive, high quality products and services that are environmentally sound.

1.3 Symbols and Conventions

Safety instructions in this manual are marked with symbols. The safety instructions are introduced using indicative words which express the extent of the harzard.

In order to avoid accidents, personal injury or damage to property, always observe safety instructions and proceed with care.

[^0]
A WARNING

This combination of symbol and signal word indicates a potentially hazardous situation which could result in death or serious injury unless avoided.

Acaution

This combination of symbol and signal word indicates a possibly hazardous situation which could result in minor or slight injury unless avoided.

SAFETY INSTRUCTIONS

This combination of color and signal words are used for control flow and shutdowns in the event of an error or emergency.

NOTICE

This combination of color and signal word indicates a possibly hazardous situation which could result in damage to property or the environment unless avoided.

This symbol highlights useful tips and recommendations as well as information designed to ensure efficient and smooth operation.

2 Introduction

2.1 General

This manual was written for Fourier 300 systems running TopSpin 3.1 and should be used as a guide through the set up process for some experiments. The success of running the experiments in this manual is under the assumption that all parameters have been entered in to the prosol table.

2.2 Disclaimer

This guide should only be used for its intended purpose as described in this manual. Use of the manual for any purpose other than that for which it is intended is taken only at the users own risk and invalidates any and all manufacturer warranties.
Some parameter values, especially power levels suggested in this manual may not be suitable for all Fourier systems and could cause damage to the unit. Therefore only persons trained in the operation of the a Fourier systems should operate the unit.

3 Safety

3.1 Introduction

In terms of safety the presence of a relatively strong magnet is what differentiates NMR spectrometers from most other laboratory equipment. When designing an NMR laboratory, or training personnel who will work in or around the laboratory, no other feature is of greater significance. As long as correct procedures are adhered to, working in the vicinity of superconductive magnets is completely safe and has no known harmful medical side effects. Negligence however can result in serious accidents. It is important that people working in the vicinity of the magnet fully understand the potential hazards. Of critical importance is that people fitted with cardiac pacemakers or ferromagnetic implants should never be allowed near the magnet.
The magnet is potentially hazardous due to:

- The large attractive force it exerts on ferromagnetic objects.
- The large content of liquid Nitrogen and Helium.

3.2 Magnetic Safety

A Magnetic Field surrounds the magnet in all directions. This field (known as the stray field) is invisible, hence the need to post warning signs at appropriate locations. Objects made of ferromagnetic materials, e.g. iron, steel etc. will be attracted to the magnet. If a ferromagnetic object is brought too close, it may suddenly be drawn into the magnet with surprising force. This may damage the magnet, or cause personal injury to anybody in the way!
The Fourier 300 super conducting magnet is actively shielded. The following must be understood when working with such a shielded magnet.

- The active shielding of the super conducting coil reduces the stray magnetic field and therefore its effect. The 5 Gauss line in the horizontal direction extends $\mathbf{2 6 . 5} \mathbf{~ c m}$ around die outside of the magnet. In the vertical direction it extends about $\mathbf{2 4} \mathbf{~ c m}$ out of the can at the middle but it does not go above the helium stacks or below the floor.
- In spite of the active shielding, the stray magnetic field immediately adjacent to the bore of the magnet is very high and the attractive forces on ferromagnetic objects are very strong!

3.3 Cryogenic Safety

The magnet contains relatively large quantities of liquid helium and nitrogen. These liquids, referred to as cryogens, serve to keep the magnet core at a very low temperature.
Because of the very low temperatures involved, gloves, a long sleeved shirt or lab coat and safety goggles should always be worn when handling cryogens. Direct contact with these liquids can cause frostbite. The system manager should regularly check and make sure that evaporating gases are free to escape from the magnet, i.e. the release valves must not be blocked. Do not attempt to refill the magnet with helium or nitrogen unless you have been trained in the correct procedure.

3.3.1 What Is A Quench?

A magnet quench is the spontaneous breakdown of superconductivity in a partially or fully energized magnet. The stored field energy is transformed into heat, leading to a fast evaporation of liquid helium. During a quench, an extremely large quantity , $\sim \mathbf{4 0} \mathbf{m}^{\mathbf{3}}$ ($1,400 \mathrm{ft}^{3}$) of helium gas is produced within a short time.

Helium and nitrogen are non-toxic gases. However, because of a possible magnet quench, where upon the room may suddenly fill with evaporated gases causing potential danger of suffocation. Adequate ventilation must always be provided and it is recommended that any person should leave the room.

3.4 Emergency Planning

Due to the strong magnetic fields and presence of cryogens when using NMR systems, it is important to define and communicate what to do in case of problems or an emergency. An Emergency Plan can be defined as a documented set of instructions on what to do if something goes wrong. Emergency Plans are often de- fined as part of the Standard Operating Procedures (SOP), or as a stand-alone document. In any case every NMR laboratory should have an Emergency Plan in effect in case of problems or emergencies.

As every organization has its own policies and procedures, as well as varying laboratory layouts, an Emergency Plan should be individually defined for each laboratory as appropriate. Upon request Bruker can provide useful information on emergency planning.

3.5 Fire Department Notification

A CAUTION

It is recommended that the magnet operator introduce the fire department and/or local authorities to the magnet site. It is important that these organizations be informed of the potential risks of the magnet system, i.e. that much of the magnetic rescue equipment (oxygen-cylinders, fire extinguishers, axes etc.) can be hazardous close to the magnet system. On the other side, their expertise and experience can be invaluable in creating an Emergency plan

- Within a NMR laboratory CO_{2} magnetic fire extinguishers must NOT be used. Breathing equipment which uses oxygen tanks made out of magnetic material can be life threatening when used close to a magnet system which still has a magnetic field present.
- Helium gas escaping from the system must not be mistaken for smoke. Instruct the fire department and technical service not to extinguish the magnet system with water. The outlet valves could freeze over and generate excess pressure within the system.
- NMR laboratory windows which are accessible during an emergency must be clearly marked with warning signs, visible from the outside.

3.6 Earthquake Safety

In regions where there is a potential risk of earthquakes, additional measures must be taken to reduce the chance of personal or property damage through movement or tipping of the magnet.

Many countries or regions have documented regulations, including building codes, regarding earthquakes. Before installing a magnet system, it is highly advisable that you check with local authorities on whether your area is prone to earthquakes and if there are any regulations in effect.
If your area is regarded as an earthquake area there are several shock absorbing measures or riggings available to reduce the likelihood of damage during an earthquake. Please contact Bruker for more information on earthquake securing equipment.

3.7 Country-Specific Safety Regulations

In addition to the above safety precautions, any country-specific safety regulations for operating NMR systems must be fulfilled. These may include, for example, regulations on:

- Facilities of a controlled access area around the magnet.
- Working conditions at computer stations.

3.8 Observations

4 Spectrometer Basics

4.1 Fourier Connection Overview

Figure 4.1 Fourier Connection Overview

4.2 Sample Preparation

- Use medium to high quality, clean and dry sample tubes
- Always filter the sample solution
- Always use the same sample volume or solution height
- Filling volume of a 5 mm tubes is 0.6 ml or 5 cm
- Use the sample depth gauge to adjust the sample depth
- The sample tube should sit tightly inside the spinner
- Wipe the sample tube clean before inserting into magnet
- Turn on lift air to insert the sample into the magnet

4.3 Inserting the Sample with Spinner into the Magnet

The raising and lowering of the sample is controlled by a stream of pressurized air. The BST is designed not to enable the LIFT if the magnet bore is plugged. Furthermore, make sure that the air flow is present (it is quite audible) before placing a sample onto the top of the bore.

To insert the sample with spinner into the magnet use the following procedure:

1. If present, remove the BST cap from the top of the magnet bore
2. Activate the LIFT. A flow of air will be heard and if a sample is already in the magnet it will be raised and suspended on a cushion of air at the top of the magnet bore.
3. Remove the old sample and place the new sample onto the air cushion
4. Turn off the LIFT. The sample will gently drop into the magnet and will settle at a precise position within the probe. You should be able to hear a clicking sound.

4.4 Spinning the Sample

A second function of pressurized air is to enable the sample to rotate. The spinning of the sample serves to "even-out" some of the inhomogeneities that may exist in the magnetic field at the center of the magnet.

NOTE: A suggested spin rate of 20 Hz is used to spin the sample. The spinner is turned off for experiments such as T1 and all 2D's, to reduce unwanted artifacts from spinning the sample.

4.5 Locking the Sample

Open up the lock display. This is a window in which the lock trace appears.
The most convenient way to lock is to use the Lock button in the Topspin menu bar in the the 'Acquire' tab or type lock in the command line. To start the lock-in procedure, select the appropriate solvent from the menu. Alternatively, enter the solvent name together with the lock command, e.g., lock cdcl3. During lock-in, several parameters such as the lock power, the field value, and the frequency shift for the solvent are set according to the values in the 'edlock' table. This table can be edited using the command edlock. Note that the lock power listed in this table is the level used after the sample has been locked. The field-shift mode is then selected and autolock is activated. Once lock-in is achieved, the lock gain is set so that the lock signal is visible in the lock window. At this point the message "lock: finished" appears in the status line at the bottom of the window.
The lock-phase adjustment by monitoring the sweep wiggles (i.e., while the field is not locked but the sweep is turned on) is recommended because autolock may fail. If the original phase is reasonably close to the correct value, lock-in can be achieved and the phase can be adjusted using the lock to maximize the level. Note that the lock phase for the probe is stored in the edlock table. If the signal oscillates due to saturation then the lock power can be reduced manually after lockin.

NOTE: The appropriate lock power level depends on the lock solvent, the field value, and the probehead. Any value changes in the edlock table should only be done by experts.

4.6 Shimming the Sample

The following is intended to be a practical guide for adjusting the room temperature shim system. The purpose of shimming is to maximize the magnetic field homogneity, which depends somewhat on probehead and sample geometry. In general, it is necessary to shim the magnetic field to correct for any magnet drifts, especially after the magnet has been energized. This may requires to shim the on-axis and possible the off-axis shims. After a sample change, usually only the on-axis shims have to be adjusted.

Optimal shim settings may vary from samples and solvents; however, provided the sample has been adjusted to the correct depth and the solvent volume is the same for all samples, the shim values for a sample will be fairly reproducible. Thus, shimming time can be greatly reduced if a good shim setting is stored as a shim file on the computer. When necessary, the shim file can be read in and then final adjustments can be made to these shim values to correct for system drifts, and to account for the geometry of the particular sample being used.
The shim system consists of a number of shim coils arranged in the room temperature bore of the magnet. During shimming, the currents in these shim coils are adjusted so that the small magnetic field gradients produced cancel the residual inhomogeneity of the main magnetic field (HO) as completely as possible.

The Fourier shim system has 20 room temperature shims:
6 on-axis shims ($Z, Z^{2}, Z^{3}, Z^{4}, Z^{5}, Z^{6}$)
14 off-axis shims $\left(X, X Z, X Z^{2}, Y, Y Z, Y Z^{2}, X Y, X Y Z, X^{2}-Y^{2},\left(X^{2}-Y^{2}\right) Z, X^{3}, X Z^{3}, Y^{3}, Y Z^{3}\right)$

4.6.1 Shimming using Gradshim

In gradient shimming (gradshim) pulse field gradients are used to automatically shim the on-axis shims (preferably with sample rotation). This feature can be used in automation as well as in manual mode within Topspin (Acquire -> Shim) and takes only a few minutes. It can be done with any deuterated solvent as long as a single strong signal is present in the sample and as long as the sample is locked. The gradient shimming feature will be set up with the initial setup of the spectrometer.

4.6.2 Shimming on the Lock Signal

When the spectrometer is locked, the vertical offset of the lock trace on the graphics display corresponds to the amplitude of the lock substance signal, assuming constant lock DC, gain, correct phase and power levels. The lock level, then, serves as useful guide for basic shim adjustment. The goal in shimming on the lock signal is to adjust the shims so that the lock trace appears as high on the graphics display as possible. This lock level corresponds to the highest possible lock substance signal amplitude.

4.6.3 Shimming on the FID (Free Induction Decay)

The shape of the FID, and especially the beginning of the FID, indicates the shape of the transformed signal line, while the length of the FID tail is important to the overall resolution. For good line shape and high resolution, the shim controls must be adjusted so that the FID envelope is truly exponential with the longest possible decay time.

4.7 Optimizing Resolution and Lineshape

The standard sample for measuring the proton lineshape and resolution specifications is, 3% CHCL3 in Acetone-d6.
For measuring the 13C resolution and lineshape test the standard sample ASTM (60\% Dioxane in 40\% C6D6) sample may be used.

For both tests the line shape is measured at $50 \%, 055 \%$ and 0.11% of the peak. The Bruker standard parameter sets to use for this tests are PRORESOL and C13RESOL.
The figures below are illustrating the influence of the On-axis shims on the lineshape.

Spectram Before Agjatment

4.8 Observations

5 1-D Proton Experiment

5.1 Sample

30mg Menthyl Anthranilate in DMSO-d6

5.2 1-D Proton Experiment

5.2.1 Introduction

Section 5.2 describes the acquisition and processing of a one-dimensional 1H NMR spectrum using the standard Bruker parameter set PROTON. The pulse sequence zg30, showing in the figure below, consists of the recycling delay, the radio-frequency (RF) pulse, and the acquisition time during which the signal is recorded. The pulse angle is shown to be 30°. The two parameters, D1 and P1, correspond to the length of the relaxation delay, and the length of the $30^{\circ} \mathrm{RF}$ pulse, respectively.

The time intervals depicted in the pulse sequence diagrams are not drawn to scale. For example, d 1 is typically a few seconds while p 1 is typically a few microseconds in length.

5.2.2 Experiment Setup

1. Click on the 'Start' tab in the TopSpin Menu bar.

Start	Acquire Process Analyse Publish View Manage (2)
	\square Create Dataset

2. Select Create Dataset by clicking on it.
3. Enter the following information in to the 'New' window.

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click on the down arrow button to browse for a specific directory.
4. Click on OK .
5. Click on the 'Acquire' tab in the TopSpin menu bar.

7. Select 'ej’ by clicking on it.

Wait till the sample lift air is turned on and remove any sample which may have been in the magnet.
8. Place the sample on to the top of the magnet.
9. Select

Sample ∇ by clicking on it.

Turn on sample lift air (ej)
Turn off sample lift air (ij)
Control sample temperature (edte)

10. Select 'ij’ by clicking on it.

Wait till the sample is lowered down in to the probe and the lift air is turned off. A clicking sound may be heard.
11. Select Lock by clicking on it.

12. Select 'DMSO' by clicking on it.
13. Select dosin ∇ by clicking on it.

Turn sample rotation on (ro on)
Turn sample rotation off (ro off)
Change sample rotation rate (ro)
MAS Pneumatic Unit (masdisp)

14. Select 'ro on' by clicking on it.
15. Select ξ_{1}^{2} Shim ∇ by clicking on it.
16. Select fly Prosol by clicking on it.

NOTE: This will load the pulse width and power levels in to the parameter set.

5.2.3 Acquisition

1. Select $\overline{\mathrm{m}}$ Gain ∇ by clicking on it.
2. Select \triangle Go ∇ by clicking on it.

The experiment will take ~ 2 Minutes, using the default number of 16 scans.

5.2.4 Processing

1. Click on the 'Process' tab in the TopSpin Menu bar.

2. Click on Λ Proc. Spectrum ∇

This executes a processing program including commands such as an exponential window function 'em', Fourier transformation 'ft', an automatic phase correction 'apk' and a baseline correction 'abs'. Other options are available by clicking on the down arrow inside the 'Proc. Spectrum' button.

3. Expand the spectrum to include all peaks.

4. Click on \int Integrate ∇

This enters the manual Integration mode. Other options are available by clicking on the down arrow inside the 'Integrate' button.
5. Set the cursor line, starting at the left of the spectrum, to the left of the first peak to be integrated, click the left mouse button and drag the cursor line to the right of the peak, then release the mouse button.

6. Repeat step 5 for the remainder of the peaks.

7. Click on ${ }_{\square}^{\text {I }}$ to save the integration regions.

5.2.5 Plotting

1. Expand the spectrum (all peaks in display).
2. Click on ppn .
3. Type the following F1 [ppm] values:

From $=8.2$
To $=0.2$

exactzoom Please enter the exact coordinates of the desired expansion. From To
8.2 F1 [ppm] OK Cancel

4. Click on \square
5. Click on the 'Publish' tab in the TopSpin Menu bar.

[3)	Start	Acquire	Process	Analyse	Publish		View	Manage (3)	
			C	B Pri		进 P	Layout	4 PDF	E-Mail

6. Click on

HILD Layout ∇

If desired, any changes can be administered by using the tools on the left side of the display.
7. Click on \square in the Print section on the left side of the display.

Print....
Set target printer...
Multi-print...
Page setup ...
Split page setting...

8. Select 'Print' by clicking in it.

5.3 Observations

6 2-D Homonuclear Experiments

6.1 Sample

A sample of $\mathbf{3 0} \mathbf{m g}$ Menthyl Anthranilate in DMSO-d6 is used for all experiments in this chapter.

6.2 2-D Gradient COSY Experiment

6.2.1 Introduction

The COSY experiment relies on the J-coupling to provide spin-spin correlation, and whose cross peaks indicate which 1H's are close to which other 1H's through the bonds of the molecule. Typically proton which are up 3 bonds away can be observed.

The signals acquired with one of these experiments have absorptive and dispersive line shape contributions in both F1 and F2 dimensions. This means that it is impossible to phase the spectrum with all peaks purely absorptive, and, as a consequence, the spectrum must be displayed in magnitude mode. A typical spectral resolution of $3 \mathrm{~Hz} / \mathrm{pt}$ is sufficient for resolving large scalar couplings. In order to resolve small J-couplings fine digital resolution is required, which significantly increases the experimental time. In general, the DQF-COSY experiment is recommended if a higher resolution is desired.

Using pulsed field gradients (PFG), the coherence pathway selection and the axial peak suppression can be achieved with only one scan per time increment. Thus, if enough substance is available, a typical gradient COSY experiment with 128 time increments can be recorded in 5 Minutes.

Section 6.2.3 describes the acquisition and processing of a two-dimensional 1 H gradient COSY. The standard Bruker parameter set is COSYGPSW and includes the pulse sequence cosygpqf shown in the figure below. It consists of the relaxation delay, two radio frequency (RF) pulses, separated by the increment delay D0 and the acquisition time during which the signal is recorded. Both pulses have a 90° angle. Two gradient pulses are applied before and after the second pulse in the sequence. Purge pulses are applied before d1.

The time intervals depicted in the pulse sequence diagrams are not drawn to scale. For example, d1 is typically a few seconds while p1 is typically a few microseconds in length.

6.2.2 Preparation Experiment

1. Run a 1D Proton spectrum, following the instructions in Chapter 5, 1-D Proton experiment, Paragraph 5.2.2 Experiment setup through 5.2.4 Processing.

6.2.3 Setting Up The 2-D COSY Experiment

1. Click on the 'Start' tab in the TopSpin Menu bar

4 Start Acquire Process Analyse Publish View Manage	
	\square Create Dataset Find Dataset \square Open Dataset Paste Dataset Read Pars.

2. Select Create Dataset by clicking on it
3. Enter the following information in to the 'New' window

New...				\underline{x}
Prepare for a new experiment by creating a new data set and initializing its NMR parameters according to the selected experiment type. For multi-receiver experiments several datasets are created. Please define the number of receivers in the Options.				
NAME	cosy_exp			
EXPNO	1			
PROCNO	1			
O Use current parameters				
- Experiment COSYGPSW			Select	
(1) Options				
V Set solvent:		DMSO		
- Execute "getprosol"				
O Keep parameters:		P1, O1, PLW 1 -	Change	
DIR		C.IData		\checkmark
\square Show new dataset in new window				
Receivers (1,2, ..16)		1		
$\begin{array}{l\|l} 2-\mathrm{DCOSY} \text { ex } \\ \text { TITLE } & \mathrm{mg} \text { Menth } \end{array}$	iment ntranilate	MSO d-6		
	OK	Cancel More	nfo...	Help

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click on the down arrow button to browse for a specific directory.
4. Click on \square OK
5. Click on the 'Acquire' tab in the TopSpin menu bar.

3)	Start	Acquire	Process	Analyse	Publish	View Man	(2)		
a	Sample -	带Lock	dib Spin ${ }^{-}$	Eit Shim ${ }_{\text {- }}$	${ }^{\text {W }}$ Prosol ${ }^{\text {P }}$	\square SetLimits	hn Gain -	- Gob	Options ∇

6. Select \square by clicking on it.

Turn sample rotation on (ro on)
Turn sample rotation off (ro off)
$\underline{\text { Change sample rotation rate (ro) }}$
MAS Pneumatic Unit (masdisp)

7. Select 'ro off' by clicking on it.

2-D experiments should always be run without rotation.
8. Select fiv Prosol by clicking on it.

This will load the pulse width and power levels in to the parameter set.
9. Select \square SetLimits by clicking on it.

10. To open the 1D Proton spectrum, right click on the dataset name in the browser window (e.g. proton_exp 1) and select 'Display' or click and hold the left mouse button for dragging the 1D Proton dataset in to the spectrum window.
11. Expand the spectrum to display all peaks, leaving ca. 0.2 ppm of baseline on either side of the spectrum.

12. Click on OK to assign the new limit.
6 setlimits

3 1 H spectral limits copied for F1 and F2 dimensions.
SW: 10.1664 ppm
O1P: 4.092 ppm
13. Click on

The display changes back to the 2-D data set.

2-D Homonuclear Experiments

6.2.4 Acquisition

1. Select $\overline{\mathrm{m}}$ Gain ∇ by clicking on it.
2. Select \triangle Go ∇ by clicking on it.

The experiment will take ~ 5 Minutes, using the default number of 1 scan and 128 increments.

6.2.5 Processing

1. Click on the 'Process' tab in the TopSpin Menu bar.

3)	Start	Acquire	Process	Analyse	Publish	Manage	(2)	
	roc	trum ∇	${ }_{*}^{*}$ Adjust Phase ${ }^{\text {a }}$		A) Calib. Axis $\overline{\text { a }}$	8^{8} Pick Peaks ∇	\int Integrate ∇	ance

2. Select Λ Proc. Spectrum ∇ by clicking on it.

This executes a standard processing program proc2. The message shown in the figure above, pops up in case of a magnitude 2D experiment and the apk2d option is enabled. To configure the processing program follow the steps below.
3. Click on the down arrow inside the Λ Proc. Spectrum ∇ button.

Configure Standard Processing (proc2d)
Process F2+F1 Axis (xfb)
Process Only F2 Axis (xf2)
Process Only F1 Axis (xf1)
Symmetrize Spectrum (sym)
Start Automation AU Program (xaup)

4. Select 'Configure Standard Processing' by clicking on it.

6.2.6 Plotting

1. Use the \square buttons to adjust for a suitable contour level.
2. Type .Is or click on 㖁 to save the contour levels to disk.
3. Click on the 'Publish' tab in the TopSpin Menu bar.

3	Start	Acquire	Process	Analyse	Publish	View	Manage	(3)
			Copy \Leftrightarrow Print ∇		Plot Layout ∇		PDF	E-9-Mail

4. Click on

If desired, any changes can be administered by using the tools on the left side of the display.
5. Click on \square in the Print section on the left side of the display.

Print...
Seț target printer...
Multi-print...
Page setup...
Split page setting...

6. Select 'Print' by clicking in it.

6.3 Observations

6.4 2-D Gradient NOESY Experiment

6.4.1 Introduction

NOESY (Nuclear Overhauser Effect SpectroscopY) is a 2D spectroscopy method used to identify spins undergoing cross-relaxation and to measure the cross-relaxation rates. Most commonly, NOESY is used as a homonuclear 1H technique. In NOESY, direct dipolar couplings provide the primary means of cross-relaxation, and so spins undergoing cross-relaxation are those which are close to one another in space. Thus, the cross peaks of a NOESY spectrum indicate which protons are close to each other in space. This can be distinguished from COSY, for example, which relies on J-coupling to provide spin-spin correlation, and whose cross peaks indicate which 1 H 's are close to which other 1H's through the bonds of the molecule.

The basic NOESY sequence consists of three p/2 pulses. The first pulse creates transverse spin magnetization. This precesses during the evolution time t1, which is incremented during the course of the 2D experiment. The second pulse produces longitudinal magnetization equal to the transverse magnetization component orthogonal to the pulse direction. Thus, the basic idea is to produce an initial situation for the mixing period d8. Note that, for the basic NOESY experiment, d8 is kept constant throughout the 2D experiment. The third pulse creates transverse magnetization from the remaining longitudinal magnetization. Acquisition begins immediately following the third pulse, and the transverse magnetization is observed as a function of the time t2. The NOESY spectrum is generated by a 2D Fourier transform with respect to t 1 and t 2 .

Axial peaks, which originate from magnetization that has relaxed during tm, can be suppressed using the appropriate phase cycling.
NOESY spectra can be obtained in 2D absorption mode. Occasionally, COSY-type artifacts appear in the NOESY spectrum; however, these are easy to identify by their anti-phase multiplet structure.

Section 6.4.3 describes the acquisition and processing of a two-dimensional 1 H phase sensitive NOESY. The standard Bruker parameter set is NOESYGPPHSW and includes the pulse sequence noesygpph shown in the figure below. It consists of the relaxation delay, three radio-frequency (RF) pulses, separated by the increment delay DO between the first and second pulse, a mixing time D8 between the second and third pulse and the acquisition time during which the signal is recorded. All three pulses are of 90°.

The time intervals depicted in the pulse sequence diagrams are not drawn to scale. For example, d1 is typically a few seconds while p1 is typically a few microseconds in length.

6.4.2 Preparation Experiment

1. Run a 1D Proton spectrum, following the instructions in Chapter 5, 1-D Proton experiment, Paragraph 5.2.2 Experiment setup through 5.2.4 Processing.

6.4.3 Setting Up The 2-D NOESY Experiment

1. Click on the 'Start' tab in the TopSpin Menu bar.

3 Start Acquire Process Analyse Publish View Manage	
	\square Create Dataset

2. Select \square Create Dataset by clicking on it.
3. Enter the following information in to the 'New' window.

\$ New...				\underline{x}
Prepare for a new experiment by creating a new data set and initializing its NMR parameters according to the selected experiment type. For multi-receiver experiments several datasets are created. Please define the number of receivers in the Options.				
NAME noesy exp				
EXPNO	1			
PROCNO	1			
O Use current parameters				
- Experiment NOESYGPPHSW			Select	
(a) Options				
V Set solvent:		DMSO -		
- Execute "getprosol"				
O Keep parameters:		P 1, O1, PLW 1 -	Change	
DIR		C:IData		\checkmark
\square Show new dataset in new window				
Receivers (1,2, ..16)		1		
2-D phase sens 30mg Menthyl TITLE	tive gradie stranilate in	NOESY experiment MSO-d6		
	OK	Cancel More	nfo...	Help

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click on the down arrow button to browse for a specific directory.
4. Click on \square
5. Click on the 'Acquire' tab in the TopSpin menu bar.

3)	Start	Acquire	Process	Analyse	Publish	View Man	(2)		
a	Sample -	带Lock	dib Spin ${ }^{-}$	Eit Shim ${ }_{\text {- }}$	${ }^{\text {W }}$ Prosol ${ }^{\text {P }}$	\square SetLimits	hn Gain -	- Gob	Options ∇

6. Select \square by clicking on it.

Turn sample rotation on (ro on)
Turn sample rotation off (ro off)
$\underline{\text { Change sample rotation rate (ro) }}$
MAS Pneumatic Unit (masdisp)

7. Select 'ro off' by clicking on it.

2-D experiments should always be run without rotation.
8. Select fiv Prosol by clicking on it.

This will load the pulse width and power levels in to the parameter set.
9. Select \square SetLimits by clicking on it.

10. To open the 1D Proton spectrum, right click on the dataset name in the browser window (e.g. proton_exp 1) and select 'Display' or click and hold the left mouse button for dragging the 1D Proton dataset in to the spectrum window.
11. Expand the spectrum to display all peaks, leaving ca. 0.2 ppm of baseline on either side of the spectrum.

12. Click on $O K$ to assign the new limit.

13. Click on

This will load the pulse width and power levels in to the parameter set.

N14. Select the 'AcquPars' tab by clicking on it.
15. Click on Ω to display the pulse program parameters.
16. Make the following change.
D8 [sec] $0.450 \quad$ Mixing time
17. Select the 'Spectrum' tab by clicking on it.

2-D Homonuclear Experiments

6.4.4 Acquisition

1. Select $\overline{\operatorname{m}}$ Gain ∇ by clicking on it.
2. Select \triangle Go ∇ by clicking on it.

The experiment will take ~ 50 Minutes, using the default number of 4 scans and 256 increments.

6.4.5 Processing

1. Click on the 'Process' tab in the TopSpin Menu bar.

2. Select Λ Proc. Spectrum ∇ by clicking on it.

This executes a standard processing program proc2. To configure this program or select other options, click on the down arrow inside the 'Proc. Spectrum' button.

6.4.6 Plotting

1. Use the \square buttons to adjust for a suitable contour level.
2. Type .Is or click on \square to save the contour levels to disk.
3. Click on the 'Publish' tab in the TopSpin Menu bar.

4. Click on W. Plot Layout ∇

If desired, any changes can be administered by using the tools on the left side of the display.
5. Click on \square in the Print section on the left side of the display.

Print...._s
Set target printer...
Multi-print...
Page setup...
Split page setting...

6. Select 'Print' by clicking in it.

6.5 Observations

6.6 2-D Phase Sensitive TOCSY Experiment

6.6.1 Introduction

TOCSY (TOtal Correlation SpectroscopY) provides a different mechanism of coherence transfer than COSY for 2D correlation spectroscopy in liquids. In TOCSY, cross peaks are generated between all members of a coupled spin network. An advantage is that pure absorption mode spectra with positive intensity peaks are created. In traditional COSY, cross peaks have zero integrated intensity and the coherence transfer is restricted to directly spincoupled nuclei. In TOCSY, oscillatory exchange is established which proceeds through the entire coupling network so that there can be net magnetization transfer from one spin to another even without direct coupling. The isotropic mixing which occurs during the spin-lock period of the TOCSY sequence exchanges all in-phase as well as antiphase coherence.
The coherence transfer period of the TOCSY sequence occurs during a multiple-pulse spin-lock period. The multiple-pulse spin-lock sequence most commonly used is MLEV17. The length of the spin-lock period determines how far the spin coupling network will be probed. A general rule of thumb is that $1 /(10 \mathrm{JHH})$ should be allowed for each transfer step, and five transfer steps are typically desired for the TOCSY spectrum.
Section 6.6.3 describes the acquisition and processing of a two-dimensional 1H phase sensitive TOCSY. The standard Bruker parameter set is MLEVPHSW and includes the pulse sequence mlevph shown in the figure below. It consists of the recycling delay, two radio-frequency (RF) pulses, separated by the increment delay D0 and the acquisition time during which the signal is recorded. The first RF pulse is a 90° pulse, the second pulse is the mlev spinlock pulse.

The time intervals depicted in the pulse sequence diagrams are not drawn to scale. For example, d 1 is typically a few seconds while p 1 is typically a few microseconds in length.

6.6.2 Preparation Experiment

1. Run a 1D Proton spectrum, following the instructions in Chapter 5, 1-D Proton experiment, Paragraph 5.2.2 Experiment setup through 5.2.4 Processing.

6.6.3 Setting Up The 2-D TOCSY Experiment

1. Click on the 'Start' tab in the TopSpin Menu bar.

2. Select \square Create Dataset by clicking on it.
3. Enter the following information in to the 'New' window.

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click on the down arrow button to browse for a specific directory.
4. Click on \square
5. Click on the 'Acquire' tab in the TopSpin menu bar.

3) Start	Acquire	Process	Analyse	Publish	View Manag	(3)		
W Sample ∇^{-1}	\# Lock	dis Spin ∇	$\xi_{i=1}^{2}$ Shim ${ }_{\text {- }}$	fi Prosol ∇	\square SetLimits	me Gain ∇	DGo	Options -

6. Select \square by clicking on it.

Turn sample rotation on (ro on)
Turn sample rotation off (ro off)
$\underline{\text { Change sample rotation rate (ro) }}$
MAS Pneumatic Unit (masdisp)

7. Select 'ro off' by clicking on it.

2-D experiments should always be run without rotation.
8. Select fly Prosol by clicking on it.

This will load the pulse width and power levels in to the parameter set.
9. Select \square SetLimits by clicking on it.

10. To open the 1D Proton spectrum, right click on the dataset name in the browser window (e.g. proton_exp 1) and select 'Display' or click and hold the left mouse button for dragging the 1D Proton dataset in to the spectrum window.
11. Expand the spectrum to display all peaks, leaving ca. $\mathbf{0 . 2} \mathbf{~ p p m}$ of baseline on either side of the spectrum.

The solvent peak may be excluded if it falls outside of the region of interest. Digital filtering however is only applied in F2 and the solvent peak is folding in F1.

12. Click on OK to assign the new limit.

13. Click on

The display changes back to the 2D data set.
14. Select the 'AcquPars' tab by clicking on it.
15. Make the following change:

$$
\begin{aligned}
& \text { NS = } 8 \\
& \text { TD }(\text { F1) }=128
\end{aligned}
$$

16. Select the 'Spectrum' tab by clicking on it.

6.6.4 Acquisition

1. Select $\overline{\operatorname{lm}}$ Gain ∇ by clicking on it.
2. Select $\triangle \mathrm{Go}_{\nabla}$ by clicking on it.

- The experiment will take ~ 42 Minutes, using 8 scans and 128 increments.

6.6.5 Processing

1. Click on the 'Process' tab in the TopSpin Menu bar.

This executes a standard processing program proc2. To configure this program or select other options, click on the down arrow inside the 'Proc. Spectrum' button.

2-D Homonuclear Experiments

6.6.6 Plotting

1. Use the \square buttons to adjust for a suitable contour level.
2. Type .Is or click on \square to save the contour levels to disk.
3. Click on the 'Publish' tab in the TopSpin Menu bar.

4. Click on La^{2} Plot Layout ∇
5. Select the 'Plot' tab by clicking on it.

If desired, any changes can be administered by using the tools on the left side of the display.
6. Click on \square in the Print section on the left side of the display.

Print...
Seț target printer...
Multi-print...
Page setup...
Split page setting...

7. Select 'Print' by clicking in it.

6.7 Observations

7 1-D Carbon Experiments

7.1 Sample

A sample of $\mathbf{3 0} \mathbf{m g}$ Menthyl Anthranilate in DMSO-d6 is used for the experiments in this chapter

7.2 1-D Carbon Experiment

7.2.1 Introduction

Section 7.2.2 describes the acquisition and processing of a one-dimensional 13C NMR spectrum. The standard Bruker parameter set C13CPD, includes the pulse sequence zgpg30, shown in the figure below. The 13C channel consists of the relaxation delay, an RF pulse, and the acquisition time during which the signal is recorded. The pulse angle is shown to be 30°. The two parameters, D1 and P1, correspond to the length of the relaxation delay, and the length of the $90^{\circ} \mathrm{RF}$ pulse, respectively. The 1 H channel consists of two decoupling pulses which can be power gated. The first pulse, an NOE build up pulse during the relaxation delay may be of lower power then the second pulse during the acquisition which is the true decoupling pulse. This can be useful to avoid RF heating on salty samples or probes where a higher decoupling power can be problematic.

The time intervals depicted in the pulse sequence diagrams are not drawn to scale. For example, d 1 is typically a few seconds while p1 is typically a few microseconds in length.

7.2.2 Experiment Set Up

1. Click on the 'Start' tab in the TopSpin Menu bar.

2)	Start	Acquire	Process	Analyse	Publish	View	(2)		
		\square Create Dataset		2 Find Dataset		Datas	\square Paste Dataset	呵 Read Pars.	

2. Select \square Create Dataset by clicking on it.
3. Enter the following information in to the 'New' window.

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click on the down arrow button to browse for a specific directory.
4. Click on \square
5. Select the 'AcquPars' tab by clicking on it.
6. Make the following change.

$$
N S=128
$$

7. Click on the 'Acquire' tab in the TopSpin menu bar.

8. Select Sample ∇ by clicking on it.
```
Insert Sample (ij)
```

Eject Sample (ej)
9. Select 'ej’ by clicking on it.

Wait till the sample lift air is turned on and remove any sample which may have been in the magnet.
10. Place the sample on to the top of the bore tube.
11. Select Sample ∇ by clicking on it.

Insert Sample (ij)
Eject Sample (ej)
12. Select 'ij’ by clicking on it.

Wait till the sample is lowered down in to the probe and the lift air is turned off. A clicking sound may be heard.
13. Select Lock by clicking on it.

Solvents table	
S Solvent	Description
Acetone	acetone-d6
C6D6	benzene-d6
C6D6+Dioxane	ASTM Sample
CDCI3	chloroform-d
D2O	deuteriumoxide
DMSO	dimethylsulfoxide-d6
EtOD	ethanol-d6
H2O+D2O	90\%H2O and 10\%D2O
MeOD	toluene-d8
Tol	OK

14. Select 'DMSO' by clicking on it.
15. Select d Spin ∇ by clicking on it.

Turn sample rotation on (ro on)
Turn sample rotation off (ro off)
Change sample rotation rate (ro)
$\underline{\text { MAS Pneumatic Unit (masdisp) }}$

16. Select 'ro on' by clicking on it.
17. Select ξ_{1}^{2} Shim ∇ by clicking on it.
18. Select fly Prosol by clicking on it.

This will load the pulse width and power levels in to the parameter set.

7.2.3 Acquisition

1. Select \sqrt{m} Gain ∇ by clicking on it.
2. Select \triangle Go ∇ by clicking on it.

The experiment will take ~ 7 Minutes, using 128 scans.

7.2.4 Processing

1. Click on the 'Process' tab in the TopSpin Menu bar.

\%	Start Acquire	Process	Analyse	Publish	View Manage	(1)	
	Λ Proc. Spectrum ${ }^{\text {b }}$	${ }_{*}$ Adjust Phase ${ }^{\text {- }}$		A Calib. Axis ® $^{\text {A }}$	sig^{3} Pick Peaks ∇	\int Integrate ${ }^{\text {P }}$	Advanced ${ }^{\text {P }}$

2. Select Λ Proc. Spectrum ∇ by clicking on it.

This executes a processing program including commands such as an exponential window function 'em', Fourier transformation 'ft', an automatic phase correction 'apk' and a baseline correction 'abs'. Other options are available by clicking on the down arrow inside the 'Proc. Spectrum' button.
3. Expand the spectrum to include all peaks.

4. Select $\nabla^{\sqrt{3} \sqrt{3}}$ Pick Peaks ∇ by clicking on it.
5. Click the left mouse button and drag the cursor line from left to the right side of the spectrum.

6. Click on $\underset{\underset{\sim}{m}}{ }$ to manually adjust the minimum and maximum intensity levels.
7. Click on the bottom line of the region box with the left mouse button and drag the line above the noise level, to set the minimum peak picking level.
8. Click on the top line of the region box with the left mouse button and drag the line below unwanted peaks e.g. solvent peaks, to set the maximum peak picking level.

9. Click on to store the peak picking values.

To display the peak picking labels, right click inside the spectrum window and select 'Spectra Display Preferences' by clicking on it. In the 'Spectrum components' enable 'Peak labels' and 'Peak annotations'. Click 'Apply' and click on 'Close'.

7.2.5 Plotting

1. Expand the spectrum (all peaks in display).
2. Click on

3. Type the following F1 [ppm] values:

$$
\text { From = } 180
$$

$$
\mathrm{To}=0
$$

4. Click on OK
5. Click on the 'Publish' tab in the TopSpin Menu bar.

3	Start	Acquire	Process	Analyse	Publish	View	Manage	(3)
			Copy	\& Print	HPI	Layout ${ }^{\text {- }}$	\# PDF ∇°	-9-Mail

6. Click on \square

If desired, any changes can be administered by using the tools on the left side of the display.
7. Click on \square in the Print section on the left side of the display.

Print....
Setr target printer...
Multi-print...
Page setup...
Split page setting...

8. Select 'Print' by clicking in it.

7.3 Observations

7.4 DEPT-135 Experiment

7.4.1 Introduction

DEPT (Distortion less Enhancement by Polarization Transfer) is a polarization transfer technique used for the observation of nuclei with a small gyro magnetic ratio, which are J-coupled to 1 H (most commonly 13C). DEPT is a spectral editing sequence, that is, it can be used to generate separate 13C sub spectra for methyl (CH 3), methylene $(\mathrm{CH} 2)$, and methine (CH) signals. DEPT makes use of the generation and manipulation of multiple quantum coherence to differentiate between the different types of 13C signals. Quaternary carbons are missing a direct bond proton, and as a result are absent from all DEPT spectra.

Section 7.4.2 describes the acquisition and processing of a one-dimensional 13CDEPT135 NMR spectrum. The standard Bruker parameter set C13DEPT135, includes the pulse sequence dept135, shown in the figure below. The 13C channel consists of the relaxation delay, a 90 degree RF pulse, an editing delay D2 followed by an 180 degree RF pulse and the acquisition time during which the signal is recorded. The editing delay D2 is $1 / 2^{\star} \mathrm{J}(\mathrm{XH})$. The 1 H channel consists of three pulses, a 90°, a 180°, followed by a 135° RF pulse and are separated by the editing delay D2. The final 135° 1 H pulse selects the $\mathrm{CH} 3, \mathrm{CH} 2$ or CH signals. The protons are decoupled during the acquisition period.

The time intervals depicted in the pulse sequence diagrams are not drawn to scale. For example, d1 is typically a few seconds while p1 is typically a few microseconds in length.

7.4.2 Experiment Set Up

This experiment usually follows a regular Proton decoupled Carbon experiment. The result of a DEPT-135 experiment shows only the protonated carbons with the CH and CH 3 as positive and the CH 2 as negative signals.

1. Click on the 'Start' tab in the TopSpin Menu bar.

4 Start Acquire Process Analyse Publish View Manage (2)	
	\square Create Dataset Find Dataset \square Open Dataset Paste Dataset Read Pars.

2. Select Create Dataset by clicking on it.
3. Enter the following information in to the 'New' window.

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click on the down arrow button to browse for a specific directory.
4. Click on OK
5. Select the 'AcquPars' tab by clicking on it.
6. Make the following change.

$$
N S=64
$$

7. Click on the 'Acquire' tab in the TopSpin menu bar.

8. Select f'U Prosol by clicking on it.

This will load the pulse width and power levels in to the parameter set.

7.4.3 Acquisition

1. Select \bar{m} Gain ∇ by clicking on it.
2. Select
 Go ∇ by clicking on it. The experiment will take ~ 4 Minutes, using 64 scans.

7.4.4 Processing

1. Click on the 'Process' tab in the TopSpin Menu bar.

2. Select Ω Proc. Spectrum ∇ by clicking on it.

This executes a processing program including commands such as an exponential window function 'em', Fourier transformation 'ft', an automatic phase correction 'apk' and a baseline correction 'abs'. Other options are available by clicking on the down arrow inside the 'Proc. Spectrum' button. Due to the fact that a DEPT135 spectrum contains negative and positive peaks, there is the possibility of getting phase results that are 180 degrees off. In this case, click on the 'Adjust Phase' button to enter the manual phase routine and reverse the spectrum by clicking on the ' 180 ' icon.

7.4.5 Plotting

1. Expand the spectrum (all peaks in display).
2. Click on Ppm .
3. Type the following F1 [ppm] values:

$$
\text { From = } 180
$$

To = 0

4. Click on OK
5. Click on the 'Publish' tab in the TopSpin Menu bar.

3	Start	Acquire	Process	Analyse	Publish	View	Manage	(2)
			- ${ }^{\text {c }}$	\Leftrightarrow Pr	幽P	Layout ∇	${ }_{4}$ PDF ∇°	-4 E-Mail

6. Click on แ. Plot Layout ∇

If desired, any changes can be administered by using the tools on the left side of the display.
7. Click on \square in the Print section on the left side of the display.

Print....
Set target printer...
Multi-print...
Page setup ...
Split page setting...

8. Select 'Print' by clicking in it.

7.5 Observations

7.6 DEPT-90 Experiment

7.6.1 Introduction

Section 7.6.2 describes the acquisition and processing of a one-dimensional 13CDEPT90 NMR spectrum. The standard Bruker parameter set C13DEPT90, includes the pulse sequence dept90, shown in the figure 7below. The 13C channel consists of the relaxation delay, a $90^{\circ} \mathrm{RF}$ pulse, an editing delay D2 followed by a $180^{\circ} \mathrm{RF}$ pulse and the acquisition time during which the signal is recorded. The editing delay D2 is $1 / 2^{*} \mathrm{~J}(\mathrm{XH})$. The 1 H channel consists of three pulses, a 90 degree, a 180 degree, followed by a 90° RF pulse and are separated by the editing delay D 2 . The final $90^{\circ} 1 \mathrm{H}$ pulse selects the CH signals only. The protons are decoupled during the acquisition period.

The time intervals depicted in the pulse sequence diagrams are not drawn to scale. For example, d1 is typically a few seconds while p1 is typically a few microseconds in length.

7.6.2 Experiment Set Up

The DEPT90 experiment usually follows a regular 1H decoupled 13C experiment and a DEPT-135 experiment. It is used to assign the methine (CH) signals.

1. Click on the 'Start' tab in the TopSpin Menu bar.

2. Select \square Create Dataset by clicking on it.
3. Enter the following information in to the 'New' window.

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click on the down arrow button to browse for a specific directory.
4. Click on \square
5. Select the 'AcquPars' tab by clicking on it.
6. Make the following change:

$$
N S=64
$$

7.Click on the 'Acquire' tab in the TopSpin menu bar:

```
[3) Start Acquire Process Analyse Publish View Manage (2)
```


8. Select fly Prosol by clicking on it.

7.6.3 Acquisition

1. Select \bar{m} Gain ∇ by clicking on it.
2. Select $\triangle \mathrm{Go}_{\nabla}$ by clicking on it.

The experiment will take ~ 4 minutes, using 64 scans.

7.6.4 Processing

1. Click on the 'Process' tab in the TopSpin Menu bar.

)	Start	Acquire	Process	Analyse	Publish	View	Manage			
Proc. Spectrum $\nabla^{\text {b }}$			${ }_{\wedge}$ / Adjust Phase ${ }_{\text {- }}$					Integrate ∇^{-}		Advanced ∇

2. Select Λ Proc. Spectrum ∇ by clicking on it.

This executes a processing program including commands such as an exponential window function 'em', Fourier transformation 'ft', an automatic phase correction 'apk' and a baseline correction 'abs'. Other options are available by clicking on the down arrow inside the 'Proc. Spectrum' button.

7.6.5 Plotting

1. Expand the spectrum (all peaks in display).
2. Click on Ppm .
3. Type the following F1 [ppm] values:

$$
\text { From }=180
$$

$$
\text { To = } 0
$$

4. Click on \square
5. Click on the 'Publish' tab in the TopSpin Menu bar.

3	Start	Acquire	Process	Analyse	Publish	View	Manage	E-Mail
			Copy Print ∇		Plot Layout ∇		PDF ∇	

6. Click onPlot Layout ∇

If desired, any changes can be administered by using the tools on the left side of the display.
7. Click on \square in the Print section on the left side of the display.

Print....
Set target printer...
Multi-print...
Page setup ...
Split page setting...

8. Select 'Print' by clicking in it.

7.7 Observations

8 2-D Heteronuclear Experiments

8.1 Sample

A sample of $\mathbf{3 0} \mathbf{m g}$ Menthyl Anthranilate in DMSO-d6 is used for all experiments in this chapter.

8.2 2-D HSQC Experiment

8.2.1 Introduction

The ge-2D HSQC experiment is the gradient-enhanced version of the conventional HSQC experiment in which coherence selection is achieved by means of PFG. Thus, clean 2D HSQC spectra can be recorded in a single scan per t_{1} increment without need for phase cycle when sample concentration is high. Other advantages are the optimal dynamic range, improved water and artefact suppression, and reduced t_{1} noise in the minimally required experiment time. The HSQC experiment allows to trace out directly bonded ${ }^{1} \mathrm{H}-\mathrm{X}$ pairs via the large ${ }^{1} \mathrm{~J}_{\mathrm{HX}}$ coupling constant. The sequence is shown in the figure below.

The time intervals depicted in the pulse sequence diagrams are not drawn to scale. For example, d1 is typically a few seconds while p1 is typically a few microseconds in length.

8.2.2 Preparation Experiment

1. Run a 1D Proton spectrum, following the instructions in Chapter 5, 1-D Proton experiment, Paragraph 5.2.2 Experiment setup through 5.2.4 Processing.

8.2.3 Setting Up The 2-D HSQC Experiment

1. Click on the 'Start' tab in the TopSpin Menu bar.

3 Start Acquire Process Analyse Publish View Manage	
	\square Create Dataset

2. Select \square Create Dataset by clicking on it.
3. Enter the following information in to the 'New' window.

\$ New...				\underline{x}
Prepare for a new experiment by creating a new data set and initializing its NMR parameters according to the selected experiment type. For multi-receiver experiments several datasets are created. Please define the number of receivers in the Options.				
NAME nverse_exp				
EXPNO	1			
PROCNO	1			
O Use current parameters				
- Experiment HSQCGPPH			Select	
(a) Options				
V Set solvent:		DMSO -		
- Execute "getprosol"				
O Keep parameters:		P1, O1, PLW 1 -	Change	
DIR		C:IData		\checkmark
\square Show new dataset in new window				
Receivers (1,2, ..16)		1		
2-D gradient 30mg Menth TITLE	QC experim thranilate	DMSO-d6		
	OK	Cancel More	nfo...	Help

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click on the down arrow button to browse for a specific directory.
4. Click on \square
5. Click on the 'Acquire' tab in the TopSpin menu bar.

13) Start	Acquire	Process	Analyse	Publish V	View Manag	ge 3		
- Sample $\nabla^{\text {a }}$	\# Lock	d Spin ∇	E_{i}^{2} Shim ${ }_{\text {- }}$	${ }^{\text {fl }}$ Prosol ${ }^{\text {a }}$	DSetLimits	m Gain -	DGop	Options ∇

6. Select \square by clicking on it.

Turn sample rotation on (ro on)
Turn sample rotation off (ro off)
Change sample rotation rate (ro)
MAS Pneumatic Unit (masdisp)

7. Select 'ro off' by clicking on it.

2-D experiments should always be run without rotation.
8. Select f'U Prosol by clicking on it.

This will load the pulse width and power levels in to the parameter set.
9. Select \square SetLimits by clicking on it.

10. To open the 1D Proton spectrum, right click on the dataset name in the browser window (e.g. Inverse_exp 1) and select 'Display' or click and hold the left mouse button for dragging the 1D Proton dataset in to the spectrum window.
11. Expand the spectrum to display all peaks, leaving ca. 0.2 ppm of baseline on either side of the spectrum.

12. Click on OK to assign the new limit.

13. Click on

Close

The display changes back to the 2D data set. The parameter set HSQCGPPH has a fixed F1 sweep width of 165 ppm and it is big enough to cover the protonated resonances for a broad range of samples. If desired, changes to the F1 sweep width can be done by using the 'Set_limits' button for a second time. In this case a 1-D C13DEPT45 or C13DEPT135 experiment on the same sample has to be observed. As an example to set the F1 limit, follow the steps below.
14. Select \square SetLimits by clicking on it.

15. To open the 1D C13DEPT spectrum, right click on the dataset name in the browser window (e.g. Carbon_exp 2) and select 'Display' or click and hold the left mouse button for dragging the 1D C13DEPT dataset in to the spectrum window.
16. Expand the spectrum to display all peaks, leaving ca. 2 ppm of baseline on either side of the spectrum.

17. Click on $O K$ to assign the new limit.

18. Click on Close

8.2.4 Acquisition

1. Select
 by clicking on it.
2. Select \square by clicking on it.

The experiment will take ~ 15 Minutes, using the default number of 2 scans and 256 increments.

8.2.5 Processing

1. Click on the 'Process' tab in the TopSpin Menu bar.

2. Select Λ Proc. Spectrum ∇ by clicking on it.

This executes a standard processing program proc2. To configure this program or select the right options, click on the down arrow inside the 'Proc. Spectrum' button. Since this is a phase sensitive experiment the phase correction apk2d has to be enabled.

8.2.6 Plotting

1. Click on the 'Publish' tab in the TopSpin Menu bar.

[3)	Start	Acquire	Process	Analyse	Publish	View	Manage	(2)
			Cop	EPrint ∇	Plot Layout ∇		${ }_{3}^{3} \mathrm{PDF}$ -	E4 E-Mail

2. Click on Print ∇ to print the screen view.

The F1 projection by default does not appear if the plot editor (XWINPLOT) is used to plot the spectrum. To add the F1 projection one has to create a new template.

8.3 Observations

8.4 2-D HMBC Experiment

8.4.1 Introduction

HMBC (Heteronuclear Multiple Bond Correlation) spectroscopy is a modified version of HMQC suitable for determining long-range $1 \mathrm{H}-13 \mathrm{C}$ connectivity. Since it is a long-range chemical shift correlation experiment the pulse program contains a low pass filter to suppress the one bond correlation and is a gradient-selected version which is not phasesensitive. The experiment is performed without 13C decoupling to distinguish signals coming from the one bond coupling. The standard Bruker parameter set HMBCGP is used. The graphical display of the pulse program hmbcgplpndqf is shown in the figure below.

The time intervals depicted in the pulse sequence diagrams are not drawn to scale. For example, d 1 is typically a few seconds while p 1 is typically a few microseconds in length.

8.4.2 Preparation Experiment

1. Run a 1D Proton spectrum, following the instructions in Chapter 5, 1-D Proton experiment, Paragraph 5.2.2 Experiment setup through 5.2.4 Processing.

8.4.3 Setting Up The 2-D HMBC Experiment

1. Click on the 'Start' tab in the TopSpin Menu bar.

Start	Acquire Process Analyse Publish View Manage (3)
	\square Create Dataset

2. Select Create Dataset by clicking on it.
3. Enter the following information in to the 'New' window.

\$ New...				x
Prepare for a new experiment by creating a new data set and initializing its NMR parameters according to the selected experiment type. For multi-receiver experiments several datasets are created. Please define the number of receivers in the Options.				
NAME	inverse_exp			
EXPNO	2			
PROCNO	1			
O Use current parameters				
- Experiment HMBCGP			Select	
(a) Options				
V Set solvent:		DMSO -		
- Execute "getprosol"				
O Keep parameters:		P1, O1, PLW 1 - Change		
DIR		C:IData		\checkmark
\square Show new dataset in new window				
Receivers (1,2, ..16)		1		
TITLE2-D gradient 30mg Menth	BC experim nthranilate	DMSO-d6		
	OK	Cancel More	fo...	Help

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click on the down arrow button to browse for a specific directory.
4. Click on \square
5. Click on the 'Acquire' tab in the TopSpin menu bar.

6. Select \square by clicking on it.

Turn sample rotation on (ro on)
Turn sample rotation off (ro off)
Change sample rotation rate (ro)
MAS Pneumatic Unit (masdisp)

7. Select 'ro off' by clicking on it.

2-D experiments should always be run without rotation.
8. Select fly Prosol by clicking on it.

This will load the pulse width and power levels in to the parameter set.
9. Select \square SetLimits by clicking on it.

10. To open the 1D Proton spectrum, right click on the dataset name in the browser window (e.g. Inverse_exp 1) and select 'Display’ or click and hold the left mouse button for dragging the 1D Proton dataset in to the spectrum window.
11. Expand the spectrum to display all peaks, leaving ca. $\mathbf{0 . 2} \mathbf{~ p p m}$ of baseline on either side of the spectrum.

12. Click on OK to assign the new limit.

13. Click on

Close

The display changes back to the 2D data set. The parameter set HMBCGP has a fixed F1 sweep width of 222 ppm and it is big enough to cover all Carbon resonances for a broad range of samples. If desired, changes to the F1 sweep width can be done by using the 'Set_limits' button for a second time. In this case a 1-D C13CPD experiment on the same sample has to be observed. As an example to set the F1 limit, follow the steps below.
14. Select
 SetLLimits by clicking on it.

15. To open the 1D C13DEPT spectrum, right click on the dataset name in the browser window (e.g. Carbon_exp 1) and select 'Display' or click and hold the left mouse button for dragging the 1D C13DEPT dataset in to the spectrum window.
16. Expand the spectrum to display all peaks, leaving ca. 2 ppm of baseline on either side of the spectrum.

17. Click on $O K$ to assign the new limit.

2-D Heteronuclear Experiments

18. Click on Close

8.4.4 Acquisition

1. Select $\overline{\operatorname{lm}}$ Gain ∇ by clicking on it.
2. Select \square by clicking on it.

The experiment will take ~ 17 Minutes, using the default number of 4 scans and 128 increments.

8.4.5 Processing

1. Click on the 'Process' tab in the TopSpin Menu bar.

3	Start	Acquire	Process	Analyse	Publish	View	Manage			
	Proc.	ectrum ${ }^{\text {- }}$	\% Adjus	se	Calib. Ax		k Peaks \quad -		Integrate ∇^{-}	Advanced ∇

2. Select Λ Proc. Spectrum ∇ by clicking on it.

This executes a standard processing program proc2. The message shown in the figure above, pops up in case of a magnitude 2D experiment and the apk2d option is enabled. To configure the processing program follow the steps below.
3. Click on the down arrow inside the \qquad Proc. Spectrum ∇ button.

Configure Standard Processing (proc2d)
Process F2+F1 Axis (xfb)
Process Only F2 Axis (xf2)
Process Only F1 Axis (xf1)
Symmetrize Spectrum (sym)
Start Automation AU Program (xaup)

4. Select 'Configure Standard Processing' by clicking on it.

proc2d	
Press 'Execute' to process the current dataset.	
Press 'Save' to just change the processing options.	
Changed options will be effective when pressing the	
one-click 'Proc. Spectrum' button.	\square
Fourier Transform (xfb) \square Auto - Phasing (apk2d) \square LAYOUT $=$ +/2D_inv.xwp Auto - Baseline Correction [F2] (abs2) ∇ Auto - Baseline Correction [F1] (abs1) ∇ Plot (autoplot) \square Save Warn if processed data exist ∇	

8.4.6 Plotting

1. Click on the 'Publish' tab in the TopSpin Menu bar.

3	Start	Acquire	Process	Analyse	Publish	View	Manage	(3)
			(1) Copy Print ∇		Plot Layout		PDF ∇	-4. E-Mail

2. Click on \square to print the screen view.

The F1 projection by default does not appear if the plot editor (XWINPLOT) is used to plot the spectrum. To add the F1 projection one has to create a new template.

8.5 Observations

9 Determination Of 90 Degree Pulses

9.1 Introduction

This chapter describes pulse calibration procedures for 1 H and 13C. It is assumed that the user is already familiar with acquisition and processing of simple 1D NMR spectra. Chapter 5, 1-D Proton experiment and Chapter 7, 1-D Carbon experiments.

This chapter is intended as a guide for calibrating the 90° pulse of a probe or verifying the values observed by the engineer installing the instrument.

9.2 Proton 90 Degree Transmitter Pulse

Standard Test Sample:
0.1\% Ethylbenzene in CDCl 3

9.2.1 Parameter Setup

1. Click on the 'Start' tab in the TopSpin Menu bar.

3)	Start	Acquire	Process	Analyse	Publish	View	Manage	(3)			
		Create Dataset		Find Dataset	5 Open Dataset		\square Paste Dataset		輱 Read Pars.		

2. Select Create Dataset by clicking on it.
3. Enter the following information in to the 'New' window.

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click on the down arrow button to browse for a specific directory.
4. Click on OK
5. Run a 1D Proton spectrum, following the instructions in Chapter 5, 1-D Proton experiment, Paragraph 5.2.2 Experiment setup, step 5 through 5.2.4 Processing using CDCl 3 as a lock solvent.

6. Expand peak at $2.7 \mathbf{p p m}$.
7. Click on \downarrow to set the RF from cursor.

8. Move the cursor line in to the center of the multiplet.
9. Click the left mouse button to set the frequency.

10. Click on 01
11. Select the 'AcquPars' tab by clicking on it.
12. Make the following changes:

$$
\begin{aligned}
& \text { PULPROG }=\text { zg } \\
& \text { TD }=16384 \\
& \text { SW }[\mathrm{ppm}]=10 \\
& \text { D1 }[\mathrm{sec}]=30 \\
& \text { DS }=0 \\
& \text { NS }=1
\end{aligned}
$$

13. Select the 'ProcPars' tab by clicking on it.

14 Make the following changes:

$$
\begin{aligned}
& \text { SI }=8192 \\
& \text { LB }[\mathrm{Hz}]=1 \\
& \text { PH_mod = select 'pk' }
\end{aligned}
$$

15. Click on the 'Aquire' tab in the TopSpin menu bar.

1
6. Select don Spin by clicking on it.

Turn sample rotation on (ro on)
Turn sample rotation off (ro off)
Change sample rotation rate (ro)
MAS Pneumatic Unit (masdisp)

17. Select 'ro off' by clicking on it.

This test should be run without rotation.

9.2.2 Acquisition

1. Select $\overline{\mathrm{m}}$ Gain ∇ by clicking on it
2. Select \triangle Go ∇ by clicking on it

9.2.3 Processing

1. Click on the 'Process' tab in the TopSpin Menu bar.

2. Click on the down arrow inside the
Proc. Spectrum button.
```
Configure Standard Processing (proc1d)
Window Multiplication (wm)
Fourier Transform (ft)
Start Automation AU Program (xaup)
```

3. Select 'Configure Standard Processing' by clicking on it.
4. Deselect the following options:

'Set Spectrum Reference (sref)'
 'Auto-Baseline correction (absn)'
 'Warn if Processed data exist'

\$ proc1d					
Press 'Execute' to process the current dataset. Press 'Save' to just change the processing options. Changed options will be effective when pressing the one-click 'Proc. Spectrum' button.					
Exponential Multiply (em)		LB [Hz] =	1		
Fourier Transform (ft)	『				
Auto - Phasing (apk)	V				
Set Spectrum Reference (sref)	\square				
Auto - Baseline Correction (absn)	\square	Include integration $=$	no		-
Plot (autoplot)	\square	LAYOUT $=$	+/1D_X+no		-
Warn if processed data exist	\square				
ve Execute Canc					

5. Click on

Execute
6. Expand the spectrum form 2.85 ppm to 2.55 ppm.

7. Click on the right mouse button inside the spectral window.

Toggle Spectrum Overview
Show Full Spectrum
Toggle Parameter Window
Spectra Display Preferences
Save Display Region To...
Restore Display Region From Params. F1/2
Set Plot Height At Specific Cursor Position
Dataset Properties
Eiles
Explorer

8. Select ‘Save Display Region to...’ by clicking on it.

Save display region to ...
Options
O Parameters F1/2 (e.g. used by 'restore display', ...) [dpl]
Parameters ABSF1/2 (e.g. used by 'absf, apkf')
Parameters STSR/STSI (used by strip ft)
Parameters SIGF1,2 (signal region) (used by 'sino')
A text file for use with other programs

9. Enable 'Parameters F1/2'.
10. Click on \square
11. Type wpar proton_p90 to store the parameter for future use.

12. Select all parameter options.
13. Click on \square

9.2.4 Determine The 90 Degree Pulse

1. Click on the 'Acquire' tab in the TopSpin menu bar.

2. Click on the down arrow inside the

Transfer Fid To Disk (tr)
Estimate Exp. Time (expt)
Real-Time $\underline{\text { Go Setup (gs) }}$
Optimize Acquisition Params (popt)
Start Automation AU program (xaua)

3. Select 'Optimize Acquisition Params (popt)' by clicking on it.
4. Make the following changes:

$$
\begin{aligned}
& \text { OPTIMIZE }=\text { Step by step } \\
& \text { PARAMETER }=p 1 \\
& \text { OPTIMUM }=\text { POSMAX } \\
& \text { STARTVAL }=2 \\
& \text { NEXP }=20
\end{aligned}
$$

> VARMOD = LIN

$$
\mathrm{INC}=2
$$

5. Click on Save

The ENDVAL parameter has been updated.
6. Click on Start optimize

Number of experiments: 20	
Noptau total experiment time will be: 10 min 40 sec Continue? $[\mathrm{y} \mid \mathrm{n}]$	
	OK
	Cancel

7. Enter y in to the poptau window.
8. Click on OK .

The parameter optimization starts. The spectrometer acquires and processes 20 spectra with incrementing the parameter p1 from 2 usec by 2 usec to a final value of 40 usec. For each of the 20 spectra, only the spectral region defined above is plotted, and all the spectra are plotted side-by-side in the file proton_90/1/999 as shown in the figure below.

The POSMAX value of $\mathbf{p 1}$ is displayed in the title window which is the 90° pulse, along with the experiment number and the NEXP value. Write this value down. To obtain a more accurate 90° pulse measurement, follow the steps below.
9. Close the popt setup window.
10. Type rep 1
11. Type p1
12. Enter the value which corresponds to a 360° pulse (four times the POSMAX value).
13. Type zg
14. Type efp
15. Change p1 slightly and repeat steps 13 and 14, until the quartet undergoes a zero crossing as expected for an exact 360° pulse.

The quartet signal is negative for a pulse angle slightly less then 360° and positive when the pulse angle is slightly more then 360°.
16. Simply divide the determine 360° pulse value by 4 . This will be the exact 90° pulse length for the proton transmitter on the current probe.

9.3 Observations

9.4 Carbon 90 Degree Transmitter Pulse

Standard Test Sample:
ASTM (60\% C6D6 / 40\% p-Dioxane)

9.4.1 Parameter Setup

1. Click on the 'Start' tab in the TopSpin Menu bar.

13 Start	Acquire Process Analyse Publish View Manage (2)
	\square Create Dataset

2. Select Create Dataset by clicking on it.
3. Enter the following information in to the 'New' window.

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click on the down arrow button to browse for a specific directory.
4. Click on OK
5. Run a 1D Carbon spectrum, following the instructions in Chapter 7, 1-D Carbon experiments, Paragraph 7.2.2 Experiment setup, step 5 using C6D6 as a lock solvent and making the following acquisition parameter changes:
PULPROG = zg
$D S=0$
$N S=1$
6. Continue with 7.2.4 Processing.

7. Expand peak at 67 ppm.
8. Click on
to set the RF from cursor.

9. Click the left mouse button to set the frequency.

O1/O2/O3	
Define SFO1/O1 frequencies	
SFO1 $[\mathrm{MHz}]=$	75.485356
$\mathrm{O} 1 / 2 / 3[\mathrm{~Hz}]=$	5034.99
$\mathrm{O}=\mathrm{O} \quad \mathrm{O} \quad$ Cancel	

10. Click on 01
11. Select the 'AcquPars' tab by clicking on it.
12. Make the following changes:

$$
\begin{aligned}
& \text { TD }=8912 \\
& \text { SW }[\mathrm{Hz}]=40 \\
& \text { D1 }[\mathrm{sec}]=60 \\
& \text { DS }=0 \\
& \text { NS }=1
\end{aligned}
$$

13. Select the 'ProcPars' tab by clicking on it.

14 Make the following changes:

$$
\begin{aligned}
& \text { SI }=4096 \\
& \text { LB }[\mathrm{Hz}]=3.5 \\
& \text { PH_mod }=\text { select ' } \mathbf{p k} \text { ' }
\end{aligned}
$$

15. Click on the 'Acquire' tab in the TopSpin menu bar.

3	Start	Acquire	Process		Analyse	Publish	View	Manage (2)	(3)		
	Sample		Lock	V Tune ${ }^{-}$		dosin S	Et Shim ${ }_{\text {\% }}$	${ }^{\text {fl}}$ Prosol ∇	ma Gain ∇	Gob	Options ∇

16. Select Spin ∇ by clicking on it.

Turn sample rotation on (ro on)
Turn sample rotation off (ro off)
Change sample rotation rate (ro)
MAS Pneumatic Unit (masdisp)

17. Select 'ro off' by clicking on it.

9.4.2 Acquisition

1. Select \bar{m} Gain ∇ by clicking on it.
2. Select \triangle Go ∇ by clicking on it.

9.4.3 Processing

1. Click on the 'Process' tab in the TopSpin Menu bar.

,	Start	Acquire	Process	Analyse	Publish	View	Manage	(2)		
Λ Proc. Spectrum ∇			${ }_{*}$ Adjust Phase ${ }^{\text {- }}$		$\text { Calib. Axis } \nabla \text { 事? Pick Peaks } \nabla$				Integrate ${ }^{\text {- }}$	Advanced ∇

2. Click on the down arrow inside the \square Proc. Spectrum ∇ button.

Configure Standard Processing (proc 1d)
Window Multiplication (wm)
Fourier Iransform (ft)
Start Automation AU Program (xaup)

3. Select 'Configure Standard Processing' by clicking on it.
4. Deselect the following options:
'Set Spectrum Reference (sref)'
'Auto-Baseline correction (abs)'

'Warn if Processed data exist'

5. Click on

Execute
6. Expand the spectrum from 72 ppm to 62 ppm.

7. Click on the right mouse button inside the spectral window.

Toggle Spectrum Overview
Show Full Spectrum
Toggle Parameter Window
Spectra Display Preferences
Save Display Region To...
Restore Display Region From Params. F1/2
Set Plot Height At Specific Cursor Position
Dataset Properties
Eiles
Explorer

8. Select 'Save Display Region to...' by clicking on it.

| Save display region to ... |
| :--- | :--- |
| Options
 - Parameters F1/2 (e.g. used by 'restore display', ...) [dpl]
 Parameters ABSF1/2 (e.g. used by 'absf, apkf')
 Parameters STSR/STSI (used by strip ft)
 Parameters SIGF1,2 (signal region) (used by 'sino')
 A text file for use with other programs
 Cancel |

9. Enable 'Parameters F1/2'.
10. Click on \square
11. Type wpar carbon_p90 to store the parameter for future use.

12. Select all parameter options.
13. Click on \square OK

9.4.4 Determine The 90 Degree Pulse

1. Click on the 'Acquire' tab in the TopSpin menu bar.

2. Click on the down arrow inside the

```
Transfer Fid To Disk (tr)
Estimate Exp. Time (expt)
Real-Time Go Setup (gs)
Optimize Acquisition Params (popt)
Start Automation AU program (xaua)
```

3. Select 'Optimize Acquisition Params (popt)' by clicking on it.
4. Make the following changes:

$$
\begin{aligned}
& \text { OPTIMIZE = Step by step } \\
& \text { PARAMETER = p1 } \\
& \text { OPTIMUM }=\text { POSMAX } \\
& \text { STARTVAL }=2 \\
& \text { NEXP }=20 \\
& \text { VARMOD }=\text { LIN } \\
& \text { INC }=2
\end{aligned}
$$

5. Click on \square Save

The ENDVAL parameter has been updated.
6. Click on

Start optimize

7. Enter y in to the poptau window.
8. Click on OK .

The parameter optimization starts. The spectrometer acquires and processes 20 spectra with incrementing the parameter p1 from 2 usec by 2 usec to a final value of 40 usec. For each of the 20 spectra, only the spectral region defined above is plotted, and all the spectra are plotted side-by-side in the file carbon_90/1/999 as shown in the figure below.

The POSMAX value of p 1 is displayed in the title which is the 90° pulse, along with the experiment number and the NEXP value. Write this value down. To obtain a more accurate 90° pulse measurement, follow the steps below.
9. Close the popt setup window.
10. Type rep 1
11. Type p1
12. Enter the value which corresponds to a 360° pulse (four times the POSMAX value).
13. Type zg
14. Type efp
15. Change p1 slightly and repeat steps 13 and 14, until the signal undergoes a zero crossing as expected for an exact 360° pulse.

The signal is negative for a pulse angle slightly less then 360° and positive when the pulse angle is slightly more then 360°.
16. Simply divide the determine 360° pulse value by 4 . This will be the exact 90° pulse length for the proton transmitter on the current probe.

9.5 Observations

10 Sensitivity Tests

10.1 Introduction

This chapter describes the sensitivity test procedures for 1 H and 13C. It is assumed that the user is already familiar with acquisition and processing of simple 1D NMR spectra. Chapter 5, 1-D Proton Experiment and Chapter 7, 1-D Carbon Experiments. Also the 90° pulses have to be properly calibrated, Chapter 9, Determination Of The 90 degree Pulses.

This chapter is intended as a guide for running the 1 H and 13C Signal to Noise tests on a probe or verifying the values observed by the engineer installing the instrument.

10.2 Proton Sensitivity Test

Standard Test Sample:
0.1\% Ethylbenzene in CDCI3

10.2.1 Experiment Setup

1. Click on the 'Start' tab in the TopSpin Menu bar.

3)	Start	Acquire	Process	Analyse	Publish	View	Manage	(2)			
		\square Create Dataset		68. Find Datase	$t 5$ Open Dataset		IPaste Dataset		[10 Read Pars.		

2. Select Create Dataset by clicking on it.
3. Enter the following information in to the 'New' window.

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click on the down arrow button to browse for a specific directory.
4. Click on \square
5. Click on the 'Acquire' tab in the TopSpin menu bar.

6. Select Sample ∇ by clicking on it.

Turn on sample lift air (ej)
Turn off sample lift air (ij)
Control sample temperature (edte)
7. Select 'ej’ by clicking on it.

Wait till the sample lift air is turned on and remove any sample which may have been in the magnet.
8. Place the sample on too the top of the magnet.
9. Select Sample ∇ by clicking on it.

> Turn on sample lift air (ej)
> Turn off sample lift air (ij)
> Control sample temperature (edte)
10. Select 'ij’ by clicking on it.

Wait till the sample is lowered down in to the probe and the lift air is turned off. A clicking sound may be heard.
11. Select Lock by clicking on it.

12. Select 'CDCI3' by clicking on it.
13. Select Spin ∇ by clicking on it.

Turn sample rotation on (ro on)
Turn sample rotation off (ro off)
Change sample rotation rate (ro)
MAS Pneumatic Unit (masdisp)

14. Select 'ro on' by clicking on it.
15. Select \square by clicking on it.

This executes the command 'gradshim'. To select other options. click on the down arrow inside the 'Shim' button.
16. Select fV Prosol by clicking on it.

This will load the pulse width and power levels in to the parameter set.

10.2.2 Acquisition

1. Select $\sqrt{m} \underline{\text { Gain }} \nabla$ by clicking on it.

$\stackrel{8}{6}$
The relaxation time D1 is by default in this parameter set 60 seconds and therefore the adjustment of the receiver gain will take some time.
2. Select \square by clicking on it.

10.2.3 Processing

1. Click on the 'Process' tab in the TopSpin Menu bar.

2. Click on Λ Proc. Spectrum ∇.

This executes a processing program including commands such as an exponential window function 'em', Fourier transformation 'ft', an automatic phase correction 'apk' and a baseline correction 'abs'. Other options are available by clicking on the down arrow inside the 'Proc. Spectrum' button.

10.2.4 Calculating The Signal To Noise Ratio

The signal to noise ratio is determined on the intensity of the quartet lines between 2 ppm and 3 ppm . It is calculated by AU-program sinocal over a range of 2 ppm between 2.8 ppm and 7 ppm . The s/n ratio is strongly dependant on good resolution and lineshape. The splitting between the two central lines of the methylquartet should go lower than 15% (with $L B=1 \mathrm{~Hz}$), see the figure below.

1. Type sinocal on the command line.

2. Enter 3 for the left limit of the signal range.
3. Click on \square OK

4. Enter 2 for the right limit of the signal range.
5. Click on OK .

6. Enter 7 for the left limit of the noise range.
7. Click on OK .

8. Enter 2.8 for the right limit of the noise range.
9. Click on \square OK.

10. Enter 2 for the noise width.
11. Click on OK.

10.3 Observations

10.4 Carbon Sensitivity Test Without Proton Decoupling

Standard Test Sample:
ASTM (60\% C6D6 / 40\% p-Dioxane)

10.4.1 Experiment Setup

1. Click on the 'Start' tab in the TopSpin Menu bar.

Q	Start	Acquire	Process	Analyse	Publish	View	3		
		\square Create Dataset		Find Datase	t 5 Open Dataset		P Paste Dataset	(10) Read Pars.	

2. Select Create Dataset by clicking on it.
3. Enter the following information in to the 'New' window.

ㄴ. New...					\underline{x}
Prepare for a new experiment by creating a new data set and initializing its NMR parameters according to the selected experiment type. For multi-receiver experiments several datasets are created. Please define the number of receivers in the Options.					
NAME		carbon_se	_astm		
EXPNO		1			
PROCNO		1			
O Use current parameters					
Experiment Options	C13CPD			Select	
\checkmark Set solvent:			C6D6		
- Execute "getprosol"					
Keep parameters:			P1, O1, PLW 1 -	Change	
DIR			C.IData		\checkmark
\square Show new dataset in new window					
Receivers (1,2, .. 16)			1		
TITLE	13C sensitivity test no 1 H decoupling ASTM (60\% C6D6/40\% Dioxane)				
		OK	Cancel More	fo...	Help

The directory (DIR) is specific to how the data are stored and therefore may show different entries as the one in the figure above. Click on the down arrow button to browse for a specific directory.
4. Click on \square
5. Click on the 'Acquire' tab in the TopSpin menu bar.

6. Select Sample ${ }^{\circ}$ by clicking on it.

Turn on sample lift air (ej)
Turn off sample lift air (ij)
Control sample temperature (edte)

7. Select 'ej’ by clicking on it.

Wait till the sample lift air is turned on and remove any sample which may have been in the magnet.
8. Place the sample on too the top of the magnet.
9. Select Sample ∇ by clicking on it.

Turn on sample lift air (ej)
Turn off sample lift air (ij)
Control sample temperature (edte)

10. Select 'ij’ by clicking on it.

Wait till the sample is lowered down in to the probe and the lift air is turned off. A clicking sound may be heard.
11. Select Lock by clicking on it.

12. Select 'C6D6' by clicking on it.
13. Select dosin Sp by clicking on it.

Turn sample rotation on (ro on)
Turn sample rotation off (ro off)
$\underline{\text { Change sample rotation rate (ro) }}$
$\underline{\text { MAS Pneumatic Unit (masdisp) }}$

14. Select 'ro on' by clicking on it.
15. Select \square Shim ∇ by clicking on it.

This executes the command 'gradshim'. To select other options. click on the down arrow inside the 'Shim' button.
16. Select fly Prosol by clicking on it.

This will load the pulse width and power levels in to the parameter set.
17. Select the 'AcquPars' tab by clicking on it.
18. Make the following changes:

$$
\begin{aligned}
& \text { PULPROG = zg } \\
& \text { TD }=65536 \\
& \text { SW }[\mathrm{ppm}]=160 \\
& \text { D1 = } 300
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{DS}=0 \\
& \mathrm{NS}=1 \\
& \mathrm{O} 1[\mathrm{ppm}]=100
\end{aligned}
$$

19. Select the 'ProcPars' tab by clicking on it.
20. Make the following changes:

$$
\begin{aligned}
& \mathrm{SI}=32768 \\
& \mathrm{LB}[\mathrm{~Hz}]=3.5
\end{aligned}
$$

21. Click on the 'Aquire' tab in the TopSpin menu bar.

10.4.2 Acquisition

$$
\text { 1. Select } \overline{\mathrm{m}} \text { Gain } \nabla \text { by clicking on it. }
$$

The relaxation time D1 is by default in this parameter set 300 s and therefore the adjustment of the receiver gain will take some time.
2. Select \triangle Go ∇ by clicking on it.

10.4.3 Processing

1. Click on the 'Process' tab in the TopSpin Menu bar.

2. Click on Λ Proc. Spectrum ∇

This executes a processing program including commands such as an exponential window function 'em', Fourier transformation 'ft', an automatic phase correction 'apk' and a baseline correction 'abs'. Other options are available by clicking on the down arrow inside the 'Proc. Spectrum' button.

10.4.4 Calculating The Signal To Noise Ratio

The signal to noise ratio is determined on the triplet of the deuterated benzene between 127 ppm and 129 ppm . It is calculated by AU-program sinocal over a range of 4 ppm between 70 ppm and 125 ppm . The s/n ratio is strongly dependant on good resolution and line shape. The splitting of the 1:1:1 triplet should go lower than 9% (5 mm) see Figure 10.24. 10\% (10 mm) and 12\% (20 mm).

1. Type sinocal on the command line.

2. Enter 128 for the left limit of the signal range.
3. Click on \qquad

4. Enter 127 for the right limit of the signal range.
5. Click on

6. Enter 125 for the left limit of the noise range.
7. Click on OK .

8. Enter 30 for the right limit of the noise range.
9. Click on OK .

10. Enter 40 for the noise width.
11. Click on \qquad

10.5 Observations

11 Spectrometer Configuration

11.1 Hardware Configuration

1. Click on the 'Manage' tab in the TopSpin Menu bar.

| 13 Start Acquire Process Analyse Publish View Manage | (3) | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Preferences | Spectrometer ∇ | Security ∇ | Commands ∇ | Remote |

2. Click on the down arrow inside the Spectrometer ∇ button.

Hardware Detection	Configure Hardware (cf)
Experiments/Parameters	C
Initialize Spectrometer Interface (ii)	
Save/Restore Installation	I
Edit the Probehead Table (edhead)	
Spectrometer Usage (account)	Setup Linearization Correction Tables (cortab)
	Find Ethernet Addresses (ha)

3. Select 'Hardware Detection'.
4. Select 'Configure Hardware (cf)' by clicking on it.
5. Enter the NMR administration password.
6. Click on OK

7. Select Configuration for 'Spect' by clicking on it.
8. Click on Edit

9. Click on Next > .

10. Enter the ports for the external devices as shown in the figure above.
11. Click on Next > .

12. Click on Next >

13. Click on

Next >

The configuration information is displayed on the screen. Store the print out of the configuration information with the installation data.
13. Click on \square
14. Click on

Next >

11.2 Expinstall

1. Click on Expinstall
2. Enter the NMR administration password.
3. Click on OK

Expinstall

Expinstall installs pulse programs, AU programs,
parameter sets and various other resources for spectrometer or datastation usage. It must be performed once after the installation of TOPSPIN. For spectrometer control do cf first. For a customized datastation configuration copy your spectrometer configuration directory (typically called "spect") to <TopSpin installation dir>/conf/instr.

WARNING:

Please archive all your MODIFIED Bruker PARAMETER-files,
AU-programs and PULSE-programs before running
"expinstall".

4. Click on Next >

Experiment installation and AU compilation
Select the type of installation:
Installation for Datastation (Default)
Installation for Datastation (Customize)
o Installation for Spectrometer
<Back Next > Finish Cancel

5. Select 'Installation for Spectrometer'.
6. Click on Next > .

Expinstall for Spectrometer
Select the type of acquisition:
\square High Resolution Systems
\square Solid State Systems
\square Micro-Imaging and Diffusion Systems
<Back Next > Finish Cancel

7. Select 'High Resolution System'.
8. Click on \square

Expinstall for Spectrometer
Select the items you want to install:
\square Install Pulse Programs
Install Bruker AU Programs
\square Recompile All User AU Programs
Install Library CPD Programs
Install Library Gradient Files
V Install Library Shape Files
\square Convert Standard Parameter Sets
Install Standard Scaling Region Files
V Install Bruker Macros
Install Bruker Python Programs

9. Click on Next >

10. Select Default printer and plotter.
11. Select Paper format.
12. Click on

OK

```
\(\$\) Expinitall for Spectrometer
Select the basic frequency of your spectrometer
Basic trequency (MHZ): 
Select the digitizer
Type of digitzer:
Select the acquisition mode
Acquisition mode:
    qsim
Select the pre-scan-delay DE
Defaull pre-scan-delay (\mus). 6.5
13. Click on

14. Click on
expinstall starts now. This process will take approximately. 30 seconds. On finish the message below appears. To set up a time schedule to perform an NMR_save periodically (recommended) follow the instructions in \(\mathbf{1 0 . 3}\) Set up the cron job for NMR_save.
4. Cron check

\section*{\(x\)}

An automatic periodical backup of your TopSpin configuration can be defined in TopSpin. Currently you do not use this tool.

Press "Automatic Backup" to open the configuration tool.
\(\square\) Do not show this message again
Help Automatic Backup Close

\subsection*{11.3 Set Up The Cron Job For NMR_save}
1. Click on \(\qquad\)
Automatic Backup
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{CTMR Save} \\
\hline Save instalation files & \multicolumn{4}{|l|}{Restore installation files Save user files Restore user files} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Save installation specific files. \\
Installation specific files are collected and stored into a compressed file. This compressed file can be used to copy the files from a previous installation to a new installation or to create a backup of the installation specific files. \\
Note: \\
To save user specific files use the "Save user files" tab.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Location of backup file: \\
Overwrite existing backup file: \\
Installation to be saved (TopSpin home): \\
Spectrometer configuration (e.g. spect): \\
Display default information: \\
Display additional information:
\end{tabular}} & C:IBrukerITopSpin3
\(\square\)
C:1BrukerlTopSpin3
spect
\(\odot\)
\(\bigcirc\) & ackup & \(\checkmark\) \\
\hline \multicolumn{5}{|l|}{Execute "Save installation specific files" periodically Automatic Backup} \\
\hline \multicolumn{5}{|l|}{Log:} \\
\hline \multicolumn{4}{|r|}{Save} & Close \\
\hline
\end{tabular}
2. Click on

Automatic Backup


In this example an NMR_save is performed from January to December on the 1st day of the month at 2 o'clock in the morning.
3. Click on OK


\subsection*{11.4 Observations}

\section*{12 Standard Parameter Set List}

\subsection*{12.1 1-D Experiments}

C13APT - Attached Proton Test using jmod pulse program
C13CPD - C13 exp. comp. pulse dec. 1024 scans
C13CPD32 - C13 exp. comp. pulse dec. 32 scans
C13CPDSN - C13 exp. comp. pulse dec. with signal-to-noise calc.
C13DE45SN - C13 dept all positive with signal-to-noise calc.
C13DEPT45-C13 dept all positive
C13DEPT90-C13 dept CH-only
C13DEPT135-C13 dept \(\mathrm{CH}, \mathrm{CH} 3\) pos. CH 2 neg.
C13DEPT135p - dept135 with phase of previous C13
C13GD - C13 exp. gated decoupling
C13IG - C13 exp. inverse gated decoupling
C13HUMP - 13C hump (lineshape) test
C13RESOL - 13C resolution (half width) test
C13SENS - 13C sensitivity (SINO) test
PROTON128-1H experiment 128 scans
PROTONCONLF - 1H exp. with conditional low field plot
PROTONEXP - 1H experiment + expansions
PROTONLF - 1H experiment + low field plot
PROTONLFEXP - 1H experiment + low field plot + expansions
PROTONNR - 1H exp. non spinning
PROTONNREXP - 1H exp. non spinning + expansions
PROTONNRLF - 1H exp. non spinning + low field plot
PRONRLFEXP - 1H exp. non spinning + low field plot + expansions
PROTONT1 - 1H T1 Relaxation measurement
PROHUMP - 1H hump (lineshape) test
PRORESOL - 1H resolution (half width) test
PROSENS - 1H sensitivity (SINO) test

\subsection*{12.2 2-D Experiments}

COSY45SW - sw opt. COSY45 (magn. mode)
COSY90SW - sw opt. COSY90 (magn. mode)
COSYGPSW - sw opt. COSY with gradients (magn. mode)
COSYDQFPHSW - sw opt. COSY with dq filter (TPPI)
COSYGPDFPHSW - sw opt. COSY with gradients and dq filter (TPPI)
COSYGPMFSW - sw opt. COSY with gradients and mq filter (magn. mode)
MLEVPHSW - sw opt. TOCSY (TPPI)
NOESYPHSW - sw opt. NOESY (TPPI)
NOESYGPPHSW - sw opt. NOESY with gradients (TPPI)
ROESYPHSW - sw opt. ROESY (TPPI)
HMQCGP - sw opt. HMQC with gradients (magn. mode)
HMBCGP - sw opt. HMBC with gradients, low pass J-filter, no decoupling
HSQCEDGPPH - sw opt. edited HSQC with gradients (TPPI)
HSQCGPPH - sw opt. HSQC sens. improved with gradients (TPPI)
HMBCGPND - sw opt. HMBC with gradients

Above are the current list of all parameter sets which are specific to work on a Fourier system. The list is being created during expinstall and stored in the "<TopSpin-home>/exp/stan/nmr/par" directory.

\section*{13 Contact}

\section*{Manufacturer:}

\author{
Bruker BioSpin NMR
}

Silberstreifen
D-76287 Rheinstetten
Germany
Phone: +49 721-5171-02
http://www.bruker.com

\section*{NMR Hotlines}

Contact our NMR service centers.
Bruker BioSpin NMR provide dedicated hotlines and service centers, so that our specialists can respond as quickly as possible to all your service requests, applications questions, software or technical needs.

Please select the NMR service center or hotline you wish to contact from our list available at:
http://www.bruker.com/service/information-communication/helpdesk.html

Bruker Corporation
info@bruker.com
www.bruker.com```


[^0]:    1

    ## A DANGER

    This combination of symbol and signal word indicates an immediately hazardous situation which could result in death or serious injury unless avoided.

