

Bruker BioSpin

BVT3200A

Variable Temperature Unit for BSMS/2
Technical Manual

Version 001

NMR Spectroscopy

think forward

The information in this manual may be altered without notice.

BRUKER BIOSPIN accepts no responsibility for actions taken as a result of use of this manual. BRUKER BIOSPIN accepts no liability for any mistakes contained in the manual, leading to coincidental damage, whether during installation or operation of the instrument. Unauthorised reproduction of manual contents, without written permission from the publishers, or translation into an other language, either the entire manual or a part of it, is forbidden.

This manual describes the units as they are at the date of printing. On request, the manufacturer shall supply circuit diagrams, lists of components, descriptions, calibrating instructions and any other information for use by qualified personnel of the user, in charge of repairing the parts of the unit which have been stated by the manufacturer to be "repairable". Such supply shall in no event constitute permission to modify or repair the units or approval of the same.

All rights reserved for the units, circuits, processes and appellations mentioned herein.

This unit is not designed for any type of use which is not specifically described in this manual. Such use may be hazardous.

This manual was written by

Patrick Krencker and Daniel Podadera

This manual was edited and desktop published by

Karine Hollender and Dominique Wurtz

© January 9, 2009: Bruker BioSpin SA

Wissembourg, France

P/N: Z31871 DWG-Nr: Z4D10862

For further technical assistance on the BVT3200A unit, please do not hesitate to contact your nearest BRUKER dealer or contact us directly at:

BRUKER BioSpin SA 34 rue de l'Industrie F-67166 Wissembourg Cedex France

Phone: + 33 388 066 000
Fax: + 33 388 736 820
Email: support-rmn@bruker.fr
Internet: www.bruker.com

Contents

	Contents	3
1	Description	. 5
1.1	Introduction	. 5
1.2	BVT3200A main components	. 7
1.3	Parts location	
1.4	Principle of operation	. 7
1.5	The front panel	
	Front panel description :	
1.6	Gas flow circuit	
	Setting up the default gas flow	
1.7	Front panel connectors	
	Heater connector	
	PT100 connector	
	Thermocouple connector	
	RS232 connector	
	N ₂ connector (option)	
	BCU05 connector	
	BVTB 3500 connector	
2	Options	17
2.1	Low temperature options	17
2.2	LN ₂ exchanger	17
	Exchanger presentation	18
	Exchanger installation	18
2.3	LN ₂ evaporator	19
	Evaporator presentation	19
	Evaporator installation	20
	Printed circuit installation	
2.4	BCU05 gas cooler	22
3	Configuration	23
2.4		23
3.1		
3.2	ASCON M5 configuration	23
4	Remote interface control	25
4.1	Microcontroller interface	25
4.2	Digital interface specifications	
4.3	Commands and communication protocol	
4.4	Control characters	
4.5	List of commands	
4.6	RS232 link characteristics	

Contents

4.7	RS232 cable	28
4.8	Authorised functions	29
	AF - Air Flow	30
	CM - Check Memory (for test only)	
	CO - Communications Speed	31
	DL - Download	32
	DT - DAC Check (for test only)	32
	ES - Error Status	33
	HP - Heater Power	34
	IS - Interface Status	35
	NH - Nitrogen Heater	36
	NP - Nitrogen Heater Power	37
	P1 - Port 1 (for test only)	38
	P2 - Port 2 (for test only)	39
	P3 - Port 3 (for test only)	
	P4 - Port 4 (for test only)	41
	RB - Read BBIS	42
	SV - Software Version	43
	WB - Write BBIS	44
	WR - Write Record	45
	XR (Extract a record)	46
5	Technical specifications	47
5.1	Specifications	
5.2	Safety fuses	
J.Z	Salety luses	40
	Figures	49
	Tables	51
	Index	53

Description

Introduction 1.1

The new BVT3200A (P/N: W1101558) is a small size variable temperature unit on single double europe size board.

It has microcontroller interface for remote control by the host computer.

The unit includes:

- A temperature controller (ASCON M5).
- The microcontroller and its electronics and the power electronics for the probe heater.
- A gas flow circuitry (pressure regulator and a block of four valves for gas flow control).

The unit is equiped with an optional board for low temperature - LN₂ evaporator or heat exchanger.

The BVT3200A is supplied by the general power supply of the BSMS/2 crate. The power stage is supplied by an additional 48 V power supply board.

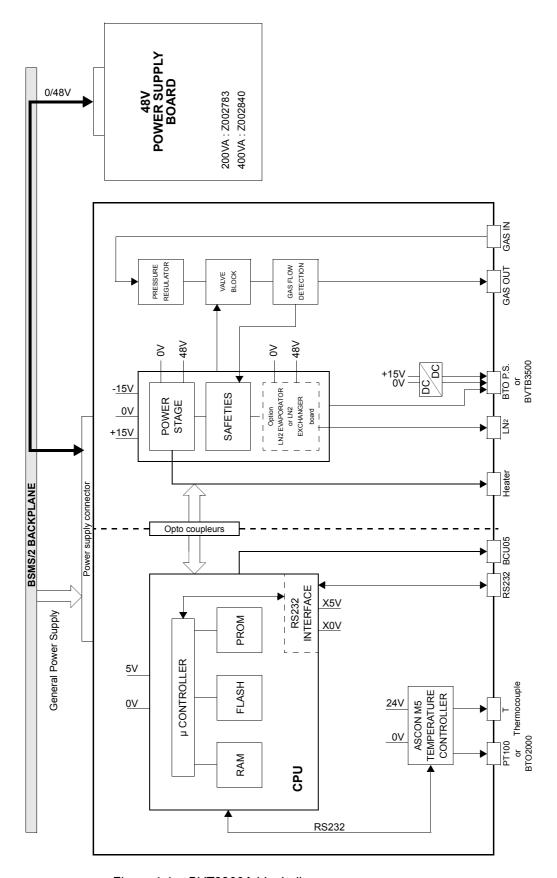


Figure 1.1. BVT3200A block diagram

The interface board has a microcontroller for remote control of the BVT3200A. Two RS232 ports are available on this printed circuit. One port, on the front panel side, is for the communication with host computer and the other for communication with the ASCON M5 temperature controller.

The power supply connector is at the rear side of the board. On the front, a gas flow indicator with a steel ball detects the gas flow. A device, called valve block, is a group of four valves which control the gas flow rate.

Parts location 1.3

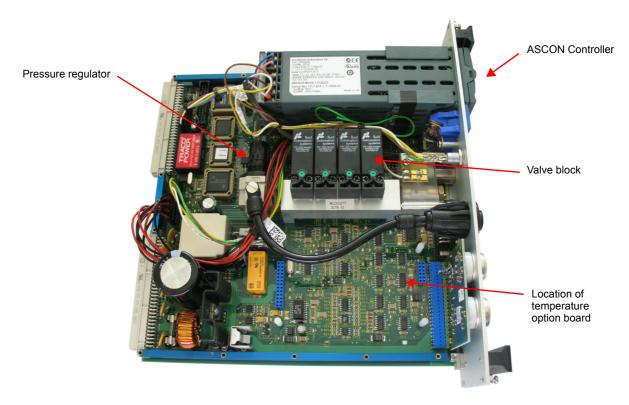


Figure 1.2. Parts location (top view)

Principle of operation

1.4

The sample tube located in the magnet is heated by a constant gas flow delivered by the BVT3200A. A temperature sensor (e.g. a thermocouple T) under the sample tube measures the gas temperature and the temperature controller compares the actual temperature to the target temperature programmed by the operator. It controls the power applied to the heater placed at the base of the magnet in order to stabilise the gas temperature. A special gas flow switch monitors continuously the gas flow in the BVT3200A and switches off the probe heater when the gas flow is missing. A safety thermocouple measures also the heater temperature and avoids probe overheating in case of missing gas flow in the probe.

The front panel 1.5

Front panel description :

- 1. ASCON M5 controller
- 2. Thermocouple connector type T
- 3. PT100 connector or BTO2000
- 4. Gas IN
- 5. BT02000 power supply or BVTB3500
- 6. BCU05 connector
- 7. Gas OUT
- 8. RS232 connector
- 9. N₂ connector
- 10. Heater connector

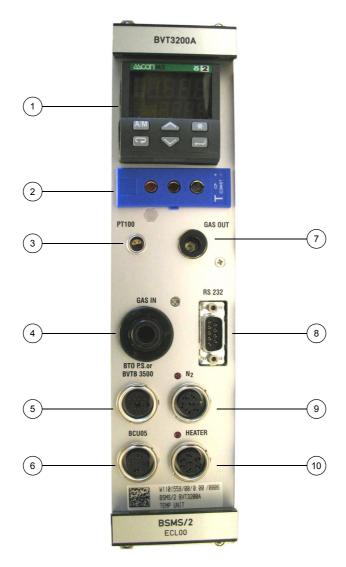


Figure 1.3. BVT3200A front panel

Gas flow circuit 1.6

On the middle of the PC (printed circuit) a pressure regulator delivers gas at constant pressure to a group of valves. Each valve, when open, let the gas flow through a calibrated hole. As all valves are in parallel, it is possible to obtain 15 different gas flow rates.

The regulator is factory adjusted to obtain approximately 2000 l/h when all valves are open and no probe is connected.

The default value at power on can be changed by hardware jumpers (JP12 and JP13) see figure <u>"Valve jumpers settings" on page 41</u>.

An optical gas flow sensor detects the presence of the gaz flow.

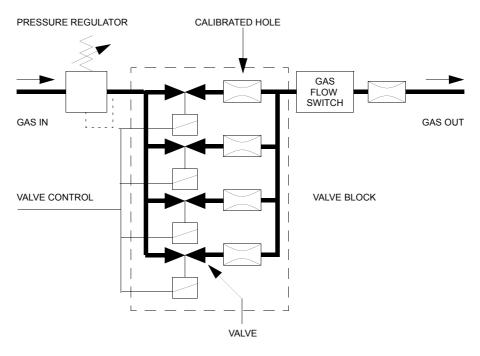


Figure 1.4. Gas flow circuit

Setting up the default gas flow

1.6.1

Connect the BVT3200A gas input to a dry air or a N_2 gas supply line. The inlet pressure must be at least 4 bar and not exceed 7 bar. The default gas flow rate after power on is defined according to the settings of jumpers JP12 and JP13 located between the temperature controller and the valve block.

The gas flow rate may also be changed in the "EDTE" program on the spectrometer.

When a jumper is placed it is read as "0" and the valve is **CLOSED** (no gas flow).

A missing jumper is interpreted as "1" and the valve is **OPEN** (gas flow).

- V4 is the valve with the lowest throughput
- V1 is the valve with the highest throughput
- The factory setting for the default flow is 270 l/h

Table 1.1. Default gas settings

Jumper	Valve	Pins to short	Factory setting (270l/h)
JP12	V4	pin 1(Gnd) - pin 2	Jumper placed
JP12	V3	pin 3(Gnd) - pin 4	No jumper
JP13	V2	pin 1(Gnd) - pin 2	Jumper placed
JP13	V1	pin 3(Gnd) - pin 4	Jumper placed

Table 1.2. Default gas flow versus jumper settings

Combination	V1	V2	V3	V4	Flow rate (I/h)
0	0	0	0	0	0
1	0	0	0	1	135
2	0	0	1	0	270
3	0	0	1	1	400
4	0	1	0	0	535
5	0	1	0	1	670
6	0	1	1	0	800
7	0	1	1	1	935
8	1	0	0	0	1070
9	1	0	0	1	1200
10	1	0	1	0	1335
11	1	0	1	1	1470
12	1	1	0	0	1600
13	1	1	0	1	1735
14	1	1	1	0	1870
15	1	1	1	1	2000

1.7

Heater connector 1.7.1

The heater cable is plugged in this connector. A safety thermocouple is attached on the heater resistance in order to detect an overheating in case of a missing gas flow for example.

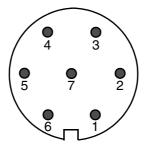


Figure 1.5. Heater connector (Front view)

Table 1.3. Heater connector pin assignment

PIN	SIGNAL		
1	heater +		
2	heater +		
3	safety thermocouple +		
4	safety thermocouple -		
5	heater -		
6	heater -		
7	gnd		

PT100 connector 1.7.2

Figure 1.6. PT100 connector (front view)

Table 1.4. PT100 / BTO2000 connector pin assignment

PIN	PT100	BTO2000
1	NC ^a	1
2	I _{PT100}	T-
3	PT100	T+
4	PT100	1

a. NC = not connected

Warning: The pins assignment of the PT100 plug is different from the BVT3200. When a CRYOPROBE with a PT100 sensor is attached on the BVT3200A, an adapter cable (P/N:W1101619) MUST be used. It is plugged in the PT100 plug. The cable (P/N:W1100644) is attached on the other end of the adapter cable.

Thermocouple connector

1.7.3

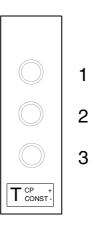


Figure 1.7. Thermocouple connector (Front view)

Table 1.5. Thermocouple T pin assignment

PIN	SIGNAL
1	(Cu) Shield
2	(Cu) Thermocouple +
3	(Co) Thermocouple -

RS232 connector 1.7.4

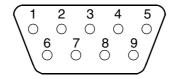


Figure 1.8. RS232 male connector (Front view)

Table 1.6. RS232 connector pin assignment

PIN	SIGNAL	PIN	SIGNAL
1	1 NC		NC
2	RxD	7	RTS
3	TxD	8	DTR
4	NC	9	NC
5	GND		

N₂ connector (option)

1.7.5

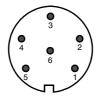


Figure 1.9. N₂ connector (Front view)

Table 1.7. Evaporator connector pin assignment

PIN	SIGNAL	COMMENT
1	heater +	power output (0 - 40 Vac)
2	level sensor +	level detection input (0 - 2,5 V)
3	evaporator detection	evaporator detected if grounded
4	gnd	ground (0 V)
5	heater -	ground power
6	exchanger detection	exchanger detected if grounded

BCU05 connector 1.7.6

Figure 1.10. BCU05 connector

Table 1.8. BCU05 connector pin assignment

PIN	SIGNAL	COMMENT
1	heater on (output)	turns on the BCU05 when high (> 2,4 V)
2 dgnd		digital ground
3 nc		not connected

BVTB 3500 connector 1.7.7

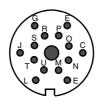


Figure 1.11. BVTB 3500 connector (Front view)

Table 1.9. BVTB 3500 connector pin assignment

PIN	SIGNAL	DIRECTION	COMMENT
А	+5V	0	digital Vcc output
С	NC		reserved
Е	gnd_BTO	0	BTO2000 has an isolated supply GND
G	+15 v_BTO	0	BTO2000 has an isolated supply output +15V
J	NC		reserved
L	dgnd	0	digital ground
М	sda	I/O	I2C bus data line
N	scl	I/O	I2C bus clock line
0	power control	0	0 to 10 volt heater power control output

Front panel connectors

PIN	SIGNAL	DIRECTION	COMMENT
Р	pgnd	0	power ground
R	pgnd	0	power ground
S	thermocouple	I	safety thermocouple input
Т	b_relay	0	BVTB 3500 heater relay command
U	b_connected	I	if grounded BVTB 3500 is detected

The BVTB3500 is a power booster for the BVT3200A.

Options 2

Low temperature options

2.1

For sample temperature control below room temperature one must use cold gas. The BVT3200A can drive several devices for cold gas production:

- LN₂ heat exchanger
- LN₂ evaporator
- BCU05 gas cooler

The nitrogen level in the dewar is monitored by the VTU and the power level applied to the LN_2 heater is computer controlled. For both first options, an optional printed circuit must be installed. The LN_2 heater cable or the exchanger cable is plugged in the N_2 connector on the front plate.

LN₂ exchanger 2.2

This device allows to extend sample temperature control below room temperature. A nitrogen gas supply line is required for this device. The N_2 gas is cooled while passing in a heat exchanger tube which soaks in liquid nitrogen. The cold gas is then transferred to the probe by a flexible isolated transfer line.

The gas flow is stopped (it means all four valves are closed in the BVT3200A) whenever the heater power is off, avoiding sample freezing.

A printed circuit (PC) must be installed in the VT unit.

The printed circuit has the part number W1101455. It is plugged on the main printed circuit and fixed by four plastic spacers.

Temperature accuracy is unchanged.

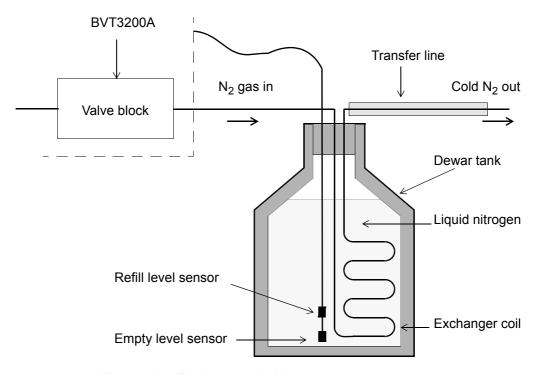


Figure 2.1. Exchanger principle

Exchanger installation

2.2.2

- 1. Turn off the BSMS/2 power supply
- 2. <u>Wait 2 minutes</u> to permit the complete discharge of the output capacitor of the heater electronics.
- 3. Unscrew and remove the BVT3200A from the crate.
- 4. Disconnect the inlet gas tube (see *Figure 2.3.* on *page 20*).
- 5. Hold the printer circuit (W1101455) over the main printed circuit, the big male connector on the bottom side of the printed circuit must face the same size female connector of on the top main printed circuit. The 4 plastic spacers must be pushed carefully in the corresponding holes of the main board until they are locked (see *Figure 2.4.* on *page 21*).
- 6. Plug the gas tube as shown in picture 3 (see Figure 2.5. on page 21).
- 7. Insert the BVT3200A in the BSMS/2 crate.
- 8. Plug the ${\rm LN_2}$ exchanger cable in the ${\rm N_2}$ connector and insert the exchanger in the ${\rm LN_2}$ dewar.
- 9. Turn on the power supply of the BSMS/2.

LN₂ evaporator 2.3

This device is a cold nitrogen gas generator for low temperature experiments. The nitrogen gas is produced by evaporating the liquid nitrogen contained in a dewar. The power delivered to the heater, controlled by software, may reach 210 Watts (approx. 38 V on a 7 ohm heater). The cold gas is transferred to the probe trough a flexible and isolated transfer line.

For this device, an option printed circuit (PC) must be installed in the BVT3200A. It delivers the power applied on the LN_2 heater. The LN_2 level in the dewar is continuously monitored by the VTU.

This PC has the part number W1101455. It is plugged on the main board of the BVT3200A and is retainded by four plastic spacers.

Temperature accuracy is unchanged.

WARNING: The BSMS/2 must be equipped with a 48V/400VA power supply (Z002840) to use the LN_2 evaporator option. When a standard 48V/200VA power supply is present in the rack, the rear side must be unscrewed and removed to replace the power supply located beside the BVT3200A.

Evaporator presentation

2.3.1

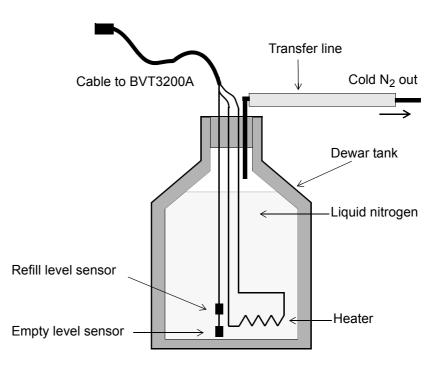


Figure 2.2. Evaporator principle

- 1. Turn off the BSMS/2 power supply.
- 2. <u>Wait 2 minutes</u> to permit the complete discharge of the output capacitor of the heater electronics.
- 3. Unscrew and remove the BVT3200A from the crate.
- 4. Disconnect the inlet gas tube (see Figure 2.3. on page 20).
- 5. Hold the printer circuit (W1101455) over the main printed circuit, the big male connector on the bottom side of the printed circuit must face the corresponding female connector on the component side of the main printed circuit. The 4 plastic spacers must be pushed carefully in the corresponding holes of the main board until they are locked (see *Figure 2.4.* on *page 21*).
- 6. Plug the gas tube as shown in picture 3 (see *Figure 2.5.* on *page 21*).
- 7. Insert the BVT3200A in the BSMS/2 crate.
- 8. Plug the LN₂ evaporator cable in the connector N₂ and insert the evaporator accessory in the LN₂ dewar.
- 9. Turn on the power supply of the BSMS/2.

Printed circuit installation

2.3.3

To dismount the gas tube, push forward the gas connector ring and pull back the tube.

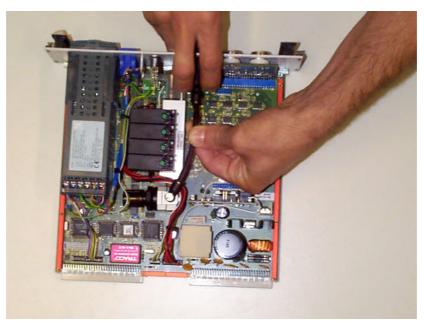
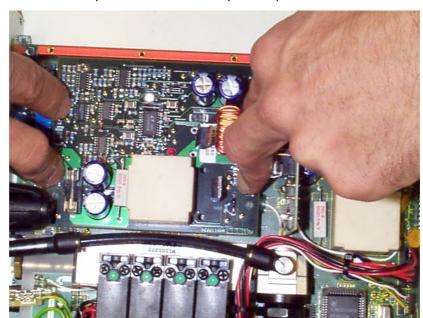



Figure 2.3. Dismount the gas tube

Press on the option board until the 4 plastic spacers are locked.

Figure 2.4. Place the option board

Push the male gas connector in the female plug.

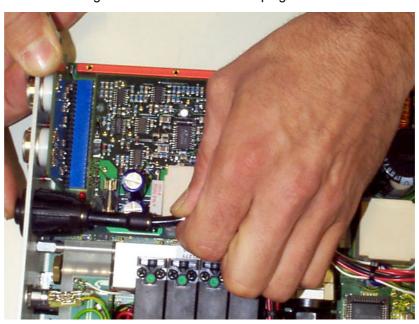


Figure 2.5. Gas connection

BCU05 gas cooler 2.4

The BCU05 is a device that cools dry air or nitrogen gas. The device has a refrigerant gas circuit with a compressor, an evaporator and a cooler. The gas is cooled as it circulates along the evaporator which is located inside the isolated transfer line that connects the BCU05 to the magnet. At the outlet of the transfer line the gas temperature may reach - 40 °C.

The BCU05 has a cable that must be plugged in the connector marked BCU05. When the probe heater is **ON** a signal is delivered to turn on the compressor of the BCU05. This security avoids freezing of the the sample when the BVT3200A power is off.

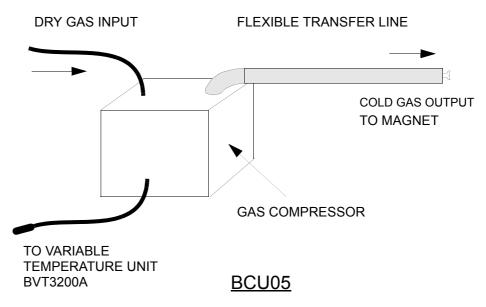


Figure 2.6. BCU05 principle

Configuration

Sensor selection 3.1

The BVT3200A can be used with three types of temperature sensors :

- Thermocouple T (factory set)
- . BTO2000 for high stability
- PT100 sensor

Warning: Never connect two sensors at a same time on the BVT3200A.

ASCON M5 configuration

3.2

The ASCON M5 controller must be configured to work with the right type of sensor.

The sensor can be selected in the EDTE program, it also can be chosen on the keypad of the temperature controller (see the manual of the ASCON M5 controller).

Remote interface control

Microcontroller interface

4.1

This interface has several functions:

- Host computer ASCON M5 transparent communication through a serial port.
- Transmission of BVT3200A internal status to the host computer.
- Probe heater on/off control.
- · Gas flow rate settings.
- Installed option control:
 - 1. Evaporator heating power settings.
 - 2. Exchanger control with nitrogen level detection.
 - 3. Etc.

Opto-isolated inputs receive informations and safety flags:

- Probe heater overheating flag.
- · Gas flow detection.
- LN₂ level monitoring (when option available).
- Probe heater power status flag (on/off).
- Etc.

Eight optoisolated outputs (**PORT3**) transmit the control byte for the DAC that delivers the LN_2 heater control signal.

Digital interface specifications

4.2

Microcontroller:

8 bits 8032 microcontroller clocked at 11,05 MHz

Program Memory:

Flash EPROM 64 K. A new firmware can be downloaded in this memory through the RS232 link.

Sram:

32 Kilobytes

Eeprom:

256 bytes for manufacturing informations storage (BBIS informations).

Interface:

Serial link to ASCON M5 controller :

9600 bauds,1 start bit, even parity, 1 stop bit and three wires link. Baudrate can be changed by software with the «CO» command.

Serial link to host computer :

9600 bauds,1 start bit, even parity, 1 stop bit and three wires link.

Isolation:

Optocouplers 2500V isolation between digital interface and power section.

Power supply:

V = +5 Volt, I < 1 Ampere.

Commands and communication protocol

4.3

All commands for the ASCON M5 controller cross over the interface. The microcontroller looks at each received command and decides then for whom the command is intended (either for the interface itself or the ASCON M5 controller). A command that is not an interface command is automatically transferred to the ASCON M5 controller. If the command is processed by the ASCON M5, the controller answer is returned to the host computer via the interface.

Control characters 4.4

Six non printing ASCII characters are used to control the messages that are exchanged between host computer and BVT3200A.

Table 4.1. Control characters

NAME	HEX	FUNCTION
STX	02	Start of text
ETX	03	End of text
EOT	04	End of transmission
ENQ	05	Enquiry
ACK	06	Acknowledge
NACK	15	Negative acknowledge

List of commands 4.5

Table 4.2. List of commands

Commands	R	W	Comment	
AF	Х	Х	reads / writes gas flow delivery	
CM	Х		starts a ram test of the microcontroller (for test only)	
CO	Х	Х	reads / writes communication speed (Interface <-> ASCON M5)	
DL	Х	Х	reads the download transfer status/ initialises a download transfer	
DT		Х	DAC check (for test purpose only)	
ES	Х		reads the error status	
HP	Х	Х	reads / writes heater power state ('1' or '0')	
IS	Х		reads interface status	
NH	Х	Х	reads / writes LN ₂ heater power level	
NP	Х	Х	reads / writes LN ₂ heater power state ('1' or '0')	
P1	Х	Х	reads / writes port 1 (for test only)	
P2	Х	Х	reads / writes port 2 (for test only)	
P3	Х		reads port 3 (for test only)	
P4	Х		reads port 4 (for test only)	
SV	Х		reads interface version (software, hardware and installed options)	
RB		Х	reads BBIS memory content	
WB		Х	writes to a BBIS memory location	
WR		Х	writes a record to the BVT3200A	
XR		Х	transmit a hexadecimal record to the host	

The serial link allows a host computer to communicate with the BVT3200A. It is a three wires link with no hardware or software handshake. The communication parameters are 9600 bauds, 1 start bit, even parity, 1 stop bit. RS232 connector pin assignment and names are explained above in table <u>"RS232 connector pin assignment" on page 13</u>.

RS232 cable 4.7

A cable with two 9 pins female connectors is required to link the host computer to the BVT3200A. The maximum recommended cable length is 10 m (30 feet). The cable shield is connected to the connector's case.

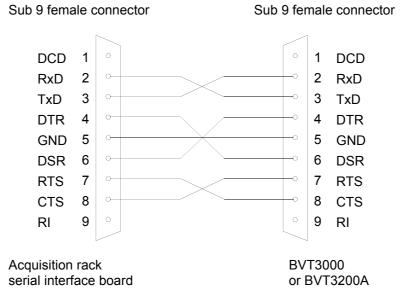


Figure 4.1. RS232 cable

The microcontroller detects automatically the installed optional board (LN $_2$ evaporator or LN $_2$ heat exchanger) and the devices connected on the front panel (exchanger or evaporator). The firmware authorizes only the use of the functions relative to the installed options. Let us suppose, for instance, the N2 exchanger is installed: you cannot use the evaporator functions. The answer to an unauthorized function will be a **«NACK»**. The following table gives the different possible options and their authorised functions. In this table, **«X»** means authorised and a empty cell means unauthorised.

Table 4.3. Authorised commands

COMMAND	STANDARD	WITH EVAPORATOR	WITH EXCHANGER	PROBLEM
AF	Х	Х	Х	Х
СМ	Х	Х	Х	
CO	Х	Х	Х	
DL	Х	Х	Х	
DT	Х	Х	Х	
ES	Х	Х	Х	
HP	Х	Х	Х	
IS	Х	Х	Х	Х
NH		Х		
NP		Х		
P1	Х	X	Х	Х
P2	Х	Х	Х	Х
P3	Х	Х	Х	Х
P4	Х	Х	Х	Х
SV	Х	Х	Х	Х
RB	Х	Х	Х	Х
WB	Х	Х	Х	Х
WR	Х	Х	Х	Х
XR	Х	Х	Х	Х

AF - Air Flow 4.8.1

Write

Syntax: EOT 0 0 0 0 STX AF>ABCD ETX BCC

Response: ACK

Description: This command allows to control the gas flow delivery.

Rules: The unit has four gas flow valves. ABCD represent the value of

the delivery. Each character represent one valve state (a part of the maximum delivery) and can only be «0» or «1». The total delivery is the amount of the four individual deliveries. A **NACK**

is send if one of these characters is not «0» or «1».

Table 1.2." Default gas flow versus jumper settings" on

page 10 shows the different gas flow deliveries.

Example: If ABCD is set to «1100» (12 decimal), The delivery corre-

sponds to 1600 litres per hour.

NB: At start the microcontroller reads the jumpers (JP7-10) and the gas flow is set as defined by the jumpers settings.

JP7 : V1 (A) JUMPER NOT SET → VALVE OPEN
JP8 : V2 (B) JUMPER SET → VALVE CLOSED

JP9 : V3 (C) JP10 : V4 (D)

These jumpers are located between the valve block and the temperature controller.

WARNING: Space characters are not allowed.

Read

Syntax: EOT 0 0 0 0 **AF** ENQ

Response: STX AF > Value ETX BCC

Description: This command allows to read the actual gas delivery.

Rules: Value is a 4 characters string.

Table 1.2." Default gas flow versus jumper settings" on

page 10 shows the different gas flow deliveries.

4.8.2

Read

Syntax: EOT 0 0 0 0 CM ENQ

Response: ACK if the RAM test has complete.

NACK if the test failed.

Description: This command starts a complete microcontroller RAM test.

WARNING: After the (ACK or NACK) answer the interface is always RESET.

CO - Communications Speed

4.8.3

Write

Syntax: EOT 0 0 0 0 STX CO ABCDE ETX BCC

Response: ACK

Description: This command allows to program the ASCON M5 interface

speed communication. After power on, speed communication is

set to 9600 Bauds.

Rules: ABCDE represent the baud rate. It is a five characters string.

This string can have one of the following values^a:

ABCDE 19200 _9600 _4800 _2400 _1200

a. represent the space character. It can be replaced by '0'.

Read

Syntax: EOT 0 0 0 0 STX **CO** ENQ

Response: STX CO ABCDE ETX BCC

Description: This command allows to read the Interface ASCON M5

communication speed.

Rules: «ABCDE» represent the baud rate. It is a 5 characters string.

The string can have the following values^a:

ABCDE 19200 _9600 _4800 _2400 _1200

a. _ represent the space character.

DL - Download 4.8.4

Write

Syntax: EOT 0 0 0 0 STX DL val ETX BCC

Response: ACK if command issues.

NACK in all other cases.

Description: DL initializes download. This command must be repeated two

times successfully to enter in the mode which allows the host to

transfer code.

Take care: Flash Eprom is erased on the second DL command.

On second DL1 command, regulation is interrupted. Heater, evaporator and gas flow are switched off. All the

software user function are inaccessible.

Rules: Val can be «0» or «1».

 «0» stops download. If the download is in progress, a new one must be performed completely to make the BVT3200A

run correctly.

• «1» initializes download. The «DL1» command must be send

twice to start the process (FLASH memory erased).

Read

Syntax: EOT 0 0 0 0 DL ENQ

Response: STX DL val ETX BCC

Description: Allows the user to get information about down-load.

Rules: Val = «0»: No down-load in progress.

Val = «1»: Down-load in progress but flash eprom is not erased. Val = «2»: Down-load in progress and flash eprom erased.

DT - DAC Check (for test only)

4.8.5

Read

Syntax: EOT 0 0 0 0 DT state ETX BCC

Response: ACK

Description: This command allows to starts a LN₂ DAC test.

Rules: State can be «0» or «1».

«1» means test on.
«0» means test off.

ES - Error Status 4.8.6

Write

Syntax: EOT 0 0 0 0 STX ES val ETX BCC

Response: Always NACK.

Read

Syntax: EOT 0 0 0 0 ES ENQ
Response: STX ES val ETX BCC

Description : Allows the user to get information about the last six errors.

Explanations: At each «ES» request, the last error code is sent and then

reset. If more than six errors are memorised, the oldest error code is replaced by the new one. To erase all errors, one must

send «ES» requests until response is «ES0».

The returned value «Val» is the error code. The different error

codes are given in the table below.

Table 4.4. Error status description

VAL	SIGNIFICATION	COMMENT
0	NOERROR	no error in command
1	SYNTAX	unknown command/syntax error
2	checksum	checksum error
3	erasefail	flash eprom erase error
4	programmfail	flash eprom program error
5	wrongrecordtype	no intel hex record
6	wrongaddress	program address out of range
7	wrongchecksum	checksum error intel hex
8	wrongtransmissioncheck	wrong eof record
9	wrongdatacount	byte counter error
10	noappsw	no application software
11	nobbis	no BBIS available
12	bbiscs1	BBIS checksum error block 1
13	bbiscs2	BBIS checksum error block 2
14	bbiscs3	BBIS checksum error block 3
15	bbiscs4	BBIS checksum error block 4

HP - Heater Power 4.8.7

Write

Syntax: EOT 0 0 0 0 STX HP state ETX BCC

Response: ACK If state equals «0» or «1»

NACK In all other cases

Description: This command allows to switch ON or OFF the gas flow

heating.

Rules: State can be «0» or «1».

«1» switch the heater ON«0» switch the heater OFFAll other values are ignored.

WARNING: Space characters are not allowed.

Read

Syntax: EOT 0 0 0 0 HP ENQ

Response: STX HP state ETX BCC

Description: This command allows to read the heater's state.

Rules: State can be «0» or «1».

«1» means that heater is ON
«0» means that heater is OFF

NB: after power on the heater is OFF.

IS - Interface Status 4.8.8

Read

Syntax: EOT 0 0 0 0 IS ENQ

Response: STX IS > ABCD ETX BCC

Description: This command allows to read back the interface status.

Rules: The status word is made of sixteen bits, each one represents a

particular function of the interface as detailed below.

The 16 bits are sent as four hexadecimal numbers preceded by «>» to warn the computer that the data is hexadecimal.

Digits ABCD are ASCII characters representing a hexadecimal

digit (0-9, A-F).

Note: Interface Status (IS) in the format (>ABCD)

Table 4.5. Interface status

DIGIT	BIT	SIGNAL NAME	FUNCTION
D1	0	heater on	1= heater is ON
D2	1	not used	always 0
D3	2	evap conn	1 = evaporator connected
D4	3	missing gas flow	1 = missing gas flow
C1	4	overheating	1 = heater overheating
C2	5	exch conn	1 = exchanger connected
C3	6	LN ₂ refill	1 = refill LN ₂ tank
C4	7	LN ₂ empty	1 = LN ₂ tank is empty
B1	8	evaporator status	1 = LN ₂ heater is on
B2	9	not used	1 always
В3	10	booster connected	1 = BVTB3500 present
B4	11	reserved	0 always
A1	12	reserved	0 always
A2	13	reserved	0 always
A3	14	reserved	0 always
A4	15	reserved	0 always

Write

Syntax: EOT 0 0 0 0 STX NH Value ETX BCC

Response: ACK

Description: This command allows to control the LN₂ heater power

(Evaporator).

Rules: The value from 0 up to 100%, is defined as a string up to 5

characters long. The string can begin with 1 to 5 spaces or «0». After power on, the initial value is set to 0 (the nitrogen heater is

OFF).

Read

Syntax: EOT 0 0 0 0 NH ENQ

Response: STX NH Value ETX BCC

Description : This command allows to read back LN₂ heater power.

Rules: Value from 0 to 100%, is a string up to 5 characters long.

The string can begin with 1 to 5 spaces or «0».

NB: Value is a DECIMAL code.

NP - Nitrogen Heater Power

4.8.10

Write

Syntax: EOT 0 0 0 0 STX NP state ETX BCC

Response: ACK

Description: Allows to switch nitrogen heater power ON or OFF.

Rules: State can be «0» or «1».

«1» switch LN₂ heater ON.
«0» switch LN₂ heater OFF.

WARNING: Space characters are not allowed.

Read

Syntax: EOT 0 0 0 0 NP ENQ

Response: STX NP State ETX BCC

Description: Allows to read Nitrogen Power.

Rules: State can be «0» or «1».

State at «1» means that LN₂ heater is ON. State at «0» means that LN₂ heater is OFF.

NB: After power on the nitrogen heater power is at «0».

This port represents the main status of the BVT3200A unit.

Port 1 is described in the following table

Table 4.6. Port 1 definition

BIT	NAME	FUNCTION
0	heater	1 = Probe heater is ON
1	aux1	Unused
2	evaporator	1 = LN ₂ heater is ON (with option)
3	aux2	Unused
4	valve1	1 = Valve 1 open
5	valve2	1 = Valve 2 open
6	valve3	1 = Valve 3 open
7	valve4	1 = Valve 4 open

Write

Syntax: EOT 0 0 0 0 STX P1 AB ETX BCC

Response: ACK

Description: Allows to write directly to port 1.

Rules: The first character represents the state of port 1 bits 4 to 7.

The second character represents the state of the bits 0 to 3.

The characters are hexadecimal.

Read

Syntax: EOT 0 0 0 0 P1 ENQ

Response: STX P1 > ABCD ETX BCC

Description: Allows direct read access to port 1.

Rules: A and B are always «0». The third character represents the

state of port 1 bits 4 to 7. The fourth character represents the state of the bits 0 to 3. All the characters are hexadecimal.

The power level applied to the LN_2 evaporator is set by an analog control signal delivered by a 8 bit DAC (Digital to Analog Converter). Port 2 provides the bits for LN_2 control DAC :

Table 4.7. Port 2 definition

BIT	NAME	FUNCTION
0	1LN ₂	DAC bit 0
1	2LN ₂	DAC bit 1
2	3LN ₂	DAC bit 2
3	4LN ₂	DAC bit 3
4	5LN ₂	DAC bit 4
5	6LN ₂	DAC bit 5
6	7LN ₂	DAC bit 6
7	8LN ₂	DAC bit 7

Write

Syntax: EOT 0 0 0 0 STX P2 AB ETX BCC

Response: ACK

Description: Allows direct write access to port 2.

Rules: The first character represents the state of port 2 bits 4 to 7.

The second character represents the state of the bits 0 to 3.

The characters are hexadecimal.

Read

Syntax: EOT 0 0 0 0 P2 ENQ

Response: STX P2 > ABCD ETX BCC

Description: Allows direct read access to port 2.

Rules: A and B are always «0». The third character represents the

state of port 2 bits 4 to 7. The fourth character represents the state of the bits 0 to 3. All the characters are hexadecimal.

4.8.13

Port 3 allows to read the internal status of the BVT3200A. It is composed as follows:

Table 4.8. Port 3 definition

BIT	NAME	FUNCTION
0	heater on	1 = probe heater is ON
1	booster connected	1 = BVTB3500 present
2	evap conn	1 = evaporator device is connected
3	no gas	1 = missing gas flow
4	overheating	1 = overheating on probe heater
5	exch conn	1 = Exchanger connected
6	LN ₂ refill	1 = LN ₂ tank is almost empty
7	LN ₂ empty	1 = LN ₂ tank is empty

Read

Syntax: EOT 0 0 0 0 P3 ENQ

Response: STX **P3** > ABCD ETX BCC

Description: Allows direct read access to port 3.

Rules: A and B are always «0». The third character represents the

state of port 3 bits 4 to 7. The fourth character represents the state of the bits 0 to 3. All the characters are hexadecimal.

Port 4 allows to read the internal status of the BVT3200A and sets the gas flow rate at power on.

It is composed as follows:

Table 4.9. Port 4 definition

BIT	NAME	FUNCTION
0	unused	
1	unused	
2	unused	
3	evap_on	1 = evaporator heater on
4	V1	jumper JP13
5	V2	jumper JP13
6	V3	jumper JP12
7	V4	jumper JP12

When a jumper is placed, it means that the valve is closed at power on.

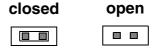


Figure 4.2. Valve jumpers settings

Read

Syntax: EOT 0 0 0 0 P4 ENQ

Response: STX **P4** > ABCD ETX BCC

Description: Allows direct read access to port 4.

Rules: A and B are always «0». The third character represents the

state of port 3 bits 4 to 7. The fourth character represents the state of the bits 0 to 3. All the characters are hexadecimal.

RB - Read BBIS 4.8.15

Write

Syntax: EOT 0 0 0 0 STX RB adr_e2prom A1 A0 ETX BCC

Response: STX RB > D0 D1 ETX

NACK if command can't issue.

Description: RB command allows to read a single byte in a BBIS E2PROM.

Rules: A0, A1 are values from «0» up to «F» representing the byte

address in the E2PROM.

adr_E2prom is a value from $\mbox{\ensuremath{$^{\circ}$}}$ up to $\mbox{\ensuremath{$^{\circ}$}}$ representing the I2C bus address of the E2PROM

«0»: Address unused

«1»: BVT3200A motherboard address
«2»: BVTB3500 (Booster) address

«3»: Address unused «4»: Address unused «5»: Address unused «6»: Address unused «7»: Address unused

All other values generate a NACK response

SV - Software Version 4.8.16

Read

Syntax: EOT 0 0 0 0 SV ENQ

Response: STX SV Version ETX BCC

Description: Version is a 5 characters (SSHHO). This string splits in:

- SS is the SOFT version- HH is the HARDWARE version- O indicates the installed OPTIONS

Example: The string received is:

HEX: 02H 53H 56H 30H 31H 32H 33H 35H 02H 37H

ASCII: STX 'S' 'V' '0' '1' '2' '3' '5' ETX BCC

It means: SOFTWARE Version 0.1

HARDWARE Version 2.3

OPTIONS 5

The different options identifications are defined as follows:

«1»: Not used.

«2»: LN₂ Evaporator option.

«3»: Not used.

«4»: LN₂ Exchanger option.

«5»: Not used.

«6»: Problem detected.

WB - Write BBIS 4.8.17

Write

Syntax: EOT 0 0 0 0 STX **WB** adr_e2prom A1 A0 D1 D0 ETX BCC

Response: ACK if command issues

NACK in all other cases

Description: WB command allows to write a single byte on a BBIS

E2PROM.

Rules: A0, A1 are values from «0» up to «F» representing the address

in the E2PROM.

D0, D1 are values from «0» up to «F» representing the value to

be written.

adr_e2prom is a value from $\mbox{\ensuremath{$^{\circ}$}}$ up to $\mbox{\ensuremath{$^{\circ}$}}$ representing the I2C bus address of the E2PROM

0: Address unused

1: BVT3200A motherboard address

2 : BOOSTER address

3 : Address unused

4: Address unused

5 : Address unused

6 : Address unused 7 : Address unused

All other values generates a NACK response

WR - Write Record 4.8.18

Intel-Hex format is used to download the firmware on flash-eprom. The file to transfer is generated with OHS51.EXE. Its file extension is «.HEX». This file is composed by several records. Each record is composed as shown below :

: L L A A A A T T D D D D D C C Cr Lf

Table 4.10. Record format

FIELD	LENGTH	SIGNIFICATION
: (3A)	1	Record start
L	2	Record length
А	4	Record address
Т	2	Type (00: Data record, 01: EOF record)
D	LL	Data's
С	2	Checksum

Write

Syntax: EOT 0 0 0 0 STX TR Rec ETX BCC

Response: CK if down-load initialized and the record processing issues.

NACK in all other cases

Description: Allows to transfer records extract from a «.hex» file to the

BVT3X00.

Rules: Rec value represents an intel-hex record.

The first character «:» (3A), Cr and Lf are not transmitted.

4.8.19

Write

Syntax: EOT 0 0 0 0 STX X R Val ETX BCC

Response: STX 0 0 0 0 X R Rec BCC

Description: This command is useful to save a working software before to

process a new download.

Take care: If Val = 1, regulation is interrupted. Heater, evaporator and gas

flow are switched off.

All the software user function are inaccessible.

Rules: Val = 0: Stops the upload process.

Val = 1: Initilizes the upload process.

Val = 2 : Autorizes the BVT3200A to send the next record. Val = 3 : Ask the BVT3200A to send the same record again.

The upload process is initialized by receiving «XR1» from the host computer. The BVT3200A sends the first Intel-hex record. The BVT3200A waits then for «XR2» to continue.

This command autorizes the BVT3200A to send the next record. This handshake continues until the BVT3200A sends the last record which is «0 0 0 0 0 0 1 F F». Host computer must detect it. Then, BVT3200A sends an «XR0» requests to terminate up-load process and return to normal mode.

If BVT3200A receives an «XR3» command, the previous record is sent again.

An «XR0» Command must be sent to terminate the up-load sequence and return to normal mode.

46 (55)

Specifications 5.1

Table 5.1. BVT3200A Specifications

Temperature controller	ASCON M5 (display units K or °C).	
Sensors	T thermocouple with compensated connector. BTO2000 or PT100.	
Temperature range	35°C to 200°C without special accessory.	
	 Low temperature limit: -5° C with BCU05 cooler. -150 °C with LN₂ exchanger or LN₂ evaporator. 	
	High temperature limit : 600 °C with power booster BVTB3500	
Temperature stability	0.01 °C/°C for sample temperature between 0 °C and 50 °C, using a BTO2000 and BCU05. 0.1 °C/°C without BTO2000.	
Heater power	135 W (48 V max. on 12 Ω probe heater). Output current limitation at 6A max.	
Gas inlet	Dry air or nitrogen 4 bar mini and 7.5 bar maxi. Dry air, dew point < 5 °C for operation above room temperature. Dry air, dew point < -50 °C for operation with BCU05 cooler.	
Gas flow rate	200 l/h to 2000 l/h. Fifteen values available. Controlled by software.	
Control	Computer control via RS232 interface.	
Software control	By EDTE / TOPSPIN 2.1 or later.	
Options	LN ₂ evaporator (210W, with optional printed circuit board and 400 VA power supply). LN ₂ exchanger (with optional printed circuit board). BCU05 gas cooler. BVTB3500 External Power Booster. BVT3900 Probe heat exchanger.	

Power requirements	5V /1A. 24V / 0.15A for ASCON M5 unit. 24V / 0.5A for pneumatic15V / 0.5A. +15V / 0.5A. 48V / 4.1A standard. 48V / 8.3A with LN ₂ evaporator option board.	
Weight	1.5 kg without option board.	
Dimensions	61 mm length. 262 mm height. 246 mm depth.	

Safety fuses 5.2

Some important electronic functions are fuse protected. To replace a blown fuse, turn off the BVT3200A and disconnect the main power cord. A faulty fuse must always be replaced with the same type.

Table 5.2. Fuses values

Fuses Value		Protection for	
F1 5 AT		Probe heater resistor	
F3	10 AT	48V power supply	

Figures

1 Description	5
Figure 1.1. BVT3200A block diagram	6
Figure 1.2. Parts location (top view)	
Figure 1.3. BVT3200A front panel	
Figure 1.4. Gas flow circuit	9
Figure 1.5. Heater connector (Front view)	11
Figure 1.6. PT100 connector (front view)	11
Figure 1.7. Thermocouple connector (Front view)	12
Figure 1.8. RS232 male connector (Front view)	13
Figure 1.9. N ₂ connector (Front view)	
Figure 1.10.BCU05 connector	
Figure 1.11.BVTB 3500 connector (Front view)	14
2 Options	17
Figure 2.1. Exchanger principle	18
Figure 2.2. Evaporator principle	
Figure 2.3. Dismount the gas tube	20
Figure 2.4. Place the option board	21
Figure 2.5. Gas connection	21
Figure 2.6. BCU05 principle	22
3 Configuration	23
4 Remote interface control	25
Figure 4.1. RS232 cable	28
Figure 4.2. Valve jumpers settings	
5 Technical specifications	47

Figures

Tables

1 Descri	iption	5
Table 1.1.	Default gas settings	10
Table 1.2.	Default gas flow versus jumper settings	10
	Heater connector pin assignment	
	PT100 / BTO2000 connector pin assignment	
Table 1.5.	Thermocouple T pin assignment	
Table 1.6.	RS232 connector pin assignment	
Table 1.7.	Evaporator connector pin assignment	
	BCU05 connector pin assignment	
Table 1.9.	BVTB 3500 connector pin assignment	14
2 Option	าร	17
3 Config	guration	23
4 Remo	te interface control	25
Table 4.1.	Control characters	26
Table 4.2.	List of commands	27
	Authorised commands	
Table 4.4.	Error status description	
Table 4.5.	Interface status	
Table 4.6.	Port 1 definition	
	Port 2 definition	
	Port 3 definition	
	Port 4 definition	
i able 4.10	. Record format	45
5 Techn	ical specifications	47
Table 5.1.	BVT3200A Specifications	47
Table 5.2	Fuses values	48

Tables

Index

В	
BBIS eeprom	14 22 23
C	
Cryoprobe	12
D	
digital interface specification	25
F	
front panel connectorsfuses	
Н	
Heater connector	11
L	
LN2 evaporator	13
N .	
N2 connector	13
P	
PT100 connector	11
R	
RS232 connector	13

Index

S

Sensor selection	23
Τ	
Temperature controller	5
Thermocouple connector	

End of Document

Bruker BioSpin, your solution partner

Bruker BioSpin provides a world class, market-leading range of analysis solutions for your life and materials science needs.

Bruker BioSpin Group

info@bruker-biospin.com www.bruker-biospin.com

