The information in this manual may be altered without notice.

BRUKER BIOSPIN accepts no responsibility for actions taken as a result of use of this manual. BRUKER BIOSPIN accepts no liability for any mistakes contained in the manual, leading to coincidental damage, whether during installation or operation of the instrument. Unauthorised reproduction of manual contents, without written permission from the publishers, or translation into another language, either in full or in part, is forbidden.

This manual was written by

David Kilgour

© April 23, 2004: Bruker Biospin GmbH
Rheinstetten, Germany

P/N: Z31704
DWG-Nr: 1411003
DECLARATION OF CONFORMITY

The undermentioned product

BPSU36-2 PEAK SAMPLING UNIT H10044

conforms to the main requirements
set by the commission for the
Harmonization of Regulations of the EU Member States
with regards to electromagnetic compatibility
(EMI 89/336/ECC) and safety (Low Voltage Electrical
Equipment: 72/23/ECC) regulations.

For the assessment the following norms were applied:

EMI: EN 61326-1: 2001
Test report: Nemko FS-0211-03948
Safety: EN 61010-1: 2\textsuperscript{nd} ed. (2001)
Test report: Nemko EL-0212-04080
Documentation: Z31704 Docu Standard: BPSU36-2 Peak Sampling Unit

Manufacturer’s Name: BRUKER BIOSPIN GmbH
Manufacturer’s Address: 76287 Rheinstetten, Silberstreifen, Germany

Declaration approved by:

Dr. Tonio Gianotti
Head of Development

Rheinstetten 27.01.2004
Declaration of Conformity
Contents

Declaration of Conformity ................................................................. iii

Contents ................................................................................................. v

1 About This Manual ............................................................................. 7
  1.1 Introduction ...................................................................................... 7
  1.2 Disclaimer ........................................................................................ 7
  1.3 Warnings and Notes ....................................................................... 8
  1.4 Contact for Additional Technical Assistance ................................. 8

2 Terms and Definitions ......................................................................... 9

3 BPSU36-2 .......................................................................................... 11
  3.1 Purpose ............................................................................................ 11
  3.2 LC-NMR-MS .................................................................................. 11
  3.3 BPSU36-2 Hardware ...................................................................... 12
  3.4 Nitrogen /Compressed Air Connections: ......................................... 13
  3.5 The Valve Module .......................................................................... 14
  3.6 Rotary Valve Positions .................................................................... 15
    Initialise Position ............................................................................... 15
    Direct Flow On ................................................................................. 16
    Probe Wash. ..................................................................................... 16
    Direct Flow Off. ............................................................................... 17
    Sample Position. ............................................................................... 18
    Loop Wash Position ......................................................................... 18
    Transfer Preflow / Dry Probe. ............................................................ 19
    Transfer to Waste (reverse flow). ...................................................... 20
    Transfer Loop (reverse flow) .............................................................. 21
  3.7 Cooling Unit .................................................................................... 22
    Adjustment of the Endstop Adjustment Nuts ..................................... 24
    Cooling Unit Wire Harnesses ......................................................... 25

4 Wiring .................................................................................................. 27
  4.1 Mains AC Wiring ............................................................................ 27
  4.2 Wire Harnesses and Board Layouts ................................................ 28
    Wire Harnesses to Control and Ethernet Boards: ............................ 29
  4.3 Harness Pin Connections ................................................................. 30
    Connections Within the Valve Module ............................................. 33
# Contents

## 5 Embedded Web Server

5.1 The Home Page ................................................................. 39  
   Meaning of the Status Page Data ..................................... 40  
5.2 Cassette Serial Number (S/N) Page .................................. 41  
5.3 Cassette File List Page .................................................... 41  
   Files Page Meaning ....................................................... 42  
5.4 The Service Pages .......................................................... 43  
   The 'Main' page: ews.html ............................................. 43  
   The 'Device Information' page: info.html ......................... 44  
   The 'Service' Page': service.html ..................................... 45  
   The 'Cassette Configuration' Page: cassette.html ............. 46  
   Cassette Load / Unload ................................................. 46  
   The 'Valve Configuration' Page: valves.html .................... 48  
   The 'Cooler Configuration' Page: cooler.html ................... 49  
   The 'View Error Queue' Page: errors.html ....................... 50

## 6 FTP Download

6.1 Ethernet Program Download ............................................. 51  
   Home Page in Boot Mode .............................................. 52  
   Copy the new Program via FTP ...................................... 53  
6.2 Control Board Program Download ..................................... 57  
6.3 Control Board Download using EWS .................................. 57  
6.4 Control Board Download in Progress ............................... 60  
6.5 Control Board Download using url Address line Commands ... 61

## 7 Service Information

7.1 General Information ...................................................... 65  
   Cleaning ........................................................................ 66  
7.2 Safely Loading and Unloading the Cassette ....................... 66  
7.3 Maintenance: Valve Head Replacement ............................ 67  
7.4 Physical Specifications .................................................. 68

## Figures

.................. 69

## Tables

........................ 71
Introduction

This manual is included in delivery of the BPSU36-2 unit
It instructs how to:
• install and configure the BPSU36-2 Unit
• operate the Unit

Disclaimer

The Unit should only be used for its intended purpose as described in this manual. Use of the unit for any purpose other than that for which it is intended is taken only at the users own risk and invalidates any and all manufacturer warranties.

Service or maintenance work on the unit must be carried out by qualified personnel.

Only those persons schooled in the operation of the BPSU36-2 should operate the unit.

Read this manual before operating the unit. Pay particular attention to the warnings in the chapter 'Service Information'.
About This Manual

Warnings and Notes 1.3

There are two types of information notices used in this manual. These notices highlight important information or warn the user of a potentially dangerous situation. The following notices will have the same level of importance throughout this manual.

Note: Indicates important information or helpful hints

WARNING: Indicates the possibility of severe personal injury, loss of life or equipment damage if the instructions are not followed.

Contact for Additional Technical Assistance 1.4

For further technical assistance on the BPSU36-2 unit, please do not hesitate to contact your nearest BRUKER dealer or contact us directly at:

BRUKER BioSpin GMBH
am Silberstreifen
D-76287 Rheinstetten
Germany

Phone: + 49 721 5161 0
FAX: + 49 721 5171 01
Email: lcnmr@bruker.de
Internet: www.bruker.de
Terms and Definitions

- **BPSU36**  
  Bruker Peak Sampling Unit used to store up to 36 HPLC separations for later analysis in an NMR and/or an MS System.

- **BPSU36-2**  
  Successor to the Bruker Peak Sampling Unit used to store up to 36 HPLC separations for later analysis in an NMR and/or an MS System. Uses High pressure valves, has a 100Mbit Ethernet Interface and operates with an 8Mb Storage Cassette.

- **BNMI**  
  Bruker NMR-MS Interface

- **BSFU-O**  
  Bruker Stopped Flow Unit (Oven). Used in conjunction with an HPLC Pump and the BPSU36 to perform HPLC.

- **BMSO**  
  Bruker Multi Column Switching Oven: Successor to the BSFU-O. Operates together with the BPSU36-2 or in ‘Stand-Alone’ mode.

- **Esquire**  
  Bruker Ion Trap MS System

- **Esquire 3000**  
  Successor to the Esquire

- **HPLC**  
  High Pressure Liquid Chromatography

- **LCNMR**  
  Combined HPLC and NMR analysis

- **NMR**  
  Nuclear Magnetic Resonance

- **MS**  
  Mass Spectroscopy

- **HyStar**  
  Bruker PC (Window 2000) Program integrating control of the BPSU36, BSFU, BNMI and Esquire (MS) systems.

- **UV**  
  Ultra Violet

- **Peak**  
  A peak is an HPLC separation which has been identified either as a UV absorptions peak or as an MS Peak.
Terms and Definitions
BPSU36-2

Purpose

Like its successor, the BPSU36, the primary purpose of the BPSU36-2 is to store HPLC Peaks in the Storage Cassette for later analyses in MS and/or NMR systems. The BPSU36-2 uses pneumatically driven high pressure valves to provide fast reliable switching of the fluid flow. Although the BPSU36-2 can work in stand-alone mode it is primarily intended to operate as part of an LC-NMR (-MS) system controlled by HyStar. The BPSU36-2 is connected to the system via an Ethernet Interface.

LC-NMR-MS

Ethernet Connection to PC running HyStar

Figure 3.1. LC-NMR-MS System
The Unit consists of:

A Valve Module containing 4 pneumatically operated high-pressure rotational valves used to control the fluid flow.

A Cooling Unit in which the storage cassette can be cooled to 4°C (to keep the stored peaks stable longer) or heated to 40°C. The Cassette is loaded and unloaded by means of a pneumatic cylinder.

A Power Supply: +24V and +5V

The BPSU36-2 Control Board which is used to control the internal functions of the unit.

The BPSU36-2 100Mbit Ethernet Board which communicates control commands received over the ethernet interface to the control board and returns status information from the control board back over the ethernet interface.

Two Nitrogen/Compressed air inputs. The valves can be operated by either nitrogen or oil free dry compressed air. However, nitrogen must be used when flushing the cassette and the probe.

A 24V DC fan for cooling purposes.
Nitrogen /Compressed Air Connections:

The external connection to the left (viewed when facing the rear panel) is used to flush the probe with gas. This is intended for nitrogen (or argon etc. if you so wish) and not for compressed air.

The connection to the right can be connected to either nitrogen or to dry, filtered compressed air. This is only used for the rotational valves and the drive cylinder to load and unload the cassette.

Both connections take 4mm tubing. The input pressure to both can be in the range 3 - 10Bar. The internal pressure to the valve actuators should be set using the pressure regulators to 2.5±0.3 Bar (= factory setting).

The internal N₂ pressure to the probe can be set to 1- 4Bar. The maximum pressure allowed is dependent on the probe used: Higher pressure means shorter probe flush time.

Figure 3.3. Connection Plan: Nitrogen and Compressed Air
The Valve Module consists of:

- 4 pneumatically driven rotary valves with position sensors.
- An 8 way valve block to switch the air to the valve drives. (See "8 Way Valve Block" on page 36)
- A connector board to interface between the Controller Board and the Valve Module.
- A leak sensor to detect if any of the rotary valve connections are leaking.
The four rotary valves, labelled Valve 1 to Valve 4, are 2 position valves which can either be moved to Posn 0 or Posn 1. Posn 0 is where the valves are rotated counterclockwise (when viewed from in front of the valve module) against the valve internal endstop. Posn 1 is where the valves are rotated clockwise against the valve internal endstop. Valve 1 also has Posn 2 where the valve sits between the endstops such that all ports are blocked.

The fluid path through each valve for both Posn 0 and Posn 1 and the tube connections to the valves are shown in the following diagrams.

These valve positions have been pre-defined in the control firmware and can be accessed directly by sending the appropriate command. (See "The 'Valve Configuration' Page: valves.html" on page 48). Further positions may be defined later if and as required.

**Initialise Position** 3.6.1

(= direct to Waste) All Valves at Position 0.

---

**NOTE:** In the first Units (to S/N 18) V3 is an 8-Port Valve. As only 4 of the 8 Ports are used, the valve functions as a 4-Port valve. The connections to the 8-Port Valve are shown to the right.
**Direct Flow On**  

3.6.2

The Fluid Path leads directly to the NMR probe. This setting is used for 'Stopped Flow' experiments. In this setting the probe cell is filled directly.

**Probe Wash.**  

3.6.3

This setting is identical to 'Direct Flow On'. In this case, however, pure solvent is pumped through the probe in order to wash it.
The fluid flows directly to Waste. The flow to/from the probe is blocked.

2,0,0,0 (DOF)
**Sample Position.**

3.6.5

The fluid flows into the Loop Cassette. The flow to/from the probe is blocked.

**Loop Wash Position**

3.6.6

This setting is identical to 'Sample Position'. Here, however, pure solvent is pumped through the cassette to wash it.
This is the first part of the 'Transfer loop' Operation. The fluid path is filled with the same solvent as was used for the loop to be transferred. The fluid at present in the probe is flushed out with N₂ (backwards flush) and the cell dried. During this period the cassette can be moved to the next loop position.
Transfer to Waste (reverse flow). 3.6.8

This is the second part of the 'Transfer Loop' Operation. During 'Transfer Preflow' the path from Valve V1 through the cell in the probe was filled with N₂ and the Loop Cassette was been moved to the loop to be transferred.

Now the peak is pumped out of the loop. The fluid in the path in front of the loop is directed to waste until the front of the peak reaches position 'X' just before V1. At this point V1 is switched to Posn 0 and the 'Transfer Loop' to probe phase is in operation. (see "Transfer to Waste (reverse flow)." on page 20).
This is the third and final phase of the 'Transfer Loop' operation. Once the peak has reached Valve 1 the fluid path is then switched to the probe. This path had previously been flushed with N2.

This ensures that effectively an undiluted sample goes directly to the probe via a clean path.

The peak is pumped in the opposite direction from 'Sample Loop' from the loop with the fluid in the path ahead of the peak being directed to waste (see "Transfer to Waste (reverse flow)." on page 20) until HyStar determines that the start of the peak has reached position 'X' just before Valve 1.
The Cooling Unit consists of:

- an insulated housing.
- an insulated door
- a cooling (or heating) plate.
- a fan to circulate the air.
- a cassette connector block to connect both the electrical and fluid paths to the cassette.
- a leak sensor to detect fluid leaks from the cassette
- a cassette holder in which the cassette is loaded.

Figure 3.5. Cooling Unit Front View
• a rotary drive to the cassette to allow the cassette to be moved to the various loop positions.

---

**When the cassette holder is in the out (unloaded) position DO NOT put fingers or any other body part behind the cassette holder or behind the cassette should one be in place. The 'cassette load' operation is carried out by a pneumatic cylinder which pulls with a force of approx. 150Newton (= ca. 15kg) with the operating pressure set to 2.5Bar. This could cause severe injury to any body parts unintentionally placed behind the cassette holder when a 'load cassette' (with or without cassette) is initiated.**

---

![Diagram](image)

**Figure 3.6. Cooling Unit Viewed from Above**

• a door switch to detect if the door is closed or open
• 2 Peltier elements to cool or heat the cooling unit
• a copper heat conductor between the cooling plate and each of the Peltier elements (inside the insulated housing)
• a heatsink on the outside of each of the Peltier elements
a fan mounted on each of the heatsinks
• a pneumatic cylinder to load and unload the cassette
• 2 x linear bearing guides connected at one end to the cassette holder and at the other end to the pneumatic cylinder.
• a PT100 temperature sensor mounted behind the circulation fan. The air is sucked in here, blown over the PT100 and through a channel in the housing to come out of the circulation holes at the top of the cooling plate.
• a condensed water runoff hole leading to a moisture collection tray at the rear of the cooling unit. Due to its proximity to the air flow at the heatsinks any moisture collected here readily evaporates.

Adjustment of the Endstop Adjustment Nuts

The endstop adjustment nuts ("Cooling Unit Viewed from Above" on page 23) are set such that the storage cassette is pulled in to the correct depth when loaded. This adjustment is factory set and can only be done with the unit removed from the rack and with its top cover removed. This should only be performed by trained personnel. (See "Disclaimer" on page 7 and the warning on the previous page)

Initiate a 'Load In' command with the cassette removed.

The cassette holder moves in until the pneumatic cylinder reaches its internal endstop. As no cassette is detected the system turns off the air to the cylinder. Adjust the nuts until the front face of the cassette holder is 1mm-1.5mm deeper into the cooling unit than the front face of the white plastic connector block. (see Figure 3.7, left). As the cylinder is not held in position by air pressure you have to ensure that it is against its endstop by pushing the cassette holder fully in to the cooling unit.

Tighten both nuts and check this spacing again.

Figure 3.7. Cassette load depth adjustment
The 3 Fans, the door switch, the PT100 and the leak sensor are all connected to the sensor connector block mounted at the bottom rear of the cooling unit. A wire harness then connects this connector block to the control board.

Figure 3.8: Cooling Unit Rear View

The cooling plate is connected to ground to give added E.S.D protection.
Wiring

Mains AC Wiring

4.1

Filtered Mains Connector with 2 x 2A Fuses

Power Supply

Earth on Side Panel

Mains ON/OFF Switch on Front Panel

Earth on Front Panel

5 Core Mains Cable

blue

brown

black

black

green/yellow

green/yellow

green/yellow

brown

green/yellow
Wiring

Wire Harnesses and Board Layouts

Figure 4.1. Control Board Layout

- Shows Pin 1.
### Wire Harnesses to Control and Ethernet Boards:

<table>
<thead>
<tr>
<th>X1 (P1,P2)</th>
<th>+24V Enable Signal to PSU</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1 (P3,P4: ECL00)</td>
<td>Load Signal, Load LED on Front Panel Load Button</td>
</tr>
<tr>
<td>X28 (ECL01)</td>
<td>Is only needed when using old Load Button Harness.</td>
</tr>
<tr>
<td>X4 (ECL00)</td>
<td>+5V and GND to Front Panel Load Button</td>
</tr>
<tr>
<td>X27 (ECL01)</td>
<td>Also has Signal to X28 for new Load Button Harness.</td>
</tr>
<tr>
<td>X2</td>
<td>Motor Encoder in Cooling Unit</td>
</tr>
<tr>
<td>X5</td>
<td>4 Valve Block, Load Cylinder In/Out</td>
</tr>
<tr>
<td>X9</td>
<td>4 Valve Block, Rear Panel Valve</td>
</tr>
<tr>
<td>X10</td>
<td>Peltier Elements in Cooling Unit</td>
</tr>
<tr>
<td>X11</td>
<td>Rear Panel Ethernet Connection</td>
</tr>
<tr>
<td>X12</td>
<td>Motor Drive in Cooling Unit</td>
</tr>
<tr>
<td>X15</td>
<td>Load/Unload Sensors in Cooling Unit</td>
</tr>
<tr>
<td>X16</td>
<td>DC Power</td>
</tr>
<tr>
<td>X19</td>
<td>Cooling Unit Sensor Connector Block</td>
</tr>
<tr>
<td>X23</td>
<td>Cassette Connector Block in Cooling Unit</td>
</tr>
<tr>
<td>X24</td>
<td>RS232 (Debug Only)</td>
</tr>
<tr>
<td>X25</td>
<td>RS232 (Ethernet Board Debug Only)</td>
</tr>
<tr>
<td>X26</td>
<td>Valve Module</td>
</tr>
<tr>
<td>X2 (Ethernet Board)</td>
<td>Front Panel Ethernet Status Leds</td>
</tr>
<tr>
<td>X3 (Ethernet Board)</td>
<td>Front Panel Ethernet RJ45 Connector</td>
</tr>
</tbody>
</table>
### Harness Pin Connections

#### Table 4.1. +24V Enable (HZ10272)

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Colour</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1 P1</td>
<td>PSU Enable</td>
<td>Blue</td>
<td>None</td>
</tr>
<tr>
<td>X1 P2</td>
<td>PSU Enable</td>
<td>Orange</td>
<td>Enable +24V, Active Low</td>
</tr>
</tbody>
</table>

#### Table 4.2. Load/Unload Button on Front Panel (HZ10334)

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Colour</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1 P3</td>
<td>Button P 4</td>
<td>white</td>
<td>Load Signal, Active Low</td>
</tr>
<tr>
<td>X1 P4</td>
<td>Button P3</td>
<td>green</td>
<td>LED, Active Low</td>
</tr>
<tr>
<td>X4 P1</td>
<td>Button P1</td>
<td>brown</td>
<td>+5V thru’ 220R to LED</td>
</tr>
<tr>
<td>X4 P4</td>
<td>Button P2</td>
<td>yellow</td>
<td>DGND</td>
</tr>
</tbody>
</table>

#### Table 4.3. Motor Encoder in Cooling Unit (HZ10325)

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Colour</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>X2 P1</td>
<td>Encoder P1</td>
<td>black</td>
<td>DGND</td>
</tr>
<tr>
<td>X2 P2</td>
<td>Encoder P2</td>
<td>white</td>
<td>Not Connected</td>
</tr>
<tr>
<td>X2 P3</td>
<td>Encoder P3</td>
<td>grey</td>
<td>Encoder Phase A</td>
</tr>
<tr>
<td>X2 P4</td>
<td>Encoder P4</td>
<td>violet</td>
<td>+5V</td>
</tr>
<tr>
<td>X2 P5</td>
<td>Encoder P5</td>
<td>blue</td>
<td>Encoder Phase B</td>
</tr>
</tbody>
</table>

#### Table 4.4. Pneumatic Valves for Cassette Load/Unload (HZ10279)

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Colour</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>X5 P1</td>
<td>V1 P1</td>
<td>Brown/Red</td>
<td>+24V</td>
</tr>
<tr>
<td>X5 P2</td>
<td>V1 P2</td>
<td>white</td>
<td>Air On: Move Cass. In</td>
</tr>
<tr>
<td>X5 P3</td>
<td>V2 P1</td>
<td>Brown/Red</td>
<td>+24V</td>
</tr>
<tr>
<td>X5 P4</td>
<td>V2 P2</td>
<td>black</td>
<td>Air On: Move Cass. Out</td>
</tr>
</tbody>
</table>

---

**Figure 4.2.** Load Button Pinout

**Figure 4.3.** 4 Way Valve Block
Figure 4.4. Valves for N2 Switching (HZ10305)

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Colour</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>X9 P1</td>
<td>Valve 4 P2</td>
<td>red</td>
<td>N₂ to Rear Panel Valve</td>
</tr>
<tr>
<td>X9 P2</td>
<td>Valve 4 P1</td>
<td>Brown/Red</td>
<td>+24V</td>
</tr>
<tr>
<td>X9 P3</td>
<td>Valve 3 P2</td>
<td>blue</td>
<td>Spare</td>
</tr>
<tr>
<td>X9 P4</td>
<td>Valve 3 P1</td>
<td>Brown/Red</td>
<td>+24V</td>
</tr>
<tr>
<td>X9 P5</td>
<td>Valve Rear Panel</td>
<td>brown</td>
<td>N₂ to Rotational Valves</td>
</tr>
<tr>
<td>X9 P6</td>
<td>Valve Rear Panel</td>
<td>white</td>
<td>+24V</td>
</tr>
</tbody>
</table>

Table 4.5. Peltier Elements in Cooling Unit

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Colour</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>X10 P1</td>
<td>Peltier 1</td>
<td>red</td>
<td>+24V or PWM (Active Low)</td>
</tr>
<tr>
<td>X10 P2</td>
<td>Peltier 1</td>
<td>black</td>
<td>Is linked to X10 P3</td>
</tr>
<tr>
<td>X10 P3</td>
<td>Peltier 2</td>
<td>red</td>
<td>In Series with Peltier 1</td>
</tr>
<tr>
<td>X10 P4</td>
<td>Peltier 2</td>
<td>black</td>
<td>+24V or PWM (Active Low)</td>
</tr>
</tbody>
</table>

Table 4.6. Cassette Motor Drive in Cooling Unit (HZ10270)

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Colour</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1 P1</td>
<td>Motor</td>
<td>orange</td>
<td>+24V or PWM (Active Low)</td>
</tr>
<tr>
<td>X1 P2</td>
<td>Motor</td>
<td>black</td>
<td>+24V or PWM (Active Low)</td>
</tr>
</tbody>
</table>

Table 4.7. Load/Unload Sensors in Cooling Unit (HZ10278)

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Colour</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>X15 P1</td>
<td>Rear µSwitch</td>
<td>black</td>
<td>DGND to Load Sensor</td>
</tr>
<tr>
<td>X15 P2</td>
<td>Front µSwitch</td>
<td>black</td>
<td>DGND to Unload Sensor</td>
</tr>
<tr>
<td>X15 P3</td>
<td>Front µSwitch</td>
<td>blue</td>
<td>Load Detect (Active Low)</td>
</tr>
<tr>
<td>X15 P4</td>
<td>Rear µSwitch</td>
<td>blue</td>
<td>Unload Detect (Active Low)</td>
</tr>
</tbody>
</table>
### Table 4.8. DC Power to Control Board (HZ10307)

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Colour</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>X16 P1</td>
<td>Power Supply</td>
<td>brown/red</td>
<td>+24V</td>
</tr>
<tr>
<td>X16 P2</td>
<td>Power Supply</td>
<td>yellow</td>
<td>PGND</td>
</tr>
<tr>
<td>X16 P3</td>
<td>Power Supply</td>
<td>red/blue</td>
<td>+5V</td>
</tr>
<tr>
<td>X16 P4</td>
<td>Power Supply</td>
<td>yellow/blue</td>
<td>DGND</td>
</tr>
</tbody>
</table>

### Table 4.9. Cooling Unit Sensor Connector Block (HZ10268)

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Colour</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>X19 P1</td>
<td>Conn.Block P3</td>
<td>yellow/black</td>
<td>Door Switch GND</td>
</tr>
<tr>
<td>X19 P2</td>
<td>Conn.Block P4</td>
<td>red/black</td>
<td>Door Switch (Low = Open)</td>
</tr>
<tr>
<td>X19 P3</td>
<td>Conn.Block P5</td>
<td>green</td>
<td>Leak Sensor</td>
</tr>
<tr>
<td>X19 P4</td>
<td>Conn.Block P6</td>
<td>brown</td>
<td>Leak Sensor</td>
</tr>
<tr>
<td>X19 P5</td>
<td>Conn.Block P7</td>
<td>pink</td>
<td>PT100</td>
</tr>
<tr>
<td>X19 P6</td>
<td>Conn.Block P7</td>
<td>pink</td>
<td>PT100</td>
</tr>
<tr>
<td>X19 P7</td>
<td>Conn.Block P8</td>
<td>yellow</td>
<td>PT100</td>
</tr>
<tr>
<td>X19 P8</td>
<td>Conn.Block P8</td>
<td>yellow</td>
<td>PT100</td>
</tr>
<tr>
<td>X19 P9</td>
<td>Conn.Block P11 &amp; P1</td>
<td>brown/red</td>
<td>+24 to both Heatsink Fans</td>
</tr>
<tr>
<td>X19 P10</td>
<td>Conn.Block P10</td>
<td>violet</td>
<td>Circulation Fan (Active Low)</td>
</tr>
<tr>
<td>X19 P11</td>
<td>Conn.Block P9</td>
<td>pink/red</td>
<td>+24V thru’ 220R to Fan</td>
</tr>
<tr>
<td>X19 P12</td>
<td>Conn.Block P12 &amp; P2</td>
<td>black</td>
<td>Heatsink Fans (Active Low)</td>
</tr>
</tbody>
</table>
Connections Within the Valve Module

The valve position sensors are reed relay type switches. Sensor A is switched 'ON' when the valve rotates clockwise (when viewed from valve head) and sensor B when the valve rotates counterclockwise. However the actual switchpoints for each relay are somewhere in the middle. The low/high status to the control board is achieved by having a pullup at each of the associated port inputs and by switching the relays to ground to give a low signal. In the software and also in the valve position definitions '0' and '1' are used instead of 'B' and 'A' respectively. This was how it was defined in the original BPSU36 and this convention has been continued here.

The 'A' and 'B' positions are, however, marked as such on the Valve position sensors. All signals to the air solenoids V1A... V4B are active Low.
### Table 4.12. Connector to Valve Module (HZ10269)

<table>
<thead>
<tr>
<th>From</th>
<th>To (Valve Board)</th>
<th>Colour</th>
<th>Function (Rotary Valves)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X23 P1</td>
<td>X6 P1</td>
<td>brown/red</td>
<td>+24V</td>
</tr>
<tr>
<td>X23 P2</td>
<td>X6 P2</td>
<td>brown/red</td>
<td>+24V</td>
</tr>
<tr>
<td>X23 P3</td>
<td>X6 P3</td>
<td>red/blue</td>
<td>Valve 1A (Low = Move  )</td>
</tr>
<tr>
<td>X23 P4</td>
<td>X6 P4</td>
<td>red</td>
<td>Valve 1A Posn Sensor (Low)</td>
</tr>
<tr>
<td>X23 P5</td>
<td>X6 P5</td>
<td>brown/black</td>
<td>Valve 1B (Low = Move  )</td>
</tr>
<tr>
<td>X23 P6</td>
<td>X6 P6</td>
<td>brown</td>
<td>Valve 1B Posn Sensor (Low)</td>
</tr>
<tr>
<td>X23 P7</td>
<td>X6 P7</td>
<td>green/black</td>
<td>Valve 2A (Low = Move  )</td>
</tr>
<tr>
<td>X23 P8</td>
<td>X6 P8</td>
<td>green</td>
<td>Valve 2A Posn Sensor (Low)</td>
</tr>
<tr>
<td>X23 P9</td>
<td>X6 P9</td>
<td>blue/black</td>
<td>Valve 2B (Low = Move  )</td>
</tr>
<tr>
<td>X23 P10</td>
<td>X6 P10</td>
<td>blue</td>
<td>Valve 2B Posn Sensor (Low)</td>
</tr>
<tr>
<td>X23 P11</td>
<td>X6 P11</td>
<td>red/blue</td>
<td>Valve 3A (Low = Move  )</td>
</tr>
<tr>
<td>X23 P12</td>
<td>X6 P12</td>
<td>red</td>
<td>Valve 3A Posn Sensor (Low)</td>
</tr>
<tr>
<td>X23 P13</td>
<td>X6 P13</td>
<td>brown/black</td>
<td>Valve 3B (Low = Move  )</td>
</tr>
<tr>
<td>X23 P14</td>
<td>X6 P14</td>
<td>brown</td>
<td>Valve 3B Posn Sensor (Low)</td>
</tr>
<tr>
<td>X23 P15</td>
<td>X6 P15</td>
<td>green/black</td>
<td>Valve 4A (Low = Move  )</td>
</tr>
<tr>
<td>X23 P16</td>
<td>X6 P16</td>
<td>green</td>
<td>Valve 4A Posn Sensor (Low)</td>
</tr>
<tr>
<td>X23 P17</td>
<td>X6 P17</td>
<td>blue/black</td>
<td>Valve 4B (Low = Move  )</td>
</tr>
<tr>
<td>X23 P18</td>
<td>X6 P18</td>
<td>blue</td>
<td>Valve 4B Posn Sensor (Low)</td>
</tr>
<tr>
<td>X23 P20</td>
<td>X6 P20</td>
<td>yellow</td>
<td>DGND</td>
</tr>
<tr>
<td>X23 P22</td>
<td>X6 P22</td>
<td>violet</td>
<td>Leak Sensor</td>
</tr>
<tr>
<td>X23 P24</td>
<td>X6 P24</td>
<td>violet</td>
<td>Leak Sensor</td>
</tr>
<tr>
<td>X23 P25</td>
<td>X6 P25</td>
<td>red/blue</td>
<td>+5V</td>
</tr>
<tr>
<td>X23 P28</td>
<td>X6 P28</td>
<td>white</td>
<td>TxD</td>
</tr>
<tr>
<td>X23 P30</td>
<td>X6 P30</td>
<td>black</td>
<td>RxD</td>
</tr>
<tr>
<td>X23 P31</td>
<td>X6 P31</td>
<td>yellow</td>
<td>PGND</td>
</tr>
<tr>
<td>X23 P32</td>
<td>X6 P32</td>
<td>yellow</td>
<td>PGND</td>
</tr>
</tbody>
</table>
### Table 4.13. Valve Connector Board to 8 Way Valve Block (HZ10280)

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Colour</th>
<th>Function (Rotary Valves)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1 P1</td>
<td>V1 P2, V2 P2, V3 P2, V4 P2 V1 P5, V6 P2, V7 P2, V8 P2</td>
<td>white</td>
<td>+24V to each of the 8 solenoid air valves</td>
</tr>
<tr>
<td>X1 P3</td>
<td>V8 P1</td>
<td>black</td>
<td>Move Valve 4 to Posn 0</td>
</tr>
<tr>
<td>X1 P4</td>
<td>V7 P1</td>
<td>brown</td>
<td>Move Valve 4 to Posn 1</td>
</tr>
<tr>
<td>X1 P5</td>
<td>V6 P1</td>
<td>red</td>
<td>Move Valve 3 to Posn 0</td>
</tr>
<tr>
<td>X1 P6</td>
<td>V5 P1</td>
<td>orange</td>
<td>Move Valve 3 to Posn 1</td>
</tr>
<tr>
<td>X1 P7</td>
<td>V4 P1</td>
<td>yellow</td>
<td>Move Valve 2 to Posn 0</td>
</tr>
<tr>
<td>X1 P8</td>
<td>V3 P1</td>
<td>green</td>
<td>Move Valve 2 to Posn 1</td>
</tr>
<tr>
<td>X1 P9</td>
<td>V2 P1</td>
<td>blue</td>
<td>Move Valve 1 to Posn 0</td>
</tr>
<tr>
<td>X1 P10</td>
<td>V1 P1</td>
<td>violet</td>
<td>Move Valve 1 to Posn 1</td>
</tr>
</tbody>
</table>

### Table 4.14. Rotary Valve Position Sensors (HZ10281)

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Colour</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>X2 P1</td>
<td>Sensor at Valve 4</td>
<td>yellow</td>
<td>Position 0 when Low</td>
</tr>
<tr>
<td>X2 P2</td>
<td>Sensor at Valve 4</td>
<td>orange</td>
<td>Gnd</td>
</tr>
<tr>
<td>X2 P3</td>
<td>Sensor at Valve 4</td>
<td>red</td>
<td>Position 1 when Low</td>
</tr>
<tr>
<td>X2 P4</td>
<td>Sensor at Valve 4</td>
<td>brown</td>
<td>Gnd</td>
</tr>
<tr>
<td>X3 P1</td>
<td>Sensor at Valve 3</td>
<td>yellow</td>
<td>Position 0 when Low</td>
</tr>
<tr>
<td>X3 P2</td>
<td>Sensor at Valve 3</td>
<td>orange</td>
<td>Gnd</td>
</tr>
<tr>
<td>X3 P3</td>
<td>Sensor at Valve 3</td>
<td>red</td>
<td>Position 1 when Low</td>
</tr>
<tr>
<td>X3 P4</td>
<td>Sensor at Valve 3</td>
<td>brown</td>
<td>Gnd</td>
</tr>
<tr>
<td>X4 P1</td>
<td>Sensor at Valve 2</td>
<td>yellow</td>
<td>Position 0 when Low</td>
</tr>
<tr>
<td>X4 P2</td>
<td>Sensor at Valve 2</td>
<td>orange</td>
<td>Gnd</td>
</tr>
<tr>
<td>X4 P3</td>
<td>Sensor at Valve 2</td>
<td>red</td>
<td>Position 1 when Low</td>
</tr>
<tr>
<td>X4 P4</td>
<td>Sensor at Valve 2</td>
<td>brown</td>
<td>Gnd</td>
</tr>
<tr>
<td>X5 P1</td>
<td>Sensor at Valve 1</td>
<td>yellow</td>
<td>Position 0 when Low</td>
</tr>
<tr>
<td>X5 P2</td>
<td>Sensor at Valve 1</td>
<td>orange</td>
<td>Gnd</td>
</tr>
<tr>
<td>X5 P3</td>
<td>Sensor at Valve 1</td>
<td>red</td>
<td>Position 1 when Low</td>
</tr>
<tr>
<td>X5 P4</td>
<td>Sensor at Valve 1</td>
<td>brown</td>
<td>Gnd</td>
</tr>
</tbody>
</table>
A red LED from D1...D4 lights when the corresponding rotary valve 4 to valve 1 respectively is at position 1. A green LED from D5...D8 lights when the corresponding rotary valve 4 to valve 1 respectively is at position 0. The leak sensor at the front of the valve module is connected to X9.

See "Valve Module" on page 14

NOTE: The valve sensors at the rear of the valves are marked 'A' and 'B'. These correspond to '1' and '0'. ie Position '0' is when the valve has rotated counterclockwise (viewed from the front of the unit) until reaching the endstop.
The BPSU36-2 also has an ethernet connector on the Control Board which is accessible from the rear of the unit.

**NOTE:** Only one of these 2 Ethernet connections can be used at any time. If the rear connection is used (default) then the connector on cable HZ10308 (below) **MUST** be removed from the Ethernet Board. If the Front Panel Connection is to be used then this connector **MUST** be reconnected to the the Ethernet Board.

In both cases the LEDs show the Ethernet connection status.

**Table 4.15. Front Panel Ethernet Status Leds (HZ10306)**

<table>
<thead>
<tr>
<th>From</th>
<th>To (Front Panel Board)</th>
<th>Colour</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>X2 P1</td>
<td>X2 P1</td>
<td>white</td>
<td>LED 100 (Anode)</td>
</tr>
<tr>
<td>X2 P4</td>
<td>X2 P4</td>
<td>brown</td>
<td>Activity LED (Anode)</td>
</tr>
<tr>
<td>X2 P6</td>
<td>X2 P6</td>
<td>green</td>
<td>+3.3V</td>
</tr>
<tr>
<td>X2 P7</td>
<td>X2 P7</td>
<td>yellow</td>
<td>DGND</td>
</tr>
</tbody>
</table>

**Figure 4.10. Front Panel Board**

**Table 4.16. Front Panel Ethernet Connector(HZ10308)**

<table>
<thead>
<tr>
<th>From</th>
<th>To (Front Panel Board)</th>
<th>Colour</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>X3 P1</td>
<td>X3 P1</td>
<td>white/orange</td>
<td>TX+</td>
</tr>
<tr>
<td>X3 P2</td>
<td>X3 P2</td>
<td>orange</td>
<td>TX-</td>
</tr>
<tr>
<td>X3 P3</td>
<td>X3 P3</td>
<td>white/green</td>
<td>RX+</td>
</tr>
<tr>
<td>X3 P4</td>
<td>X3 P4</td>
<td>blue</td>
<td>TX-CT</td>
</tr>
<tr>
<td>X3 P5</td>
<td>X3 P5</td>
<td>white/blue</td>
<td>TX-CT</td>
</tr>
<tr>
<td>X3 P6</td>
<td>X3 P6</td>
<td>green</td>
<td>RX-</td>
</tr>
<tr>
<td>X3 P7</td>
<td>X3 P7</td>
<td>white/brown</td>
<td>RX-CT</td>
</tr>
<tr>
<td>X3 P8</td>
<td>X3 P8</td>
<td>brown</td>
<td>RX-CT</td>
</tr>
<tr>
<td>Front Panel Ground</td>
<td>black</td>
<td>Shield</td>
<td></td>
</tr>
</tbody>
</table>
The Home Page

The BPSU36-2 is controlled via its ethernet interface. The unit responds either to commands from HyStar, in which case it responds with the Home Page (page whereby only the IP address is required to define the page) or to form selections in the service pages. The Home Page is an XML page containing status information. This page can also be accessed at ip-address/status.xml

The factory set IP address used in an LC-NMR system is: 192.168.254.41

Figure 5.1. Home (Status) Page
Meaning of the Status Page Data

5.1.1

The 'ist' value is the present status of the associated component.
The 'soll' value is the demand or target value of that component.
The 'end' value indicates if the last function for this component is completed:

'END' means the operation has been completed (successfully).
'ERR' means an error has occurred and the operation has aborted.
'RUN' means that the operation is still in progress.

Status for the following components is displayed:

cass
  shows the position of the storage cassette

home
  indicates if the home position was found

oper
  shows the rotary valve status

  INI  Initialised
  DON  Direct On-Flow
  DOF  Direct Off-Flow
  SAM  Sample Position
  PRE  Transfer Preflow
  TRW  Transfer to Waste
  TRA  Transfer Loop
  LWA  Wash Loops
  PWA  Wash Probe
  UND  Undefined (or unknown)

load
  shows if the storage cassette is loaded

  _IN  the cassette is loaded
  OUT  the cassette is not loaded
  xxx  the status of the cassette is unknown

temp
  shows the temperature in Celsius in the cooling unit

lkva
  shows the status of the leak sensor under the rotary valves

lkca
  shows the status of the leak sensor under the cassette

door
  shows if the door to the cooling unit is OPEN or SHUT

  _v1_  shows the position of Valve 1 (6 way valve) 0 =
  _v2_  shows the position of Valve 2 (4 way valve) 0 =
  _v3_  shows the position of Valve 3 (4 way valve) 1 =
  _v4_  shows the position of Valve 4 (4 way valve) x= unknown.

gastime
  shows the number of seconds till the N2 turns off.
  ist  shows the preset N2 'on' time.

  soll  shows the preset N2 'on' time.

posd
  shows if the cassette position calibration data is loaded.

butt
  '1' means the front panel 'Load' button is being pressed.
  '0' means it is not being pressed

lock
  '1' means the 'Unload Block' is active.
  '0' means the 'Unload Block' is inactive.

HyStar would normally poll this page about twice per second. The unit responds
to any commands sent by HyStar by sending this Home Page. In this case the
'end' status for any command operation sent contains 'AOK' simply to indicate
that a command has been received.
Cassette Serial Number (S/N) Page

This page can be accessed at ip-address/serrn.xml. It shows the S/N and memory type for the cassette which has been loaded. It also displays the various firmware and Engineering Change (eclev) versions in use in the unit. All Cassette types at present in use in the older version of the BPSU36 can be used in the BPSU36-2. The cassettes with an 8MB Memory Board can only be used in the BPSU36-2 and not in the older BPSU36 system.

Cassette File List Page

This page can be accessed at ip-address/files.xml. It shows a list of the files (normally loop data but here simply test files) on the cassette. These files can be written to or read from the unit using an FTP transfer. (user: sys, password: sys)
Embedded Web Server

Files Page Meaning

SN  
cassette S/N (here for an 8MB cassette)

NAME  
shows the file name

DONE  
shows the number of bytes of this file already written to or read from the cassette.

SIZE  
shows the size of the file in Bytes

STATUS  
'w' : the PC is still writing the file to the unit
'f' : the PC has written the entire file to the unit
'W' : the unit is writing the file to the cassette. (ca. 40kB/s to the 8MB Cassette, 2kB/s to the old 64KB/128K cassette)
'F' : the file on the (8MB) cassette = file on unit's ftp server.
'r' : the unit is reading the file from the cassette. (ca. 120kB/s from the 8MB Cassette, 4kB/s from the 64KB/128K cassette.
'I' : the file on the old cassette = file on the unit's ftp server.

MEMORY  
USED: total cassette memory used by all files.
BAD: cassette memory lost to faulty sectors.
FREE: unused cassette memory

BUSY  
'1' write/read accesses to the cassette are in progress
'0' write/read accesses to the cassette are not in progress

On an old style cassette only 1 file can be read from or written to the cassette. This file is always called cass_sn.dat, where cass_sn is the serial number read from the cassette (eg. H9599__00077.dat). This file is always 63KB in size and is written to / read from the first 63KB of the cassette’s memory. HyStar ensures that the format of the file is identical to the original BPSU36 cassette data format to maintain the backwards compatability.

The above XML pages are really intended for use by HyStar to monitor the status of the BPSU36-2. They can, however, be monitored in a suitable browser.

Similarly, files are normally only transferred by HyStar but for test purposes can be written to or read from the unit (and cassette) using a suitable FTP client program. The user and password required are sys and sys.
The Service Pages

For test, monitor or service a number of service pages are available. The start page for these service pages is \textit{ip-address/ews.html}

These pages can be viewed on a PC, Laptop, Mac etc. using a standard browser (Internet Explorer, Netscape, Mozilla etc.)

The 'Main' page: ews.html

![Embedded Web Server (EWS) Start Page](image)

\textit{Figure 5.4. Embedded Web Server (EWS) Start Page}

Links from this page take you to the other service pages. From any of the following service pages you can return here by clicking on the link \textit{Main}. 
Embedded Web Server

The 'Device Information' page: info.html 5.4.2

From the 'Main' page click on the link Device Information to reach this page:

![Device Information Page](image)

This page shows information about the part numbers, ec levels and the various firmware levels in use on the major components of the BPSU36-2.

From here the BIS information for the system can be accessed. This is password protected and is intended for production and service use only.
From the 'Main' page click on the link Service to reach this page.

This page has a number of links to pages in which the individual functions of the BPSU36-2 can be initiated and the status checked.
From the 'Service' page click on the link **Edit Cassette Configuration** to reach this page.

The target or demand values for the associated operation can be selected in the **Target** column. Clicking on the button in the **Action** column sends the command to the BPSU36-2. The BPSU36-2 responds by sending the above page again. This time the **END Status** column value should have 'AOK' in the command row to indicate that the command was received OK. To monitor the status of an operation click on the **Refresh** link. **Do not** use the page refresh button on the browser as this may simply try to read the response page from the form which is only valid at the time an **Action** button was pressed!

**Cassette Load / Unload**

The load/unload operation can ONLY be carried out using the load/unload button on the front panel. The only exception to this is when the cassette is already in the loaded position (but not loaded) and the door is closed. In which case the load operation will be initiated. If the cassette is already completely loaded then the
Command is ignored. Otherwise, selecting the function here simply enables the operation of the front panel button which lights to indicate that it is active. After the cassette is loaded, if the Load-In function had already been or is now selected, then the front panel button is locked out. Select the Load-Out function above to re-enable the button. The Button is, in any case, disabled while the door is closed. While the load/unload operation is in progress the LED on the button blinks.

The function of the button swaps between load and unload (and abort). The load operation can only be started when the cassette load mechanism is in the fully unloaded position otherwise it simply unloads further. While loading you MUST keep the button depressed for at least 3 seconds or else the operation will abort. If after this time you release the button and then press it again while the operation is still in progress (blinking LED), it will also abort.

While loading, the 2-way air cylinder has air enabled to both sides of its piston. As the side to load the cassette has a larger surface area than the side to unload the cassette, it slowly moves in. Only after a cassette (or dummy) has been successfully recognised and after the rotation mechanism has locked properly onto the cassette, is the air for the 'out' direction removed. The cassette is now firmly held in place.

If no cassette is found then all air pressure is removed from both sides of the cylinder.

While HyStar is communicating with the unit the Unload operation is automatically blocked. Selecting ‘Cassette Unload’ in HyStar or selecting Load OUT and clicking ‘Make it so’ frees the block. If Communication with HyStar is broken (ethernet cable removed, PC powered down, HyStar killed etc) then the block is automatically removed ca. 5 seconds later. The Cassette cannot be unloaded while the door is closed.

If you attempt to unload the cassette while the unload block is in place the LED on the Load button flashes 5 times quickly, pauses and repeats as long as the button is depressed.

The load switch LED lights continuously to indicate that the Load/Unload operations can be activated.

NOTE: While the cassette is loading or loaded do not touch the cassette itself. An electrostatic discharge from you to the cassette may cause the control processor to be reset. This will not cause any damage and communication with HyStar or the control PC continues unaffected. However, the load operation would have to be restarted.

See also "Safely Loading and Unloading the Cassette" on page 66
From the ‘Service’ page click on the link Edit Valve Configuration to reach this page.

The valve positions are described in "Rotary Valve Positions" see page 15. The desired position is selected from the Operation/Target Field and initiated by clicking on the Move Valves button. The valves then move to this position. If the present position of the valves is unknown (eg after a reset) the valves first of all move back and forth until a change in the state of the position sensor is detected to ensure that the compressed air is connected.

To move the cassette to a desired position: Select the target position in the Cass Posn/Target field and click on Engage to start the cassette movement.

To move individual valves to a desired position: Select the valve position in the Valve x Posn/Target field and click on Move Valve x.

To monitor the status of an operation click on the Refresh link. Do not use the page refresh button on the browser.

Figure 5.8. Rotary Valve Configuration Page
From the 'Service' page click on the link Edit Cooler Configuration to reach this page.

The target or demand temperature for the cooling unit can be selected in the Target column. Clicking on the button in the Action column sends the command to the BPSU36-2. The BPSU36-2 responds by sending the above page again. The new target temperature is displayed in the Target column. To monitor the status of an operation click on the Refresh link. The cooling unit will only cool if the door is SHUT. Do not use the page refresh button on the browser as this may simply try to read the response page from the form which is only valid at the time an Action button was pressed.
Embedded Web Server

The 'View Error Queue' Page: errors.html

From the 'Service' page click on the link View Error Queue to reach this page.

![Image of View Error Queue Page]

Figure 5.10. View Error Queue Page

The Error Queue display is not supported at present.
FTP Download

Ethernet Program Download 6.1

All BPSU36-2 (and BMSO) units are download capable. The download program is stored in a separate flash memory area from the application program.

To initiate a download the unit has to be switched into download mode. This can be done using the EWS. On the service page (see "The 'Service' Page: service.html" on page 45) click on the link Upload New Firmware. Enter the user name 'upload' and password 'firmware' to display the following page:

![BPSU36-2 0123 Service Web](image)

**BPSU36-2: Ethernet Board Firmware Download**

To switch to the FTP Boot Loader Click --> HERE <--

**WARNING**

This initiates a system restart!!!!

**BPSU36-2: Control Board Firmware Download**

To Enable Control Board Download Click --> HERE <--

Figure 6.1. Firmware Download Page

Now click on the upper link HERE to switch to the boot loader. The unit replies with the following page: **Switching to Boot Mode Using the EWS see page 52** and restarts in Boot Mode.
FTP Download

It takes 4 - 10 secs for the unit to restart in Boot Mode. You can simply ping the IP address until the unit responds: In a DOS Window enter the following:

```
ping 192.168.254.41 -n 2000 -l 1400
```

This pings the unit 2000 times with data blocks of 1400 bytes. With this you can observe when the program is running again.

Approx. 4-10secs after the restart the unit responds as follows:

```
Reply from 192.168.254.41: Bytes=1400 Time<10ms TTL=60
```

See Picture below.

![Ping the Unit](image)

**Figure 6.3. Ping the Unit**

**Home Page in Boot Mode 6.1.1**

Now you can check the status page.
Here you can read the firmware version of the bootloader as well as the download status and the filename of the file being downloaded.

**Copy the new Program via FTP.**

Start a suitable FTP Program and make a connection to the BPSU36-2. (e.g. the Freeware Program FTP Commander 7.0). You can also use Internet Explorer for the FTP transfer if you have nothing better. Setup as follows:

Server Address: 192.168.254.41  
Port 1 - 999 (don't care, default 25)  
(User: sys, Password: sys)

You can save this into your Internet Explorer favorites:

*Figure 6.5. Setup in Internet Explorer Favorites*
The new program file must be called 'xxxxxrom.bin'. “xxxxx...xx” is normally the unit ID + Firmware Release Date. (e.g. bpsu_051203_rom.bin)

Copy the file to the Ethernet Board FTP server to start the download.

During the download you can poll the status page.

Poll slowly (ca. 1 - 2 /sec) otherwise the download runs very slowly! The time needed for the FTP transfer is ca. 15 secs.
Once the download is complete (ca. 4 sec after the FTP Transfer is finished), the new application program is copied to RAM. The program then restarts from RAM.

**NOTE:** If you send an invalid file, the Status Page appears as follows:

![Status Page for an Invalid File](image)

This file will, of course, not be programmed.

Should something go wrong during the download you simply have to switch the unit off and then on again. It will start up in download mode ready for a new application program. You may have to do this twice before it restarts!

The only exception to this would be if you happened to be downloading an update to the download program and something were to go wrong. In this case the board would no longer operate and would have to be returned to Bruker.

After the FTP Transfer is done you can ping the unit as before. After a few seconds the unit stops responding. Some 3-8 secs after this the unit will be running in application mode and will respond once more.

The Ethernet Board download has now been completed.

It is also possible to initiate a download using a command in the *url Address* (intended for automatic download from HyStar):

Using a browser display the BPSU36-2 Home page. *(IP-Address/)*

Enter the command `$BOO T=B`. The unit responds with the page: **Switch to Boot Mode see page 56** and switches shortly afterwards into ‘Boot’ Mode.

The download itself as described above is unchanged.

Alternatively you can force the unit to start in Boot mode by populating the jumper J4 P7-P8 on the Ethernet Board (**Boot Jumper on the Ethernet Board see page 56**) and pressing the reset switch on the Control Board. If no spare jumper is available the one used at J4 P5-P6 can be used. After the download is done this must be replaced and the unit reset once again.
FTP Download

Figure 6.9. Switch to Boot Mode

Figure 6.9. Boot Jumper on the Ethernet Board
Control Board Program Download

This can only work if a valid BPSU36-2 application program is running on the Ethernet Board. This can also be initiated either using the EWS or with a command over the url address line. This second mode is intended to allow HyStar to automate the download process.

Control Board Download using EWS

From the 'Service' page (see "The 'Service' Page": service.html" on page 45) click on the link Upload new Firmware and enter the user name ‘upload’ and password ‘firmware’.

Now click on the lower link HERE to enable the Control Board download mode.

Figure 6.10. Control Board File Found
FTP Download

This returns the following page:

![FTP Download Page](image)

Figure 6.11. Switching to Control Board Download Mode

It also kills the communication with any cassette which may be loaded and deletes the record of the files on the cassette. The data on the cassette itself is not affected in any way.

Now open an FTP connection to the unit (see "Copy the new Program via FTP" on page 53) and copy the most recent Control Board application program to the unit (e.g. p040407.H86: the name must always end with .h86 or .hex).

Click on refresh on the page and it will now indicate that a valid file was found: In this case p040407.h86. *(File ready to be downloaded to Control Board see page 59)*
At this point you can still abort the download by clicking on RESTORE to return to normal operation. The system exits download mode, restores communication with the cassette and rereads its contents.

Click on the link START DOWNLOAD to start the download and display this page:
FTP Download

Control Board Download in Progress

This displays the name of the file being downloaded, the number of lines from the
total already downloaded and the download status. You can click on refresh to
monitor the status of the download.

![Figure 6.14. Control Board in Boot Modus: Flash Erase](image1)

![Figure 6.14. Control Board in Boot Modus: Programming Data](image2)
When the download is over the text ‘in Appl Mode’ appears in the Status row to indicate the download is done and the application program is running again.

![Figure 6.15. Download Over, Control Board now in Appl. Mode](image)

At this stage the download is over and the unit returns to normal operation mode.

__Control Board Download using url Address line Commands__

Using a browser display the home page (`IP-Address/`)

Enter the command `$DOWN=I`. (= Download Initialise). The unit responds with the `down.html` page (below) and deletes all files from the FTP server.

![Figure 6.16. Initialise Control Board Boot](image)
FTP Download

You can monitor the download status in the page down.xml:

```
<?xml version="1.0" ?>
<root>
  <status down="Waiting" file="-" Control Board Download Mode Not Enabled --" sent="0"/>
</root>
```

Figure 6.17. Monitor the Control Board Download Status

Now open an FTP connection to the FTP server on the unit (see "Copy the new Program via FTP" on page 53) and copy the most recent Control Board application program to the unit (eg p040407.H86: the name always ends with .h86 or .hex)

Now if you poll the down.xml page it looks like:

```
<?xml version="1.0" ?>
<root>
  <status down="Waiting" file="p040407.h86" sent="0"/>
</root>
```

Figure 6.18. down.html Page after Copying a Program File

To switch the Control Board into download mode and start the download you have to enter the command $DOWN=S (=Download Start). The unit responds with the down.xml Page again. Continue to poll the down.xml page until the download is complete.
In this page the value 'x' at sent="x" lies between 0 and 100 and corresponds to the percentage of the program file which has been programmed to the flash memory on the Control Board.

Poll the down.xml page to monitor this status. The value of 'x' stays at 0 for the first 5 - 10Sec, as the flash must first be deleted before the new program can be written to it.

Once 'x' reaches 100, the download is complete. The Control Board restarts in application mode and the Ethernet Board program does a partial restart to allow the Ethernet Board - Control Board settings to be re-initialised.

![Figure 6.19. Control Board Download in Progress](image1)

![Figure 6.19. Control Board Download Finished](image2)
Before opening the unit the power cable and must be removed. The Unit should only be opened by experienced service personnel.

Liquids used in chromatography (e.g. Acetonitril, Methanol,...) are extremely hazardous. Wear proper skin- and eye-protection, avoid contact and inhalation. Liquids may be pressurized. Take care when opening capillary connections.

All user serviceable components are accessible on the Valve Module. The Module is secured with two quick remove screws located top right and left of the module. These require a 1/4 turn counterclockwise to loosen them. The capillary connections to the cassette block have deliberately been kept very short. These connections MUST be removed before moving the Valve Module out.

Before completely removing the Valve Module, the power cable, the compressed Air/Nitrogen connections to the rear panel and any capillary connections to other units must first be disconnected. Also the 32pin connector to the valve connector board (mounted at the right hand side of the valve module) and the 4mm flexible tube (secured at the rear of the 8way valve block) must be removed. These can be accessed once the module has been moved out. The Valve Module may be moved out (but NOT removed) without having to disconnect power or compressed air.
Cleaning 7.1.1

To avoid electric shock do not clean in the region of the mains switch or mains connection cable without first removing the mains cable from the rear of the unit.

The parts accessible from the front of the Valve and Pump Module are resistant to those solvents normally used in HPLC and may be cleaned with a cloth moistened with water, methylated spirit or similar solvent with low toxicity. While the leak sensor is damp the unit will indicate a leak. This must be dried thoroughly with a dry, lint free cloth. This may be done with the unit powered on. Ensure that no liquid gets into the mains switch.

Safely Loading and Unloading the Cassette 7.2

When the cassette holder is out DO NOT put fingers or any other body part behind the cassette holder or behind the cassette should one be in place. The 'cassette load' operation is carried out by a pneumatic cylinder which pulls with a force of approx. 150Newton (= ca. 15kg) for the normal operating pressure of 2.5Bar. This could cause severe injury to any body parts unintentionally placed behind the cassette holder when a 'load cassette' (with or without cassette) is initiated.

A storage cassette can only be removed or inserted when the cassette holder is in the unload or OUT position. The cassette should always be lifted from or placed in the holder while gripping the cassette at the bottom and sides. Fingers should at no time be between the cassette and the cooling unit.
The Storage Cassette is not user serviceable. In case of malfunction, replacement/repair should be carried out by Bruker Service Personnel. In the event of a leak being detected in the system, check the fittings and tubing to the rotary valves. Clear any blockages in the tubing.

Should the problem lie in one of the rotary valves refer to the Vici (valve manufacturer) technical note 801 (tn801.pdf) regarding disassembly and cleaning instructions. This pdf file is available on the HyStar CD or directly from the Vici website. (see http://www.vici.com/support/tn/tn801.pdf)

If you have to replace a valve it is usually only necessary to replace the valve head and not the complete valve and pneumatic assembly. A faulty valve head may **ONLY** be replaced with an identical one.

Disconnect all capillary connections to the valve module. Turn the 2 module securing screws (top left and right of module) a 1/4 turn counterclockwise and move the module a few cm out of the BPSU36-2. Remove the front panel from the module (4 x Phillips +headed screws).

The Unit can stay attached to mains and compressed air. **DO NOT insert your hands into the unit behind the valve module!**

Now you MUST move the valve to be replaced to position 0. (see "The Service Pages" on page 43 and "The 'Valve Configuration' Page: valves.html" on page 48)

Using a 9/64" hex driver loosen the screw of the securing ring (see Figure 3.4.) of the valve to be replaced. Remove the valve.

On the new valve use a pair of pliers or similar to grip the coupling to the valve. Turn the valve shaft here until the valve is also at the endstop for position 0. (endstop counterclockwise when viewed from the valve head, clockwise when facing the coupling)

Mount the new valve in place of the old one ensuring that the capillary port connection labelled ‘1’ is at the top. (the valve can be mounted in increments of 90°) **Very lightly** turn the valve clockwise until the play in the coupling has been taken up then tighten the screw on the securing ring once more. If this is not done correctly it can result in the pneumatic drive reaching its endstop before the valve reaches its own endstop when moving in this direction. In which case the fluid flow will be partly or wholly blocked!

Mount the module front panel again. Push the module fully into the BPSU36-2 being very careful not to damage the capillaries from the cassette block. Secure the module in place by turning the securing screws a 1/4 turn clockwise.

Refer to the tubing diagram and reconnect the tubing ensuring always that the tubing is correctly seated in the valves. It may (but shouldn’t usually) be necessary to replace the ferrules as these can be malformed when the fitting is securely tightened. A selection of spare fittings and ferrules is supplied with the unit. Spares can be obtained from Bruker or Vici.
Service Information

Physical Specifications

BPSU36-2
Height: 6HE (ca. 26.5mm)
Width: 19" (for mounting in a 19" rack system)
Depth: 588mm (+35mm for the pressure regulators)
Weight: 27kg

Power Requirements
- Minimum 110V ac.
- Maximum 240V ac
- 50 - 60Hz
- 250VA

Fuses: 2 x 2A, 230V

---

The main earth connection to the Unit is supplied via the largest pin in the Euro-Standard 3 Pin connector and must be connected to ground using either the mains cable supplied or one of similar specifications. Incorrect earthing of the unit can be very dangerous.

---

Compressed Air Requirements

1. To the left connector (when viewed from rear)
   - 4mm connector, max external pressure 8Bar set to 2.5Bar (+0.3) on the manometer
   - This can be clean, oil-free dry compressed air or N₂ (preferred)

2. To the right connector (when viewed from rear)
   - 4mm connector, only clean dry N₂ at max 8Bar nominally set to 2.5Bar (+0.3) on the manometer. This gas connection is used to flush the cassette and the NMR probe. This value may be set in the range 0-4Bar. In any case it must NOT be set to a value higher than is allowed for the probe.

---

Using normal compressed air to this connector could cause irreparable and hence very expensive damage to the NMR probe and the cassette!

---

Operational Environment

10°C to 40°C Non Condensing Air Humidity
Figures

1 About This Manual ................................................................. 7

2 Terms and Definitions ........................................................... 9

3 BPSU36-2 .............................................................................. 11
   Figure 3.1. LC-NMR-MS System .............................................. 11
   Figure 3.2. BPSU36-2 Internal Layout ........................................ 12
   Figure 3.3. Connection Plan: Nitrogen and Compressed Air ........ 13
   Figure 3.4. Valve Module .......................................................... 14
   Figure 3.5. Cooling Unit Front View .......................................... 22
   Figure 3.6. Cooling Unit Viewed from Above ............................. 23
   Figure 3.7. Cassette load depth adjustment ............................... 24
   Figure 3.8. Cooling Unit Rear View .......................................... 25

4 Wiring .................................................................................... 27
   Figure 4.1. Control Board Layout .............................................. 28
   Figure 4.2. Load Button Pinout .................................................. 30
   Figure 4.3. 4 Way Valve Block Layout ...................................... 30
   Figure 4.4. Valves for N2 Switching (HZ10305) ......................... 31
   Figure 4.5. Connections to Peltier Elements ............................. 31
   Figure 4.6. DC Connections ...................................................... 32
   Figure 4.7. Sensor Connector Block .......................................... 32
   Figure 4.8. Cassette Connector Block ........................................ 33
   Figure 4.9. Valve Connector Board ............................................ 36
   Figure 4.10. 8 Way Valve Block ............................................... 36
   Figure 4.11. Front Panel Board .................................................. 37

5 Embedded Web Server ........................................................... 39
   Figure 5.1. Home (Status) Page ................................................. 39
   Figure 5.2. Cassette S/N Page .................................................... 41
   Figure 5.3. Cassette Files List ................................................... 41
   Figure 5.4. Embedded Web Server (EWS) Start Page .................. 43
   Figure 5.5. Device Information Page ........................................ 44
   Figure 5.6. Service Page .......................................................... 45
   Figure 5.7. Cassette Configuration Page ................................... 46
   Figure 5.8. Rotary Valve Configuration Page ............................. 48
   Figure 5.9. Cooler Configuration Page ...................................... 49
   Figure 5.10. View Error Queue Page ........................................ 50
6 FTP Download

Figure 6.1. Firmware Download Page ................................. 51
Figure 6.2. Switching to Boot Mode Using the EWS .................. 52
Figure 6.3. Ping the Unit ................................................. 52
Figure 6.4. Boot Mode Status Page .................................... 53
Figure 6.5. Setup in Internet Explorer Favorites ....................... 53
Figure 6.6. FTP Connection using Internet Explorer .................. 54
Figure 6.7. Status Page in Boot Mode ................................. 54
Figure 6.8. Status Page for an Invalid File ............................. 55
Figure 6.9. Switch to Boot Mode ....................................... 56
Figure 6.9. Boot Jumper on the Ethernet Board ....................... 56
Figure 6.10. Control Board File Found ................................ 57
Figure 6.11. Switching to Control Board Download Mode ............ 58
Figure 6.12. File ready to be downloaded to Control Board ......... 59
Figure 6.13. Start of Download ......................................... 59
Figure 6.14. Control Board in Boot Modus: Flash Erase ............ 60
Figure 6.14. Control Board in Boot Modus: Programming Data ..... 60
Figure 6.15. Download Over, Control Board now in Appl. Mode ... 61
Figure 6.16. Initialise Control Board Boot .............................. 61
Figure 6.17. Monitor the Control Board Download Status ........... 62
Figure 6.18. down.html Page after Copying a Program File ......... 62
Figure 6.19. Control Board Download in Progress .................... 63
Figure 6.19. Control Board Download Finished ....................... 63

7 Service Information

...
Tables

1 About This Manual ......................................................... 7

2 Terms and Definitions .................................................... 9

3 BPSU36-2 ..................................................................... 11

4 Wiring ........................................................................... 27

   Table 4.1. +24V Enable (HZ10272) ................................................ 30
   Table 4.2. Load/Unload Button on Front Panel (HZ10334) .......... 30
   Table 4.3. Motor Encoder in Cooling Unit (HZ10325) ............... 30
   Table 4.4. Pneumatic Valves for Cassette Load/Unload (HZ10279). 30
   Table 4.5. Peltier Elements in Cooling Unit ................................ 31
   Table 4.6. Cassette Motor Drive in Cooling Unit (HZ10270) ....... 31
   Table 4.7. Load/Unload Sensors in Cooling Unit (HZ10278) ....... 31
   Table 4.8. DC Power to Control Board (HZ10307) ..................... 32
   Table 4.9. Cooling Unit Sensor Connector Block (HZ10268) ...... 32
   Table 4.10. RS232 Debug Connector (HZ10340) ......................... 33
   Table 4.11. Cassette Connector Block in Cooling Unit (HZ10267) .... 33
   Table 4.12. Connector to Valve Module (HZ10269) .................... 34
   Table 4.13. Valve Connector Board to 8 Way Valve Block (HZ10280). 35
   Table 4.14. Rotary Valve Position Sensors (HZ10281) ............... 35
   Table 4.15. Front Panel Ethernet Status Leds (HZ10306) .......... 37
   Table 4.16. Front Panel Ethernet Connector(HZ10308) .............. 37

5 Embedded Web Server .................................................... 39

6 FTP Download ............................................................... 51

7 Service Information .......................................................... 65
THE END