

Bruker BioSpin

AVANCE Systems

Solid State NMR Acceptance Test Procedures

Version 010

think forward

NMR Spectroscopy

Copyright[©] by Bruker BioSpin NMR GmbH

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means without the prior consent of the publisher. Product names used are trademarks or registered trademarks of their respective holders.

This manual was written by

Jochem Struppe

This manual was edited by

Stanley J. Niles

© December 1, 2009: Bruker Biospin GmbH

Rheinstetten, Germany

P/N: B92999

DWG-Nr.: 1234010

For further technical assistance on the AVANCE Systems unit, please do not hesitate to contact your nearest BRUKER dealer or contact us directly at:

> BRUKER BioSpin GMBH am Silberstreifen D-76287 Rheinstetten Germany

 Phone:
 + 49 721 5161 0

 FAX:
 + 49 721 5171 01

 E-mail:
 service@bruker.de

 Internet:
 www.bruker.com

Revision History List

Index	Date	Alteration Type	Initials
00	02/01/2001	Created	JOS
	06/11/2001	Revised	HCL, JOS
	03/27/2002	Edited	ASF, JOS
01	04/28/2003	Revised	JOS
	09/03/2003	Revised	JOS
02	02/24/2004	Revised	JOS
03	12/22/2004	Revised	JOS, BRC
04	11/11/2005	Extended with DCP and HFC experiments	JOS
08	07/07/2008	Completely revised with JD	JOS, JD
09	02/03/2009	Merged with Lab companion	JOS
10	12/01/2009	Proofread and placed in new corporate template	NIL

B92999_00_10

1	Introd	uction	9
	1.1	Purpose	9
	1.2	Area of Application	9
	1.3	Referenced Documents	9
2	Basic	ATP Experiments for CPMAS Probes	11
	2.1	Magic Angle Adjustment KBr (msol)	12
	2.1.1	Setting up the Experiment to Measure and Adjust the Magic Angle with KBr	12
	2.1.1.1	RF Routing	14
	2.1.2	Running the Experiment	18
	2.1.3	Probes with Flip-Type Stators	20
	2.1.4	Multiple Display Mode [.md]	21
	2.2	Pulse Calibration 1H on Adamantane (hsol)	22
	2.2.1	Experiment Setup	22
	2.2.2	Experiment Execution and Parameter Optimization	23
	2.2.3	Measure Various 1H Pulse Parameters, Utilize au Program pulse	23
	2.2.4	Plot Results and Prepare Documentation	24
	2.3	Pulse Calibration 13C on Adamantane (dsol)	25
	2.3.1	Experiment Setup	25
	2.3.2	Run Experiment, Reference Spectrum	27
	2.3.3	Plot Spectrum and Document Parameter Measurements	28
	2.3.4	Probe Shimming	29
	2.4	CPMAS Experiment (rsol)	29
	2.4.1	Experiment Setup	29
	2.4.2	Run Experiment, Optimize CP Pulse Parameter (Hartmann Hahn Match)	30
	2.4.3	Plot Spectrum and Document Results in Table	30
	2.5	CPMAS 13C Sensitivity on Glycine (csol)	32
	2.5.1	Experiment Setup	32
	2.5.2	Run Experiments and Optimize CP and Decoupling Parameters	32
	2.5.3	Evaluate Experiment, Document Setup Results and Plot	33
	2.6	CPMAS: Measuring 13C Pulse Widths (ctsl)	35
	2.6.1	Experiment Setup	35
	2.6.2	Run Experiment and Measure Pulse Parameters	36
	2.7	CPMAS 15N Sensitivity on Glycine (nsol)	37
	2.7.1	15N Sensitivity Experiment on Glycine Natural Abundance	38
	2.7.2	Run Experiment, Optimize 15N{1H} CPMAS Condition	38
	2.7.3	Evaluate Experiment, Document Optimization, Print Spectrum	38
	2.8	CPMAS: Measuring 15N Pulse Widths: (ntsl)	41
	2.8.1	Experiment Setup	41
	2.8.2	Run Spectrum, Measure Flip-back Pulse Parameters	41
	2.8.3	Print Spectrum, Document Result from Parameter Optimization	41
	2.9	CPMAS: Measuring 31P Pulse Parameters: (psol)	42

	2.9.1	31P Sensitivity Experiment on Glycine Natural Abundance	42
	2.9.2	Run Experiment, Optimize 15N{1H} CPMAS Condition	43
	2.9.3	Evaluate Experiment, Document Optimization, Print Spectrum	43
	2.10	CPMAS: Measuring 31P Pulse Widths: (ptsl)	45
	2.10.1	Experiment Setup	45
	2.10.2	Run Spectrum, Measure Flip-back Pulse Parameters	46
	2.10.3	Print Spectrum, Document Result from Parameter Optimization	46
3	HFX A	TP Experiments for CPMAS Probes	49
	3.1	Basic HF, HFC Setup	49
	3.1.1	General HFC Hardware Routing	49
	3.1.2	Probe Setup and Tuning	49
	3.2	FH Experiment (fhdp) – (hfdp)	51
	3.2.1	Experiment Setup	51
	3.2.2	Run Experiment, Measure Pulse Parameters	52
	3.2.3	Plot Spectrum and Document Results	52
	3.3	Measure 1H Pulse Widths	53
	3.3.1	Experiment Setup	53
	3.3.2	Run the Experiment and Measure the Pulse Parameters	54
	3.3.3	Plot Spectrum and Document Results	55
	3.4	Measure 19F (1H) Decoupled Spectrum: (fhdp)	56
	3.4.1	Experiment Setup	56
	3.4.2	Run experiment	56
	3.4.3	Plot spectrum document results	56
	3.5	13C{19F} CPMAS Experiments	57
	3.5.1	Setup 13C{19F} CPMAS Experiment: (cfsl)	57
	3.5.2	Run Experiment and Optimize HH-Match	58
	3.5.3	Document Results and Print Spectrum	58
	3.6	13C{19F-1H} CPMAS Experiments	62
	3.6.1	Setup 13C{19F-1H} CPMAS Experiment: (cfhsl)	62
	3.6.2	Run Experiment, Process and Document Parameter Used in Table	63
4	Contac	>t	65
Α	Appen	dix	67
	A.1	POPT	67
	A.1.1	Optimization of Parameters	68
	A.1.2	Selecting and Saving the Correct Plotting Region	69
	A.1.3	Starting POPT and Choosing Parameter Options	71
	A.1.4	Manipulating or Stopping the Optimization	72
	A.2	MAS Control	72
	A.3	Setting Transmitter Power	74

Summary of Contents

A.4	Calculating Pulse Parameters with Au Programs	75
A.5	Figures	77
A.6	Tables	79

1 Introduction

1.1 Purpose

This manual describes the procedures for the NMR tests that are necessary to set up Solid State NMR MAS experiments in order to demonstrate the high performance of Bruker AVANCE instruments. It includes basic specification tests such as ¹³C resolution (line width at half height) and sensitivity tests, as well as some advice on shimming MAS probes. More advanced experiments and their setup can be found in the TopSpin help menu (other topics - solids users' manual) or the NMR Guide.

All test procedures are subject to change without notice.

1.2 Area of Application

This manual is for Bruker service personnel engaged in final testing, service and installation of NMR instruments, as well as for customers. The manual is a complement to the Acceptance and Test Procedures for Avance NMR systems, ZUEP0102. The manual complements the solids part of the ATP program and can be used only for systems with the software Release XWIN-NMR patch level 11 and higher with AQS electronics and TOPSPIN 1.3 and TOPSPIN 2.0, 2.1.

Note: The CP pulse programs and related parameter sets do not work on systems with AQX/AQR electronics. Pulse programs for D*X systems are available in the software release under '/exp/stan/nmr/lists/pp.dsolids'. For AVANCE I and II systems, the pulse programs have the extension *.av and parameter sets need to be changed accordingly. Parameter sets are fully valid for Avance III systems. Appropriate adjustments to the parameter sets need to be done as well. When in doubt, please contact the Bruker Applications Department in case of questions regarding older versions of hardware.

It is generally assumed and required that all amplifiers are linearized and their power outputs are measured.

1.3 Referenced Documents

ZUEP0102	Acceptance test procedures for Avance spectrometers and documents referenced in ZUEP0102.
H9321	Solids User Manual.
Z31401	SB MAS Operation Manual.
B3072	SB Wideline Probe Manual.
Bxxx	HR-MAS Standard Test Procedures.

2 Basic ATP Experiments for CPMAS Probes

Sample	Nucleus	Shift (ppm)
Water	¹ H	4.7
KBr	⁷⁹ Br	~61
Adamantane	¹³ C	31.5, 50.48 relative to DSS or 29.5, 38.48 relative to TMS.
Glycine	¹³ C	176.4 (Carbonyl line) relative to adamantane/TMS.
Glycine	¹⁵ N	33.45 cross referencing if 13C field is referenced with ada- mantane relative to TMS.
TTMSS	¹³ C, ²⁹ S, ¹ H	0 ppm? - 8.9 ppm, 0 ppm.

Table 2.1 Some Chemical Shifts That Can be Used for Referencing

KBr is used to adjust the magic angle, and adamantane for shimming and pulse length determinations for ¹H and ¹³C. Glycine is used to measure the sensitivity of ¹³C and ¹⁵N in natural abundance. Glycine is generally a good sample for setup of experiments because it has a simple spectrum and a short relaxation time.

For the CPMAS setup a rotor filled with a mixture of adamantane and KBr is advantageous.

References:

K.W. Zilm et al. *Chemical shift referencing in MAS solid state NMR*, J. Magn. Reson. 162 (2003) 479-486

W.L. Earl, and D.L. VanderHart, *Measurement of* ¹³C Chemical Shifts in Solids, J. Magn. Res. 48, 35-54 (1982).

IUPAC Recommendation from Harris et al.: http://www.iupac.org/web/ins/2003-006-1-100

Basic ATP Experiments for CPMAS Probes

2.1 Magic Angle Adjustment KBr (msol)

2.1.1 Setting up the Experiment to Measure and Adjust the Magic Angle with KBr

Test Sample:	KBr
Spinning rate:	5 kHz (all CPMAS probes)
Experiment time:	1 minute.

Within the ATP software:

- 1. Load the experiment by clicking on the appropriate line in the ATP panel for the installed experiments.
- 2. Click the line labeled "msol Adjust magic angle for MAS probe" to load the first experiment.

			_				
	Print actual spectrum	Determine spec's	_				
	Print final test report	Edit parameter					
	Save all results (pdf)	Set up experiment					
Ne	w expno New procho	Change expnolpro	cno				
•	haol 1H parameters of MAS probe						
	hsol 1H parameters of MAS probe						
•	dsol Direct polarization 13C solid state MAS						
	rsol Setup HH-condition & Resolution te	st for 13C	?				
	csol Sensitivity test for 13C solid state	MAS	?				
	nsol Sensitivity test for 15N solid state	MAS	?				
	psol Sensitivity test for 31P using CP		7				

Figure 2.1 ATP Panel for Testing CPMAS Probes

1 NOTE: Be sure to use "*edhead*", when the probe is not equipped with a PICS chip. We generally advise setting the maximum pulse power in "*edhead*" to the power value that was needed to achieve the specified pulse widths. Such procedures require TopSpin 2.1 or higher. If **PICS** is limiting the available RF power (which happens in some probes), whereas one cannot achieve the required pulse widths, the PICS cable should not be connected and a new probe entry for the CPMAS probe in question should be created. Please notify the Applications Department of such issues, providing the complete probe ID and system ID.

If you are not using ATP, generate new data sets using the *edc* command with the with appropriate names or experiment numbers to record all individual setup steps:

🔤 New					×		
Prepare for a ni initializing its NN For multi-receiv Please define th	ew exper IR paran er exper ne numb	riment by c neters acc iments sev er of receiv	reating a n ording to th eral datase vers in the l	ew data set and le selected expension ets are created, box below.	riment type.		
NAME	probeID_msol						
EXPNO	1						
PROCNO	1						
DIR	C:\data700						
USER	acc	ept					
Solvent				None	*		
Experiment Dir	s.	C:/Bruker/TOPSPIN/exp/stan/nmr/par			oar 👻		
Experiment TITLE			KBr		~		
5 kHz sample T 296K VT Gas flow 1	rotation 0701 /h						
1 Receivers	(1,2,)	8)					
		QK	Cancel	More Info	Help		

Figure 2.2 EDC Experiment Setup Window

In the EDC experiment setup window:

- 1. Enter a name for the experiment series.
- 2. Enter an experiment number.
- 3. Enter a process number (usually 1).
- 4. Use the default directory and user for DIR and USER.
- 5. Choose "None" for solvent from the pull down menu.
- 6. In the Experiment pull down menu the parameter set for the KBr experiment which is called KBr.
- Write a appropriate title in the field called TITLE. We recommend adding parameters like T, VT gas flow rate and the spinning rate if they are of importance for the

experiment, as they are all not necessarily accurately (TE and MASR) reflected in the status parameters of the data set.

8. Check "OK".

Enter the acquisition window by either typing *eda* on the command line or by checking the *AcquPars* tab in the experiment window (see Figure 2.2).

Spectrum ProcPa	Acqui	Pars T	itle PulseProg	Peaks	Integrals	Sample	Structure	Fid Acqu	
ол s 🖌 🖻	12. 🔻	#		Installe	d probe: 4	mm MAS	BB/1H/19	F H12132/4	
Experiment Midth Receiver Nucleus Durations Power Program Probe Lists Wobble Lock Automation Miscellaneous	▼ Experiment PULPROG onepulse AQ_mod qsim TD 4096 NS 64 DS 0 TD0 1 ▼ Width SW [ppm] 798.1487 SWH [Hz] 100000.00 AQ [s] 0.0205300			00					
iser touting	FIDRES FW [Hz] V Rec RG DW [µs] DWOV [(Hz) eiver µs]	24.41406 2000000 128 5.000 0.025	3			Fild resol Filter wid Receiver Dwell tim Oversam	ution th gain e ipling dwell time	
	DECIM DSPFIR DIGTYP	м	200 sharp(sta DRU	indard)		2 2	Decimation DSP firm Digitizer t	on rate of digital filter ware filter type	
	DIGMOD digital DR 21 DDR 9 DE [µs] 7.14 HPPRGN normal PRGAIN high DQDMODE add PH_ref [degree] 46.000 OVERFLW ignore FRQLO3N 0				~	Digitizatio Digitizer n Digital dig Pre-scan Preamplit High pow Digital qu Receiver Accumula Observe	on mode resolution gitizer resolution delay fier gain ver preamplifier gain vad detection mode phase correction ation overflow checking frequency shift reduction		

Figure 2.3 EDA Window of the KBr Experiment

2.1.1.1 RF Routing

H.

To open the RF routing interface "*edasp*", click on the routing icon in the AcquPars window (you can also type *edasp* into the command line).

- 1. Verify the appropriate RF-routing in the **edasp** window.
- 2. Click the default button to make sure the high power stages of the available dual stage amplifiers are selected (see Figure 2.4).

Figure 2.4 Routing Table Examples

In Figure 2.4 (**TOP**) is a routing table with the default routing for the KBr experiment. The green dotted lines show all available routing options. Note, the routing is only effective, if the parameter **powmod =** high (**powmod** can have the values high, low and linear). The value linear is not used). In the (**Bottom**) is another routing example with the receiver routing open. Make sure that the receiver routing is correct! This is important in particular with some special configurations. If **wobb** works but you see no signal, most likely is the receiver routing incorrect.

Basic ATP Experiments for CPMAS Probes

To set up for ⁷⁹Br observation, click on the "**Default**" button to display the correct routing. The green dot at SGU1 indicates that for this nucleus and the selected RF-hardware path, SGU and amplifier, is calibrated for amplitude and phase linearity.

With high power transmitters, two power stages may be selected by clicking on the desired stage. High power stage requires that the parameter **powmod** be set to "high". Clicking the "**Default**" button in the routing editor (see section 2.1.1) selects the amplifier stage based on the **powmod** parameter setting. If the parameter **powmod** is set to "low", the routing will automatically default to the 300W stage of the dual stage 1000W amplifier. Selecting a path which is not fully routed will generate an error message.

To test the available routing, press the button "**show RF routing**" in the **settings** area of the routing editor display (see Figure 2.4). We suggest checking the receiver routing as well and make sure it is displayed properly, otherwise one needs to make the connection the usual way with mouse clicks.

3. Continue by checking the save button and the ased button in the AcquPars table.

Figure 2.5 Icon to activate ased (reduced acquisition parameter) table.

4. Fill in the pulse program parameters in the **ASED** parameter editor and check whether these parameters agree with the ones given in Table 2.2.

Spectrum Pr	ocPars AcquPars	Title PulseProg Peaks	ntegrals Sample Structure Fid Acqu	
AR	🖼 🔻 🗛	Installed prot	oe: 4 mm MAS 1H/19F/BB H12345/1	
General	▼ General			
Channel f1	PULPROG	onepulse	E Pulse program for acquisition	
	TD	4096	Time domain size	
	NS	64	Number of scans	
	DS	0	Number of dummy scans	
	SWH [Hz]	100000.00	Sweep width in Hz	
	AQ [5]	0.0205300	Acquisition time	
	RG	90.5	Receiver gain	
	DW [µs]	5.000	Dwell time	
	DE [µs]	6.50	Pre-scan-delay	
	CNST11	-2.0000000	To adjust t=0 for acquisition, if digmod = base	
	D1 [5]	0.5000000	Recycle delay	
	▼ Channel f1			
	NUC1	79Br Edit	Nucleus for channel 1	
	P1 [µs]	0.00	Excitation pulse length	
	PL1 (dB)	120.00	Power level for excitation pulse	
	PL1W [W]	0.00000000	Power level for excitation pulse	
	SFO1 [MHz]	125.2899439	Frequency of observe channel	

Figure 2.6 ASED table

L When selecting a nucleus where the transmitter amplitude and phase linearity were not calibrated and the green dot is not visible, the power level setting in dB will produce ≥6 dB additional power (≥4 fold power) which may lead to serious probe damage – with Powercheck enabled, the pulse program will not run. In such cases do CORTAB and linearize the RF-path.

If such calibration is impossible to achieve, use power levels starting with 10 dB less power (higher PL(n)-value). Reminder for engineers: with few exceptions it is expected that all systems are linearized. If you are in doubt for whatever reason, check with your supervisor or the application specialist.

If you run CORTAB, please write a README file in the CORTAB directory where you note the conditions of the power measurements, i.e. measured power at amplifier output, or measured power at preamplifier output. Note the method you chose to measure the RF-power in the same "readme" file so that other engineers and application specialists can judge the RF-power at the probe. See note on *EDHEAD* (section 2.1.1).

Additional information on PL values and pulse widths can be found in Setting Transmitter Power on page 71.

- 5. Match and tune the probe.
- Set the P1 value to 4 μs and the PL1 value to a reasonable value (see above) and obtain a spectrum. Print Table 2.2 and use it to enter the selected pulse parameters. Run an experiment and phase the spectrum.

7. Print and use the following table, or use a laboratory notebook, to keeping track of pulse widths and power levels. It is *essential* to keep track of pulse and power parameters during the setup until appropriate parameter tables become available for solid state NMR.

Parameter	Value	Comments			
PULPROG	one pulse	Pulse program			
NUC1	79Br	Nucleus on the F1 channel.			
TD	4096	Time domain sampled complex data points			
DW	5 µs	Dwell time			
Measure power level for μs 90° pulse					
PL1		High power level F1 channel (⁷⁹ Br)			
P1	4 µs	90 ^{° 79} Br pulse (F1 channel)			

 Table 2.2
 Acquisition Parameters

2.1.2 Running the Experiment

- 1. Optimize for the magic angle in *gs* mode and obtain a spectrum.
- 2. Optimization is achieved by maximizing the spikes riding on the time signal (see Figure 2.7).

Figure 2.7 The figure shows the FID after magic angle adjustment

3. Measure the line width of the central peak and compare it with the line width of the

 5^{th} spinning sideband. If the line widths compare within ±5%, then the MA setting is acceptable. The line width comparison is conveniently achieved using the program *peakw* as follows.

- <u>+</u>
- 4. Go into overview mode (click icon).
- 5. Center around the peak of interest.

Figure 2.8 Overview mode

The green highlighted area can be moved using the mouse (left mouse, key down) to inspect different areas of the spectrum in the spectrum window.

6. Type *peakw* on the command line.

Ð	e Edit Search									
	Peak[ppm]- 61.0200	width Diz/ppm]-	96.770/	0.7724	41-	0,50	lisits[gm]-	61.4122	60.6397	1
	Peak[ppm]-260.6352	width [Hz/ppm]-	110.915/	0.0045	at-	0.50	limits[ppm]-2	61.0903	260.2058	
	Prak[ppm]= 60.4144	Width [Hz/ppm]-	124.225/	0.9915	ate	0.50	limits[ppm]-	60.9720	59,9806	
	Peak[ppm]- 57.2677	Width [He/ppm]-	119.417/	1.1912	48-	0,50	limits[ppm]-	57.8423	56,6511	
£										

Figure 2.9 PEAKW result pane

- 7. Check *save and exit*, move to the next line, then repeat the command.
- 8. Note that the peak widths and positions are listed in the pop-up interface.

Basic ATP Experiments for CPMAS Probes

 Move the green bar in the overview window such that the next peak of interest is displayed in the spectrum window and reenter *peakw*.

Figure 2.10 KBr spectrum and *peakw* analysis tool.

- 10. When more than one line is present in the *peakw* interface, check *clear* and *save and exit*, then reenter the command *peakw*.
- 11. Move the green bar in the overview window such that the next peak of interest is displayed in the spectrum window and reenter *peakw*.

2.1.3 Probes with Flip-Type Stators

- 12. Remember to always approach the magic angle setting from the same side!
- 13. It is best to approach the magic angle setting by turning the adjustment <u>counter-</u> <u>clockwise</u>, while looking up at the probe from the bottom!
- 14. Check reproducibility of magic angle setting.
- 15. Create a new data set.
- 16. Stop the sample rotation.
- 17. Toggle the stator by ejecting and inserting the sample.
- 18. Spin sample up and run another experiment.

19. Change to dual display mode and compare the two data sets, or measure the line widths.

2.1.4 Multiple Display Mode [.md]

20. Click the multiple display icon.

21. Compare the previous spectrum with the new spectrum in multiple display mode.

Figure 2.11 Dual Display Mode

22. Load the second spectrum by either entering "*re*" on the command line, followed by the experiment and process number, or by dragging the experiment from the browser into the multiple display window.

壯

- 23. Click the toggle display button.
- 24. Compare the spectra.
- 25. If the new spectrum is worse, turn the adjustment dial less than 1/8th of a turn <u>coun-</u> <u>terclockwise</u>.
- 26. Get another spectrum and compare them again. Approach slowly, if you overshoot, you have to start over.
- 27. Plot the spectra.

2.2 Pulse Calibration ¹H on Adamantane *(hsol)*

2.2.1 Experiment Setup

Test Sample:	Adamantane
Spinning rate:	As fast as specifications permit
Experiment time:	3 minutes
1 Llos sither the	normator ant COLIDCALL or a

- 1. Use either the parameter set **SOLIDS1H**, or select the *hsol* experiment item line from the ATP panel experiment list (see Figure 2.1).
- 2. Compare the acquisition parameters from Table 2.3 with the ones in **ased** and correct the parameters in **ased** if needed.
- 3. Check for correct routing on the 1 kW amplifier, or for a 100W amplifier.

Figure 2.12 Routing suggestions for various amplifier choices.

- Set the initial pulse parameters so that, for example, the parameter PL1W shows a value between 50 and 100W for all probes (except 1.3 mm probes, where only 10W is required) and set the P1 value to 2 μs (see Table 2.3).
- 5. Insert the adamantane sample, spin to the maximum specified rotation rate and document by setting up a MAS rate log file (see MAS Control on page 69).
- 6. Match and tune the probe.

2.2.2 Experiment Execution and Parameter Optimization

- 7. Obtain an initial spectrum.
- 8. Phase the spectrum and select the plotting region.
- 9. Measure the pulse width using POPT (if you are not familiar with POPT, please check instructions in POPT on page 65).
- 10. In the POPT editor enter a starting value of 1 μ s for P1, and an end value of 30 μ s, with an increment of 0.5 μ s or 1 μ s.
- 11. Start POPT.
- 12. Inspect the result, check nulls (180°, 360° ...) and make a sensible choice for the 90° pulse:

Figure 2.13 POPT nutation spectrum from run on parameter P1

In the figure above, the maximum is at 4 ms, the first null at almost 8 ms and the second null between 14 and 15 ms (see also POPT on page 65). For the pulses in the table choose the duration for a 360° pulse t_{360} and divide by 4, i.e. P1= $t_{360}/4 \approx 3.8 \ \mu$ s.

2.2.3 Measure Various ¹H Pulse Parameters, Utilize au Program *pulse*

13. Enter the result for **P1** and calculate the power level required for a 50 kHz pulse using the command *pulse* in the command line.

pulse 50)kHz	

Figure 2.14 Calling the program *pulse* from the command line without any parameter

Basic ATP Experiments for CPMAS Probes

Calling the program *pulse* from the command line can also be achieved without any parameter. In this case the pulse width, power level, or field value must be entered in Hz or kHz upon request from the program. The parameter after the pulse command can be a field value as shown in the figure below, or a pulse width (e.g. 5 μ s for 5 ms), or a power level (e.g. 6 dB).

14. The pulse and power level for the requested field strength are shown in the following pop-up window example:

Figure 2.15 Result window from *pulse* utility.

- 15. Enter the result 7.8 dB for **PL1** and verify the result with another **POPT** run (run through at least two zero crossings of the nutation beyond the 360° pulse).
- 16. Document the values for P1 and PL1 in the pulse parameter table (e.g. **7.8 dB** and **5 ms**, refer to Table 2.3).
- 17. Calculate the required power level for the maximum decoupling specified for the probe, then back off by 1dB (to increase the attenuation by 1dB, add 1dB to the calculated power level).
- 18. Enter the result for **PL1** and verify the result with another **POPT** run (run through at least two zeros, beyond 360° pulse).
- 19. For more information on pulse width calculation and other helpful AU-programs (like *calcpowlev*) refer to Setting Transmitter Power on page 71.

2.2.4 Plot Results and Prepare Documentation

- 20. Use a copy of Table 2.3 as a worksheet to document all the measured pulse parameters and attach the worksheet to the ATP report.
- 21. Plot the spectrum.
- 22. Plot the MAS rate log.

Basic ATP Experiments for CPMAS Probes

Parameter	Value	Comments					
TD	2048 – 4096	Number of sampled points (real and imaginary).					
DW	5 µs	Sweep width.					
masr	7000 to 15000 or 35000	MAS spinning rate (as fast as possible).					
Initial pulse p Set a safe po 8 dB for a 1 k 3 dB higher o	Initial pulse parameters: Set a safe power level for the amplifier, for example: 8 dB for a 1 kW or 1 dB with a 300W with 4 mm probes, and, 3 dB higher or lower power for 7 mm or 2.5 mm probes, respectively.						
PL1		High power level F1 channel (¹ H).					
P1		90 ^{o 1} H pulse (F1 channel).					
CP pulse par Calculate the (needs to be Then measur	CP pulse parameters Calculate the power level for the required CP pulse, for example: a 4 µs pulse on a 4 mm probe (needs to be the same pulse as for the 13C CP). Set this value and enter it in the PL1 value field. Then measure the 90 degree pulse and document it in the pulse width value field of your log.						
PL1		High power level F1 channel (¹ H).					
P1		90 ^{o 1} H pulse (F1 channel).					
Decoupling and P3 pulse parameters: Calculate the power level for the required decoupling field, e.g. 100 kHz (or 2.5 µs) on a 4 mm probe. Enter this value in the PL1 value field and note it in the PL1 value field of the log. Measure the 90 degree pulse width P1 and document in the pulse value field of the log.							
PL1		High power level F1 channel (¹ H).					
P1		90 ^{0 1} H pulse (F1 channel).					

Table 2.3Parameter for 1D proton experiments

Print and use the following table, or use a laboratory notebook, to keeping track of pulse widths and power levels. It is **essential** to keep track of pulse and power parameters during the setup until appropriate parameter tables become available for solid state NMR.

2.3 Pulse Calibration 13C on Adamantane (dsol)

2.3.1 Experiment Setup

Test Sample:	Adamantane
Spinning rate:	5 kHz or less (all CPMAS probes)
Experiment time:	3 minutes.

- 1. Use either the parameter set DPC13, or check the *dsol* experiment in the ATP panel experiment list (see Figure 2.1).
- 2. Reduce the sample rotation rate to 5 kHz.
- 3. Compare the acquisition parameters in Table 2.4 with the ones in **ased** and correct the parameters in **ased** if needed.

Spectrum Pri	ocPars AcquPar	Title PulseP	rog Peaks	Integrals	Sample	Structure	Fid Acqu	
0 A R U			Installed pr	obe: 4 mm	MAS 1H	19F/88 H1:	2345/1	
General	▼ General							
Channel f1	PULPROG	hpdec	E Puls			ulse program for acquisition		
channel f2	TD	2048	2048		Time domain size Number of scans			
	NS	4						
	DS	0			N	lumber of di	ummy scans	
	SWH [Hz]	10000.0	0		S	weep width	in Hz	
	AQ [s]	0.1024500 912			Acquisition time Receiver gain			
	RG							
	DW [µs]	50.000	50.000 25.00 1.0000000 7.0000000		D	well time		
	DE [µs]	25.00			Pre-scan-delay To adjust t=0 for acquisition, if dig Recycle delay Dimension of accumulation loop			
	CNST11	1.00000						ion, if digr
	D1 [s]	7.00000						
	TDO	1						
	ZGOPTNS				B	lew12, xix, p	bidec, lg, or i	tppm
	Channel f							
	NUC1	13C	Edit		N	ucleus for c	hannel 1	
	P1 [µs]	4.00			×	90 degree	pulse	
	PL1 [dB]	120.00	0 0		×	X power level for excitation pulse		
	PL1W [W]	0.00000000 X power I		power leve	I for excitation	on pulse		
	SFO1 [MHz]	125.741	125.7416969		Frequency of observe channel			
	Channel f	2						
	CPDPRG2	tppm15			ES	equence us	ed for deco	upling (tpp
	NUC2	1H	Edit		N	ucleus for c	hannel 2	
	PCPD2 [µs]	9.80			P	ulse length	in decouplin	ig sequen
	PL2 [dB]	120.00			7	119 dB, not	used	
	PL12 [dB]	120.00			P	ower level f	or standard	proton de
	SFO2 [MHz]	500.050	2500		F	requency o	f observe ch	annel
	<			ŭ.			1	3
		-						
		Acquisiti	on informati	on F	fid Flash	POWCHK	Spooler	Time

Figure 2.16 Parameter set for dsol experiment

4. Check for correct routing on the 1 kW amplifiers. If the routing is incorrect, click the *default* button in the routing window (see Figure 2.14).

frequ	iency	10	gical channel	amplifier	preamplifier
BF1 SF01	125.747731 125.751754	MHZ MHZ	NUC1	FCU1/SGU1 X 1000 W	
BF2 SF02	500.09 500.09085	MHZ MHZ	NUC2	- FCU2/SGU2 - H H100 W	2H HPHP 19F/1H
OFS2 BF3 SF03	850.0 500.09 125.751754	Hz MHz MHz	NUC3	H/F 300 W FCU3/SGU3 H H 50 W	
OFS3 BF4	1754.0 500.09	Hz MHz	NUC4	FOUNDOUN	
OFS4	1754.0	Н		x 500 W	
				2H 20 W	
•	cortab available				
				Switch F1/F2 Switch F1/F3	Default Cancel Par

Figure 2.17 Routing for double resonance experiment using high power amplifiers.

- Load the initial pulse parameters (see Table 2.4). For the PL12 value, enter the 50 kHz power level obtained. For the ¹H parameter, enter the value from the previous *hsol* experiment (see worksheet from Table 2.3).
- 6. Match and tune the probe. Make sure the ¹H bandpass filter is used for this experiment. If bypassing the HPPR module, add 1dB (increase attenuation!) to account for insertion losses of the 1H HPPR module.
- 7. For initial values, use 2 ms for the **P1** value and the same value from the *msol* experiment (⁷⁹Br) for the **PL1** value.

2.3.2 Run Experiment, Reference Spectrum

- 8. Obtain an initial spectrum.
- 9. Process the data.
- Make sure the processing parameter *sr* equals 0. Measure the position of the low frequency resonance. It should be close to 29.5 ppm.
- 11. If the resonance is off: measure how much it is off (e.g. 2 ppm).
- 12. When this is a new installation (only), bring the resonance to the correct position using the **BSMS-Field** on the BSMS keyboard or the BSMS-display.

Otherwise, discuss the action with the customer, do software referencing and calculate the differences. Use Table 2.4 to document all the steps taken for later use.

13. To move a resonance line which is off by 2 ppm to the correct resonance position:

- Calculate the ¹H offset by multiplying the ppm value by the MHz value of the ¹H frequency (e.g. on a 500 MHz spectrometer, 500*2 = 1000Hz).

- Divide this value by 5 for a WB system, or 6.5 for a SB system.
- Change the current value for the **BSMS_field** by the calculated amount.
- 14. Obtain a spectrum and iterate the procedure if needed. A deviation of \pm 0.1 ppm is acceptable.
- 15. Measure the **P1** value and adjust the **PL1** value to obtain the pulse width/spin nutation frequency required for CP in the probe specifications sheet.

2.3.3 Plot Spectrum and Document Parameter Measurements

- 16. Enter the values in the worksheet created from Table 2.4.
- 17. Plot the spectrum, or,
- Parameter Value Comments PULPROG hpdec Pulse program. NUC1 13C Nucleus on the F1 channel. O1P ¹³C offset. 32 ppm CPDPRG2 tppm15 Decoupling scheme F2 channel (¹H). PCPD2 9.8 µs Decoupler pulse length optimize for 50 kHz spin nutation field. TD 2048 Time domain sampled complex data points. DW Dwell time. 50 µs
- 18. Shim the probe as outlined below, then plot the spectrum after shimming.

Measure the P1 value using a safe power level.

Calculate the necessary power level for the pulse width associated with the required CP pulse width or RF field strength, as given in the probe specification (e.g. 4 µs for 4mm WB probes). Enter this value in the PL1 value parameter field and note it in the PL1 value field. Measure the 90° pulse and document it in the pulse value field.

PL1		High power level F1 channel (¹³ C).		
P1		90 ^{o 13} C pulse (F1 channel).		
Use PL for 50 kHz B1-field, i.e. 5 µs 90° pulse from Table 2.3 PCPD2 is then 9.8 µs long.				
PL12		High power level F2 channel (¹ H).		
PCPD2	2*P90 -0.2 µs	Decoupler pulse length optimize if needed. = 9.8 μ s for 50 kHz B ₁ -field.		

Table 2.4 Acquisition Parameters

Print and use the following table, or use a laboratory notebook, to keeping track of pulse widths and power levels. It is **essential** to keep track of pulse and power parameters during the setup until appropriate parameter tables become available for solid state

NMR.

2.3.4 Probe Shimming

- 1. This experiment can be used for shimming the probe. If the signal is too poor, or shimming is difficult, use the CPMAS experiment in section 2.4.
- 2. For shimming it might be necessary to set *aq* to higher values, perhaps up to 500 ms. In this case, use 25 kHz decoupling, equivalent to a 10 ms pulse.
- 3. Verify that the recovery delay D1 is 7 s.
- 4. Do not exceed a maximum of 500 ms for aq!

Figure 2.18 Adamantane Spectrum

2.4 CPMAS Experiment (rsol)

2.4.1 Experiment Setup

	Sample:	Adamantane.	
Spinning rate:		5 kHz for Adamantane.	
Experiment time:		3 minutes.	
Parameter set:		CPADAM.	
1. Use the parameter set CPADAM , or check the rsol experiment on the ATP			

- 1. Use the parameter set **CPADAM**, or check the *rsol* experiment on the ATP panel experiment list (see Figure 2.1).
- 2. Compare the acquisition parameters from Table 2.5 with the ones in ased and cor-

rect the parameters in *ased* if needed.

- 3. Check for correct routing on the 1 kW amplifiers. If the routing is incorrect, click the *default* button in the routing window (see Figure 2.17).
- 4. Load the initial pulse parameters, referring to Table 2.4 (*dsol experiment*) for the values. Use Table 2.4 as a worksheet to log the parameters.
- 5. Match and tune the probe. Make sure the 1H bandpass filter is used for this experiment.
- 6. Bypass the 1H preamplifier module and adjust the PL12 value if not already done in the *dsol* experiment above.
- 7. Disable the aq protection feature using the flag lacq in ZGOPTNS: -Dlacq.

2.4.2 Run Experiment, Optimize CP Pulse Parameter (Hartmann Hahn Match)

- 8. Obtain an initial spectrum.
- 9. Process the data.
- 10. Optimize **SP0** for maximum signal intensity using **POPT**. Enter the values in the worksheet created from Table 2.5.
- 11. Shim the probe as outlined in Probe Shimming on page 29 if it has not been done already.
- 12. Use POPT to measure *P3*, verifying and asserting the precision for *PL12*. Iterate and change the *PL12* value if required.

2.4.3 Plot Spectrum and Document Results in Table

- 13. Enter all the results in the pulse parameters fields of the worksheet created from Table 2.4.
- 14. Plot the spectrum document line width.

Parameter	Value	Comments					
PULPROG	ср	Start the experiment using xaua.					
NUC1	13C	Nucleus on the F1 channel.					
O1P	32 ppm	¹³ C offset.					
NUC2	1H	Nucleus on the F2 channel.					
O2P	2 ppm	¹ H offset.					
P15	3 ms	Contact pulse (F1 and F2 channel).					
D1	5 s	Recycle delay.					
DW	50 μs						
TD	2048	Number of acquired complex points.					
CPDPRG2	tppm15 or tppm20	Decoupling scheme F2 channel (¹ H).					
PCPD2	2*P3-0.2 µs	Optimized decoupling pulse.					
ZGOPTNS	-Dlacq	LACQ stands for long acquisition. Be careful when switching protection off – remove the parameter after the experiment.					
In the next field required CP co Optimize the s your log. To op the ramped co	In the next field write the power level PL1 as measured in the previous experiment for the required CP condition (e.g. 4 µs pulse power level for 4mm WB CPMAS probes). Optimize the signal by varying the SP0, then write the result for SP0 into the SP0 value field in your log. To optimize the SP0 value start with a PL from section 2.1.1, minus 3 dB to account for the ramped contact pulse. For example, if the PL was 3dB, start with a SP0 value of 0 dB.						
PL1		High power level F1 channel (¹³ C) contact pulse					
SP0		High power level F2 channel (¹ H) contact pulse					
Vary P3 in POI measurements experiment, ¹³	PT. Set the variation from above and correct PL12 CPMAS on glycine	1 to 25 μs in steps of 1 μs. Compare with results from ¹ Η or P3 if required. Note: This is important for the next					
PL12		High power level F2 channel (¹ H) excitation P3 and decoupling use power level for 5 μ s π /2 pulse					
P3	Larger or equal to 5 μ s	90 ^{o 1} H pulse at PL12 (F2 channel).					

Table 2.5 Acquisition Parameters

PCPD2

Print and use the following table, or use a laboratory notebook, to keeping track of pulse widths and power levels. It is **essential** to keep track of pulse and power parameters during the setup until appropriate parameter tables become available for solid state NMR.

See Table 2.4, PCPD2 = 2*P3-0.2 μs.

2.5 CPMAS ¹³C Sensitivity on Glycine (*csol*)

2.5.1 Experiment Setup

Sample:	Glycine
Spinning rate:	Spin at N kHz where N is defined by the 1H spectrometer frequency divided by 100 MHz (e.g. for a 500.13 MHz spectrometer N=5).

Parameter set: CPGLY

- 1. Use either the parameter set **CPGLY**, or check the appropriate item line for the **csol** experiment in the ATP panel experiment list (see Figure 2.1).
- 2. Load the glycine sample with natural isotope ¹³C abundance, spin the sample to the required speed (see above). Match and tune the probe.
- 3. Compare the acquisition parameters from Table 2.6 with the ones in **ased** and correct the parameters in **ased** if needed.
- 4. Check for correct routing on the 1 kW amplifiers. If the routing is incorrect, click the *default* button in the routing window (see Figure 2.14).
- 5. Load the initial pulse parameters, referring to Table 2.5 (*rsol experiment*) for the values. Use Table 2.5 as a worksheet to log the parameters.
- Load the initial parameters for the ¹H channel, PL12, P3, and PCPD2 = (2*P3) using the values noted from the *hsol* experiment. Load the parameters for maximum decoupling as outlined in the probe specification sheet.
- 7. Match and tune the probe. Make sure the 1H bandpass filter is used for this experiment.
- 8. Bypass the 1H preamplifier module and adjust the PL12 value as discussed above.

2.5.2 Run Experiments and Optimize CP and Decoupling Parameters

- 9. Obtain an initial spectrum.
- 10. Process the data.
- Optimize the *SP0* value for maximum signal intensity on the *aliphatic peak* (refer to the next experiment) using **POPT**. Enter the values in the worksheet created from Table 2.5.
- 12. Use POPT to measure the *P3* value, verifying and asserting the precision for *PL12*. Iterate and change *PL12* if required.
- Use POPT to measure the *PCPD2* value in a range of ±1 dB around the calculated value. Use 0.1 dB increments. If in doubt about the correct O2P setting (the decoupler carrier frequency), optimize the O2P using POPT.

2.5.3 Evaluate Experiment, Document Setup Results and Plot

- 14. Enter all the results in the pulse parameters fields of the worksheet created from Table 2.6.
- 15. Determine the signal to noise ratio.
- 16. Plot the spectrum.

Parameter	Value	Comments			
PULPROG	ср				
NUC1	13C	Nucleus on the F1 channel.			
O1P	100 ppm	¹³ C offset.			
NUC2	1H	Nucleus on the F2 channel.			
D1	5 s	Recycle delay.			
NS	4	Number of scans.			
SW	300 ppm	Sweep width for Glycine.			
TD	2048	Number of acquired complex points.			
CPDPRG2	SPINAL64	Decoupling scheme F2 channel (¹ H).			
SPNAM0	ramp.100	For ramped CP.			
P15	2 ms	Contact pulse (F1 and F2 channel).			
Use CP parame Optimize the sig	eters as obtained fr gnal at about 40 pr	rom above experiment with adamantane. om by varying SP0 value.			
PL1		High power level F1 channel (¹³ C) contact pulse.			
SP0		High power level F2 channel (¹ H) contact pulse.			
Use the decoupling power level measured in Experiment Setup on page 32. Use corrections to this power level if results from the CP experiment on adamantane suggest it! If in doubt, use a conservative PL12 value, measure the P3 and PCPD2, then adjust the PL12 to get the maximum specified decoupling. Example: A 4mm WB CPMAS probe is specified with 100 kHz decoupling. This is equivalent to a P3 of 2.5 μ s and a best PCPD2 of 5 μ s (±1 μ s) using SPINAL64. Use POPT and P3 variations out to 360° pulses (e.g. P3 from 1 to >10 μ s in increments of 0.25 μ s in POPT).					
PL12		High power level F2 channel (¹ H) excitation and decoupling).			
P3		90 ^{o 1} H pulse at PL12 (F2 channel).			
PCPD2		SPINAL64 decoupling pulse. Starting point: for SPINAL64. PCPD2 is about 2*P3 (180°Pulse).			
O2P	2.5 - 3 ppm	¹ H offset - optimize in 400 - 500 Hz steps for maximum signal of aliphatic peak.			

Table 2.6Acquisition Parameters

Print and use the following table, or use a laboratory notebook, to keeping track of pulse widths and power levels. It is **essential** to keep track of pulse and power parameters during the setup until appropriate parameter tables become available for solid state NMR.

Figure 2.19 ¹³C spectrum of glycine natural abundance

2.6 CPMAS: Measuring 13C Pulse Widths (ctsl)

2.6.1 Experiment Setup

Sample:	Glycine
Spinning rate:	Spin at N kHz where N is defined by the 1H spectrometer frequency divided by 100 MHz (e.g. for a 500.13 MHz spectrometer N=5).

Experiment time: 3 minutes.

- 1. Use either the parameter set **CPGLY**, or click on "*optional exp*" in the ATP panel (Figure 2.1) and choose the *ctsl* experiment. Spin the sample to the required speed, then match and tune the probe.
- 2. This experiment is in principle identical to the sensitivity experiment 2.5.1 except that the pulse program used is called *cp90*.
- 3. Compare the acquisition parameters from Table 2.6 with the ones in *ased* and correct the parameters in *ased* if needed.
- 4. Check for correct routing on the 1 kW amplifiers. If the routing is incorrect, click the *default* button in the routing window (see step 23.).
- 5. Load the pulse parameters from the **csol** experiment (see Table 2.6). Set **PL11 to 120dB** and **P1** to the required value (see specifications or the **dsol** experiment).
- Match and tune the probe, make sure the ¹H bandpass filter is used for this experiment.
- 7. Bypass the 1H preamplifier module and adjust the PL12 value as discussed above.

2.6.2 Run Experiment and Measure Pulse Parameters

- 8. Obtain a reference spectrum and process the data.
- 9. Set the O1P value close to one of the resonances at 50 ppm or at 176 ppm.
- 10. Obtain a second spectrum and process the data.
- 11. Set PL11 to PL1 and measure P1 using POPT.
- 12. Use ZERO for the optimization method in POPT.
- 13. Enter all the results in the pulse parameters fields of the worksheet created from Table 2.7.

Figure 2.20 Parameter optimization for flipback pulse after CP. Note 90° pulse is at the zero crossing.
Basic ATP Experiments for CPMAS Probes

Parameter	Value	Comments		
PULPROG	cp90			
Set all values known from previous experiments for PL1, PL2, PL12, P3 and P3. Measure P1 and adjust PL11 if required and repeat.				
PL1		High power level F1 channel (¹³ C) contact pulse.		
Leave PL11 at 120 dB set P1 to the projected value, e.g. 4 μ s, then obtain and phase the spectrum. Set PL11 to the value of PL1 and optimize P1 in POPT. Set the optimization method to ZERO. Optimize by varying P1 from 1 μ s to 16 μ s in steps of 1 μ s. The 90° pulse is at the zero intensity of the signal and the 180° pulse at the negative maximum of the signal.				
PL11		High power level F1 channel (¹³ C) pulse.		
P1		90 ^{o 13} C pulse at PL11 (F1 channel).		
P1		180 ^{o 13} C pulse at PL11 (F1 channel).		
Use ¹ H parameters from Table 2.6				
SP0		High power level F2 channel (¹ H) contact pulse.		
PL12		High power level F2 channel (¹ H) excitation and decoupling.		
P3		90 ^{o 1} H pulse at PL12 (F2 channel).		
PCPD2		SPINAL64 decoupling pulse.		
O2P		¹ H offset.		

Table 2.7 Acquisition Parameters

Print and use the following table, or use a laboratory notebook, to keeping track of pulse widths and power levels. It is **essential** to keep track of pulse and power parameters during the setup until appropriate parameter tables become available for solid state NMR.

2.7 CPMAS ¹⁵N Sensitivity on Glycine (*nsol*)

ATTENTION! When using different amplifiers and channels for ¹⁵N experiments, e.g. as done with Biosolid probes or other triple resonance probes for DCP setup, use the following preparation experiment for a ¹⁵N pulse. Be careful if a 1kW amplifier is used for the 15N channel and 300W or 500W for the 13C channel.

2.7.1 ¹⁵N Sensitivity Experiment on Glycine Natural Abundance

Sample: Glycine natural abundance

Spinning rate: Spin at N kHz where N is defined by the 1H spectrometer frequency divided by 100 MHz (e.g. for a 500.13 MHz spectrometer N=5).

Experiment time: 3 minutes.

- 1. Use either parameter set **CPN15**, or check the appropriate item line for the nsol experiment in the ATP panel experiment list (see Figure 2.1).
- 2. Load the glycine sample with natural isotope ¹⁵N abundance; spin the sample to the required speed (see above). Match and tune the probe.
- 3. Compare the acquisition parameters from Table 2.9 with the ones in **ased** and correct the parameters in **ased** if needed.
- 4. Check for correct routing on the 1 kW amplifiers. If the routing is incorrect, click the *default* button in the routing window (see step 23.).
- 5. Load all ¹H pulse parameters (**PCPD2** and **PL12**) from *csol* experiment; see Table 2.6.
 - a) For WB probes subtract 3dB from the PL1 recorded in Table 2.6 (double the RFpower).
 - b) For SB probes use the same power level as a starting point.
- For SP0 use a power level that is 3 dB higher (lower power) then recorded in Table 2.6 (the ¹³C CPMAS experiment).
- If the setup experiment was not done, begin with a PL1 which is 3dB lower (twice the power) than the PL1 from the experiment *csol* (Table 2.6).
- 8. Match and tune the probe. Make sure the 1H bandpass filter is used for this experiment.
- 9. Bypass the 1H preamplifier module if required. This is required for most HPHP 1H/ 19F modules, particularly in high field systems > 500MHz.

2.7.2 Run Experiment, Optimize ¹⁵N{¹H} CPMAS Condition

- 10. Obtain a spectrum and process the data.
- 11. If the setup experiment was used and the pulse parameters for the 15N channel are known, optimize **SP0** using **POPT**.
- Go to *ntsl* (next experiment) and measure the pulse parameters for the 15N channel. Adjust power levels to specifications and repeat *nsol* experiment with the correct PL1 value.

2.7.3 Evaluate Experiment, Document Optimization, Print Spectrum

- 13. Determine the signal to noise ratio.
- 14. Enter all relevant parameters into copy of Table 2.9.

15. Plot the spectrum.

Figure 2.21 ¹⁵N CPMAS on glycine at natural abundance level

Parameter	Value	Comments	
PULPROG	ср		
NUC1	15N	Nucleus on the F1 channel.	
01P	40 ppm	¹⁵ N offset	
NUC2	1H	Nucleus on the F2 channel.	
D1	5 s	Recycle delay.	
NS	2 to 4	Number of scans.	
SW	400 ppm	Sweep width for Glycine.	
TD	1024	Time Domain complex points.	
CPDPRG2	SPINAL64	Decoupling scheme F2 channel (¹ H).	
AQ_MOD	QSIM		
SPNAM0	ramp.100	For ramped CP.	
P15	2 ms	Contact pulse (F1 and F2 channel).	
Use the PL1 value from the setup experiment. If you do not use the setup experiment value, use a conservative PL1 value in order to get an acceptable CP to work such that the signal is acceptable. Then use the ntsl experiment to find the appropriate power level for PL1 (see CPMAS: Measuring 15N Pulse Widths: (ntsl) on page 41).			
PL1		From previous ¹⁵ N experiment.	
Use the SP0 value from the 13C experiment and reduce it by 3dB. If, for example, the SP0 was 3 dB, set the SP0 value to 2-6 dB, then optimize the PL1 value. Note that this works only if the same transmitter and SGU are used for ¹³ C and ¹⁵ N CPMAS experiments. If this is not the case, use caution and the setup described at the beginning of this experiment. The SP0 value then needs to be optimized and the PL1 value set!			
SP0		High power level F2 channel (¹ H) contact pulse.	
For the following	: Use all PL and	P values from the ¹³ C experiment <i>csol</i> .	
PL12		High power level F2 channel (¹ H) excitation and decoupling.	
P3		90 ^{o 1} H pulse at PL12 (F2 channel).	

. •		
PCPD2		SPINAL64 decoupling pulse.
O2P	2.5 – 3.5 ppm	¹ H offset.

Table 2.8 Acquisition Parameters

Print and use the following table, or use a laboratory notebook, to keeping track of pulse widths and power levels. It is **essential** to keep track of pulse and power parameters during the setup until appropriate parameter tables become available for solid state NMR.

2.8 CPMAS: Measuring ¹⁵N Pulse Widths: (*ntsl*)

2.8.1 Experiment Setup

Sample: Glycine

Spinning rate: Spin at N kHz where N is defined by the 1H spectrometer frequency divided by 100 MHz (e.g. for a 500.13 MHz spectrometer N=5).

Experiment time: 3 minutes.

- 1. Use either the parameter set **CPN15**, or click on "*optional exp*" in the ATP panel (Figure 2.1) and choose the *ntsl* experiment.
- 2. Load the glycine sample with natural isotope ¹⁵N abundance, spin the sample to the required speed (see above). Match and tune the probe.
- 3. Compare the acquisition parameters from Table 2.9 with the ones in *ased* and correct the parameters in *ased* if needed.
- 4. Check for correct routing on the 1 kW amplifiers. If the routing is incorrect, click the *default* button in the routing window (see step 23.).
- 5. Load the pulse parameters from the *nsol* experiment (see Table 2.8). Set **PL11** *to* **120dB** and **P1** to the required value (see specifications or the **dsol** experiment).
- 6. Match and tune the probe. Make sure the 1H bandpass filter is used for this experiment.
- 7. Bypass ¹H preamplifier module if needed and adjust **PL12** as discussed above.

2.8.2 Run Spectrum, Measure Flip-back Pulse Parameters

- 8. Obtain a reference spectrum for phasing.
- 9. Process the data.
- 10. Set PL11 to PL1 and measure P1 using POPT.
- 11. Use ZERO for the optimization method in POPT.

2.8.3 Print Spectrum, Document Result from Parameter Optimization

- 12. Enter all the results in the pulse parameters fields of the worksheet created from Table 2.10.
- 13. Plot the spectrum.

Parameter	Value Comments			
PULPROG	ср90			
Set all values known from previous experiments for PL1, SP0, PL12, P3 and PCPD2. Measure P1 and adjust PL11 if required and repeat.				
PL1		High power level F1 channel (¹⁵ N) contact pulse from the previous experiment.		
Leave PL11 at 120 dB set P1 to the projected value, e.g. 4 μ s, then obtain and phase the spectrum. Set PL11 to the value of PL1 and optimize P1 in POPT. Set the optimization method to ZERO. Optimize by varying P1 from 1 μ s to 25 μ s in steps of 1 μ s. The 90° pulse is at the zero intensity of the signal and the 180° pulse at the negative maximum of the signal.				
PL11		High power level F1 channel (¹⁵ N) pulse.		
P1	90 ^{o 15} N pulse at PL11 (F1 channel).			
P1		180 ^{o 15} N pulse at PL11 (F1 channel).		
Use all parameters from Table 2.8				
SP0		High power level F2 channel (¹ H) contact pulse.		
PL12		High power level F2 channel (¹ H) excitation and decoupling.		
P3		90 ^{0 1} H pulse at PL12 (F2 channel).		
PCPD2		SPINAL64 decoupling pulse.		
O2P		¹ H offset.		

Table 2.9 Acquisition Parameters

Print and use the following table, or use a laboratory notebook, to keeping track of pulse widths and power levels. It is **essential** to keep track of pulse and power parameters during the setup until appropriate parameter tables become available for solid state NMR.

2.9 CPMAS: Measuring ³¹P Pulse Parameters: (*psol*)

2.9.1 ³¹P Sensitivity Experiment on Glycine Natural Abundance

Sample:	Ammonium dihydrogen Phosphate (hereafter ADP)
Spinning rate:	Spin at N kHz where N is defined by the 1H spectrometer frequency divided by 100 MHz (e.g. for a 500.13 MHz spectrometer N=5).
Experiment time:	3 minutes.

1. Use either the parameter set CPP31, or check the appropriate item line for the psol

experiment in the ATP panel experiment list (see Figure 2.1).

- 2. Load the rotor with ADP and spin the sample to the required speed (see above). Match and tune the probe.
- 3. Compare the acquisition parameters from Table 2.11 with the ones in *ased* and correct the parameters in *ased* if needed.
- 4. Check for correct routing on the 1 kW amplifiers. If the routing is incorrect, click the *default* button in the routing window (see Figure 2.17).
- 5. Make sure that the correct receiver path is selected (see Figure 2.4).
- 6. Load all the ¹H pulse parameters (**PCPD2** and **PL12**) from the *csol* experiment (see Table 2.6).
- a) Add 3dB from the PL1 recorded in Table 2.6 (half the RF-power).
- For SP0 use the same power level as recorded in Table 2.6 (the ¹³C CPMAS experiment).
- 8. Match and tune the probe. Make sure the 1H bandpass filter is used for this experiment.
- Bypass the 1H preamplifier module if required. This is required for most HPHP 1H/ 19F modules, particularly in high field systems > 500MHz.

2.9.2 Run Experiment, Optimize ¹⁵N{¹H} CPMAS Condition

- 10. Obtain a spectrum and process the data.
- 11. The resonance should be around 2.5 ppm.
- 12. Optimize PL1 using POPT to get an optimum HH match.

2.9.3 Evaluate Experiment, Document Optimization, Print Spectrum

- 13. Determine the signal to noise ratio.
- 14. Enter all relevant parameters into copy of Table 2.11.
- 15. Plot the spectrum.

Parameter	Value	Comments	
PULPROG	ср		
NUC1	31P	Nucleus on the F1 channel.	
O1P	0 ppm	³¹ P offset.	
NUC2	1H	Nucleus on the F2 channel.	
D1	5 s	Recycle delay.	
NS	2 to 4	Number of scans.	
SW	300 ppm	Spectral width for ADP.	
AQ	50ms	Acquisition time.	
CPDPRG2	SPINAL64	Decoupling scheme F2 channel (¹ H).	
AQ_MOD	QSIM		
SPNAM0	ramp.100	For ramped CP.	
P15	5 ms	Contact pulse (F1 and F2 channel).	
Use the PL1 value from the setup experiment. If you do not use the setup experiment value, use a conservative PL1 value in order to get an acceptable CP signal. Then use the ntsl experiment to find the appropriate power level for PL1 (see CPMAS: Measuring 15N Pulse Widths: (ntsl) on page 41).			
PL1			
Use SP0 from ¹³ C experiment then optimize PL1. Note: This works only if the same transmitter and SGU is used for ¹³ C and ³¹ P CPMAS experiments. Otherwise use the above setup experiment, but proceed with caution. Optimize the SP0 and set the PL1 value.			
SP0		High power level F2 channel (¹ H) contact pulse.	
In the following: Us	se all PL an P valu	ues from ¹³ C experiment CSOL.	
PL12		High power level F2 channel (¹ H) excitation and decoupling.	
P3		90 ^{o 1} H pulse at PL12 (F2 channel).	
PCPD2		SPINAL64 decoupling pulse.	
O2P	2.5 – 3.5 ppm	¹ H offset.	

Table 2.10 Acquisition Parameters

Print and use the table above, or use a laboratory notebook, to keeping track of pulse widths and power levels. It is **essential** to keep track of pulse and power parameters during the setup until appropriate parameter tables become available for solid state NMR.

Figure 2.22 ³¹P CPMAS on ADP

The **sensitivity** is determined by measuring the signal level of the peak and noise over a 20-ppm wide region. Use the au program **sinocal**. Signal region = 15 ppm to -15 ppm, whole spectrum 125 ppm to -125 ppm and noise bandwidth is 20 ppm.

After this the program will look for the best noise region and return the values for noise region, signal region and S/N.

2.10 CPMAS: Measuring ³¹P Pulse Widths: (*ptsl*)

2.10.1 Experiment Setup

Sample:	ADP
Spinning rate:	Spin at N kHz where N is defined by the 1H spectrometer frequency divided by 100 MHz (e.g. for a 500.13 MHz spectrometer N=5).

Experiment time: 3 minutes.

- 1. Use either the parameter set **CPP31**, or click on "*optional exp*" in the ATP panel (Figure 2.1) and choose the *ptsl* experiment.
- 2. Load the ADP sample and spin the sample to the required speed (see above). Match and tune the probe.
- 3. Compare the acquisition parameters from Table 2.11 with the ones in *ased* and correct the parameters in *ased* if needed.

- 4. Check for correct routing on the 1 kW amplifiers. If the routing is incorrect, click the *default* button in the routing window (see Figure 2.17).
- 5. Load the pulse parameters from the *psol* experiment; see Table 2.10. Set **PL11** to **120dB** and **P1** to the required value (see specifications or the dsol experiment)
- 6. Match and tune the probe. Make sure the 1H bandpass filter is used for this experiment.
- 7. Bypass the ¹H preamplifier module if needed and adjust **PL12** as discussed above.

2.10.2 Run Spectrum, Measure Flip-back Pulse Parameters

- 8. Obtain a reference spectrum for phasing.
- 9. Process the data.
- 10. Set PL11 to PL1 and measure P1 using POPT.
- 11. Use **ZERO** for the optimization method in **POPT.**

2.10.3 Print Spectrum, Document Result from Parameter Optimization

- 12. Enter all the results in the pulse parameters fields of the worksheet created from Table 2.11.
- 13. Plot the spectrum.

Basic ATP Experiments for CPMAS Probes

Parameter	Value	Comments			
PULPROG	ср				
Set all values know and adjust PL11 if	n from previous e required and repe	experiment for PL1, SP0, PL12, P3 and PCPD2. Measure P1 at.			
PL1	High power level F1 channel (³¹ P) contact pulse from previous experiment				
Leave PL11 at 120 trum. Set PL11 to t ZERO. Optimize by intensity of the sign	dB set P1 to the he value of PL1 a y varying P1 from hal and the 180° p	projected value, e.g. 4 μ s, then obtain and phase the spec- nd optimize P1 in POPT. Set the optimization method to 1 μ s to 25 μ s in steps of 1 μ s. The 90° pulse is at the zero ulse at the negative maximum of the signal.			
PL11	High power level F1 channel (³¹ P) pulse.				
P1		90 ^{o 31} P pulse at PL11 (F1 channel).			
P1		180 ^{o 31} P pulse at PL11 (F1 channel).			
Use all parameters from Table 2.10					
SP0		High power level F2 channel (¹ H) contact pulse.			
PL12		High power level F2 channel (¹ H) excitation and decoupling.			
P3		90 ^{o 1} H pulse at PL12 (F2 channel).			
PCPD2		SPINAL64 decoupling pulse.			
O2P		¹ H offset.			

Table 2.11 Acquisition Parameters

Print and use the following table, or use a laboratory notebook, to keeping track of pulse widths and power levels. It is **essential** to keep track of pulse and power parameters during the setup until appropriate parameter tables become available for solid state NMR.

Basic ATP Experiments for CPMAS Probes

3 HFX ATP Experiments for CPMAS Probes

3.1 Basic HF, HFC Setup

3.1.1 General HFC Hardware Routing

General channel setup for HFC experiments benefit from ¹⁹F preamplifier modules, for example the XBB19F 2HS module:

hequency		logical channel	ampilter	preampitier	receiver	observe channs
F1 125.747701	MHZ MHZ	NUC1	× 1000	THEMA		NJC1
9'31 12574.8	Int	130 *		X001W 245		190
72 500.09 F02 500.09175	MHC MHC	NUCZ	1H 1000	HEHE 1587/1H		NUC2
PS2 1790.0	Hz.	111		HEHP X8801P		TH
FD 470.55474 FC3 470.507684	MHE MHE	NUCI F3 50/3	1H 300		500	MUC3
PS3 -47055 #	12	197				194
- cable wring	ing	settings E show receiver routing D show HF routing	[x 500 w]			

Figure 3.1 HFC Experiment Setup Example with Routing Table and Preamplifier Selection.

3.1.2 Probe Setup and Tuning

Once the normal ¹³C sensitivity is measured on this probe, the ¹H band pass filters are replaced by the HF filter set. This configuration uses two high power filters on each ¹H and ¹⁹F channel. The diplexer couples the two amplifier outputs coming through the band-pass filters into the probe and splits the RF-signal coming back from the probe into the correct preamplifier module (see Figure 3.2).

HFX ATP Experiments for CPMAS Probes

¹H/¹⁹F/X NMR experiments configuration

Figure 3.2 HFX Band-pass Filter Cascade and Diplexer Setup.

This filter configuration should be used for the first setup, however can be varied if satisfying simultaneous matching and tuning conditions cannot be met.

If the system has only one pre-amplifier capable of 19 F/¹H, then only the observe nucleus should be routed through the pre-amplifier. Care must be taken that the same cabling is always used, as probe tuning will most likely change if different cables are used. Note: add approximately 1 dB to the power level setting to compensate for pre-amplifier insertion losses when in a bypass configuration.

There are three wands used for tuning the 1H and 19F channels. To tune the probe:

- 1. First tune and match ¹H using the ¹H tune and ¹H match.
- 2. Note the direction you've turned the ¹H match.
- 3. Switch to ¹⁹F and adjust the ¹⁹F tuning (wand with red label).
- 4. Adjustment of the match will also most likely be needed (for matching only the ¹H

matching wand can be used). A compromise between the matching of the ¹H and the ¹⁹F channels is needed. Neither will be perfect, however, proper tuning should be maintained.

To improve simultaneous matching conditions you can play with the order of the two band pass filters of each channel, by swapping the connections and cables which connects them to the pre-amplifier module. For example, you can try and connect one bandpass filter to the pre-amplifier module and then use the short N-cable to connect to the other module, which in turn is connected to the diplexer.

3.2 FH Experiment (*fhdp*) – (*hfdp*)

3.2.1 Experiment Setup

Measure ¹⁹F pulse widths: (fhdp)Sample:PVDFSpinning rate:Spin as fast as possible (35, 24 or 15 kHz).Experiment time:3 minutes.

- 1. Use either the parameter set **F19HPDEC**, or check the appropriate item line for the *fhdp* experiment in the ATP panel experiment list (see Figure 3.1).
- 2. Load the PVDF sample and spin the sample to the required speed (see above). Match and tune the probe (see "Probe Setup and Tuning" on page 49).
- 3. Compare the acquisition parameters in Table 3.1 with the ones in **ased** and correct the parameters in **ased** if needed.

frequency		logical channel	anpiter	preamplifier	receiver	observe channel
Ft 470.55474	MPC .	NUCI	× 1000		I Deer	NUC1
F31 -47055.9	No.	197 -		x001W 240	- Mart	197
72 500.09 F02 500.09175	MHC MHC	NUCZ 50/2	1H 100			50/2 / MUC2
PS2 1790.0	Hz.	111	· · · · · · · · · · · · · · · · · · ·	HENR X0001	P	TH
F3 500.09 FC3 500.09	MHE MHE	F8 SOUR	1H 300			50U3 NUC3
PS3 00	HE.	off ·	Los an and			off -
- cable wring		settings IZ show receiver routing	x 500 W			

Figure 3.3 Example of routing for *fhdp* experiment.

The ideal situation is when all hardware channels remain the same for ALL HF (*hfdp*), FH (*fhdp*), CF (*cfsI*), CH (*chsI*) and CFH (*cfhsI*) experiments!

Other routing choices are possible and one can also use X amplifiers for systems up to 400MHz ¹H resonance. For higher field instrumentation, a second ¹H amplifier is required. If available, it is possible to use an XBB19F preamplifier module for the ¹⁹F channel. Systems with HPLNA need either such an amplifier or the HPHP 19F/1H module. The latter is a poor choice as it is a passively switched preamplifier module and does not permit the use of shaped pulses. When uncertain about the appropriate routing, please contact you local solid state NMR applications scientist.

- Check for correct routing on the 1 kW amplifiers. If the routing is incorrect, click the *default* button in the routing window, then change the ¹⁹F routing goes through SGU3 (see Figure 3.3).
- Load the pulse parameters, using parameters from the *hsol* experiment as guidance (see Table 2.3). Set PL12 = 120dB and P1 to the required values (see specifications).

3.2.2 Run Experiment, Measure Pulse Parameters

- 6. Obtain a reference spectrum for phasing.
- 7. Process the data.
- 8. Measure **P1** using **POPT**.

3.2.3 Plot Spectrum and Document Results

- 9. Enter all the results in the pulse parameters fields of the worksheet created from Table 3.1.
- 10. Plot the spectrum.

HFX ATP Experiments for CPMAS Probes

Parameter	Value	Comments		
PULPROG	hpdec			
TD	1024	Number of sampled points (real and imaginary)		
DW	5 µs	Dwell time		
masr	15000, 24000 or 35000	MAS spinning rate (as fast as possible)		
Starting pulse pa Set a safe powe	arameters: er level, for example:			
• 8 dB on 1 kW	or 1 dB on 300 W amp for ϵ	4mm probe		
 3 dB higher or 	lower power for 7 mm or 2	.5 mm probes.		
PL1		High power level F1 channel (¹⁹ F)		
P1		90 ^{o 19} F pulse (F1 channel)		
CP pulse parameters: Calculate the power level for required CP pulse, e.g. 4 μ s pulse on 4 mm probes (needs to be the same pulse as for ¹³ C CP). Set this and note it in the PL1 value field. Then measure the 90				
degree pulse an	d document it in the pulse	value field.		
PL1		High power level F1 channel (¹⁹ F)		
P1		90 ^{o 19} F pulse (F1 channel)		
Decoupling and P3 pulse parameters: Calculate power level for required decoupling field, e.g. 80 kHz (or 3.1 µs) on 4mm probe. Set this value into PL1 and note it in the PL1 value field. Then measure the 90 degree pulse and docu- ment in the pulse value field.				
PL1		High power level F1 channel (¹⁹ F)		
P1		90 ^{o 19} F pulse (F1 channel)		

 Table 3.1
 Acquisition Parameters

3.3 Measure ¹H Pulse Widths

3.3.1 Experiment Setup

Sample:	PVDF
Spinning rate:	Spin as fast as possible (35, 24 or 15 kHz).
Experiment time:	3 minutes.
1. Use either the	parameter set F19HPDEC, or the previous experiment.

2. Create a new experiment using edc and change F1 and F2 in the *EDASP* display

(Figure 3.4).

- 3. Match and tune the probe (see "Probe Setup and Tuning".
- 4. Compare the acquisition parameters from Table 3.1 with the ones in **ased** and correct the parameters in **ased** if needed.
- Check for correct routing on the 1 kW amplifiers. If the routing is incorrect, click the default button in the routing window. Then change such that ¹⁹F routing goes through SGU3:.

Figure 3.4 Example of routing for *hfdp* experiment.

The ideal situation is when all hardware channels remain the same for ALL HF (*hfdp*), FH (*fhdp*), CF (*cfsI*), CH (*chsI*) and CFH (*cfhsI*) experiments!

Other routing choices are possible and one can also use X amplifiers for systems up to 400MHz ¹H resonance. For higher field instrumentation, a second ¹H amplifier is requried. If available, it is possible to use an XBB19F preamplifier module for the ¹⁹F channel. Systems with HPLNA need either such an amplifier or the HPHP 19F/1H module. The latter is a poor choice, as it is a passively switched preamplifier module and would not permit the use of shaped pulses. When uncertain about the appropriate routing, please contact you local solid state NMR applications scientist.

 Load the pulse parameters using parameters from the *hsol* experiment as guidance (see Table 2.3). Set PL12 = 120dB and P1 to the required values (see specifications).

3.3.2 Run the Experiment and Measure the Pulse Parameters

- 7. Obtain a reference spectrum for phasing.
- 8. Process the data.
- 9. Measure P1 using POPT.

3.3.3 Plot Spectrum and Document Results

- 10. Enter all the results in the pulse parameters fields of the worksheet created from Table 3.2.
- 11. Plot the spectrum.

Parameter	Value	Comments					
PULPROG	hpdec						
TD	512	Number of sampled points (real and imaginary).					
DW	5 µs	Sweep width.					
masr	15000, 24000 or 35000	MAS spinning rate (as fast as possible).					
Starting pulse particular Starting pulse particular Starting powers	arameters: r level, for example, for a 50	kHz pulse as obtained in the <i>hsol</i> or <i>rsol</i> experiment.					
PL1		High power level F1 channel (¹ H).					
P1		90 ^{° 1} H pulse (F1 channel).					
CP pulse param Cross check wit <i>hsol</i> Table 2.3).	neters h <i>hsol, rsol or csol</i> verifying t	he appropriate pulse parameters (see instructions for					
PL1		High power level F1 channel (¹ H).					
P1		90 ^{° 1} H pulse (F1 channel).					
Decoupling and IN HFX mode, M Calculate the po Set this value in document it in th	P3 pulse parameters: MAX. DECOUPLING REDUC ower level for the required de to PL1 and note it in the PL2 ne pulse value field.	CED coupling field, e.g. 80 kHz (or 3.1 μs) on 4 mm probe. 1 value field. Then measure the 90 degree pulse and					
PL1		High power level F1 channel (¹ H).					
P1		90° 1H pulse (F1 channel).					

Table 3.2Acquisition Parameters

3.4 Measure ¹⁹F (¹H) Decoupled Spectrum: (*fhdp*)

3.4.1 Experiment Setup

Sample: PVD	١F
-------------	----

Spinning rate: Spin as fast as possible (35, 24 or 15 kHz).

Experiment time: 3 minutes.

- 1. Use either the parameter set **F19HPDEC**, or check the appropriate item line for the *fhdp* experiment in the ATP panel experiment list (see Figure 2.1) or increment from experiment in section 3.2.
- Compare the acquisition parameters from Table 3.3 with the ones in *ased* and correct the parameters in *ased* if needed.
- 3. Load the appropriate pulse and power level values for ¹⁹F and ¹H (**PL12**) using Table 3.1 and Table 3.2 for reference.

3.4.2 Run experiment

- 4. Obtain a spectrum.
- 5. Note the pulse parameters used for the experiment in Table 3.2.
- 6. Process the data.

3.4.3 Plot spectrum document results

7. Plot the spectrum and compare with the ¹⁹F spectrum without ¹H decoupling.

Figure 3.5 Direct 19F spectra of PVDF 15 kHz MAS, blue no decoupling, red 80 kHz 1H TPPM decoupling.

Parameter	Value	Comments				
PULPROG	hpdec					
TD	512	Number of sampled points (real and imaginary)				
DW	5 µs	Sweep width				
masr	15000, 24000 or 35000	MAS spinning rate (as fast as possible)				
Pulse Parameters from Table 2.11						
PL1		High power level F1 channel (¹⁹ F)				
P1		90 ^{o 19} F pulse (F1 channel)				
Heteronuclear D	Decoupling Pulse Parameter	ers from Table 3.1				
PL12		High power level F2 channel (¹ H)				
CPDPRG2	TPPM15	Heteronuclear decoupling program for ¹ H decoupling use PCPD2 = value for 180° pulse minus 0.2 μs				
PCPD2		Almost 180 ^{o 1} H pulse (F2 channel)				

 Table 3.3
 Acquisition Parameters

3.5 ¹³C{¹⁹F} CPMAS Experiments

3.5.1 Setup ¹³C{¹⁹F} CPMAS Experiment: (*cfsl*)

Sample:	PVDF		
Spinning rate:	Spin 15 kHz.		

Experiment time: 3 minutes.

- 1. Use either the parameter set **CPC13F19**, or check the appropriate item line for the *cfsl* experiment in the ATP panel experiment list (see Figure 2.1).
- 2. Load the PVDF sample, then spin the sample to required speed (see above). Match and tune the probe, as described previously.
- 3. Compare the acquisition parameters from Table 3.3 with the ones in *ased* and correct the parameters in *ased* if needed.
- 4. Check for correct routing on the 1 kW amplifiers. If the routing is incorrect, click the *default* button in the routing window (see Figure 2.14) and adjust it such that the hardware section of the routing (SGU's, amplifiers and HPPR's) for the decoupler channel (¹⁹F) is identical to the routing selected for ¹⁹F in the *fhdp* experiment.

Figure 3.6 Example of routing for *cfsl* experiment.

In the figure above, it is ideal when all hardware channels remain the same for ALL HF (hfdp), FH (fhdp), CF (cfsl), CH (chsl) and CFH (cfhsl) experiments!

 Load the pulse parameters using parameters from the *csol* and *fhdp* experiments as reference (see Table 2.6 for ¹³C, PL1, Table 2.11 for ¹⁹F PL2, and Table 3.2 for PL12 and P31 on ¹⁹F.

3.5.2 Run Experiment and Optimize HH-Match

- 6. Obtain a reference spectrum.
- 7. Process the data.
- 8. Optimize PL2 for maximum signal intensity using POPT.
- 9. Obtain a spectrum.

3.5.3 Document Results and Print Spectrum

- 10. Enter the values in the worksheet created from Table 3.4.
- 11. Process the data and plot the spectrum.

Figure 3.7 ¹³C{¹⁹F} spectra of PVDF 15 kHz MAS, 80 kHz ¹⁹F PIDEC12 decoupling.

HFX ATP Experiments for CPMAS Probes

HFX ATP Experiments for CPMAS Probes

Parameter	Value	Comments				
PULPROG	vacp					
NUC1	13C	Nucleus on the F1 channel.				
O1P	100 ppm	¹³ C offset				
NUC2	19F	Nucleus on the F2 channel.				
O2P	-120 ppm	¹⁹ F offset				
D1	5 s	Recycle delay				
NS	32	Number of scans				
SW	300 ppm	Sweep width for PVDF				
TD	1024	Number of acquired complex points				
CNST31		Spinning speed in Hz				
CPDPRG2	PIDEC12	Decoupling scheme F2 channel (¹⁹ F)				
SPNAM0	ramp.100	For ramped CP				
P15	2 ms	Contact pulse (F1 and F2 channel)				
Use the ¹³ C (from above (o example, PL PL2 value in i	Use the ¹³ C CP parameter PL1 from the <i>csol</i> experiment. For optimization of PL2, start with a PL from above (direct ¹⁹ F, 4 μ s [62.5 kHz]) minus 3 dB to account for the ramped contact pulse. If, for example, PL was 3dB, start with PL2 = 0dB, then optimize the 120 ppm signal (CF2) by varying the PL2 value in increments of 0.5 dB.					
PL1		High power level F1 channel (¹³ C) contact pulse				
For optimizati account for th signal (CF2) I	For optimization of PL2 start with a PL from above (Direct ¹⁹ F, 4 μ s [62.5 kHz]) minus 3 dB to account for the ramped contact pulse. If e.g. PL was 3dB, start with PL2 = 0dB. Optimize 120 ppm signal (CF2) by variation of PL2 in 0.5 dB steps.					
PL2		High power level F2 channel (¹⁹ F) contact pulse				
Use the decoupling power level from <i>fhdp</i> based on the probe specifications, e.g. 80 kHz. If in doubt, use a conservative PL12 value, measure P3 and P31, then adjust PL12 to get the maximum specified decoupling. For example: a 4 mm WB CPMAS probe is specified with 80 kHz decoupling. This is equivalent to a P3 of 3.1 μ s and a best P31 or 6.2 μ s (±1 μ s) using SPINAL64. Use POPT and P3 variations out past a 360 degree pulse (e.g. P3 from 1 to 14 μ s in increments of 0.25 μ s in POPT.						
PL12		High power level F2 channel (¹⁹ F) excitation and decoupling				
P3		90 ^{o 19} F pulse at PL12 (F2 channel)				
P22		PIDEC12 decoupling pulse, P22 is 2*P3				
O2P	-120 ppm	¹⁹ F offset - optimize in 0.5 - 1 ppm steps for maximum signal of CF2 peak (120 ppm)				

Table 3.4 Acquisition Parameters

3.6 ${}^{13}C{}^{19}F{}^{-1}H{}$ CPMAS Experiments

3.6.1 Setup ¹³C{¹⁹F-¹H} CPMAS Experiment: (*cfhsl*)

Sample:	PVDF

Spinning rate: Spin 15 kHz.

Experiment time: 3 minutes.

- 1. Use the parameter set **CPC13F19H1DEC**, or check the appropriate item line for the *cfhsl* experiment in the ATP panel experiment list (see Figure 2.1).
- 2. Load the PVDF sample, then spin the sample to required speed (see above). Match and tune the probe as described previously.
- 3. Compare the acquisition parameters from Table 3.5 with the ones in **ased** and correct the parameters in **ased** if needed.
- 4. Check for the correct routing on 1 kW amplifiers. If needed, adjust such that the hardware section of the routing (SGU's, amplifiers and HPPR's) for the decoupler channel (¹⁹F) is identical to the routing selected for ¹⁹F in the *fhdp* experiment:

Figure 3.8 Example of routing for *cfhsl* experiment.

NOTE: All hardware channels remained the same for ALL HF (*hfdp*), FH (*fhdp*), CF (*cfsl*), CH (*chsl*) AND CFH (*cfhsl*) experiments!

- Load pulse parameters use parameters from *cfsI* and *fhdp* experiment as guidance; see Table 3.3 (for ¹³C, PL1) and (for ¹⁹F PL2, PL12, P3 and P22) and Table 3.2 (for ¹H decoupling with PL13).
- 6. Set CNST31to15000 and P22 to 2*P3.

3.6.2 Run Experiment, Process and Document Parameter Used in Table

7. Run an experiment, process and print the spectrum. Compare the spectrum with the figure below:

Figure 3.9 ¹³C{¹⁹F-¹H} spectra of PVDF 15 kHz MAS, 80 kHz ¹⁹F Pi decoupling and ¹H 80 kHz TPPM decoupling with PL13.

Parameter	Value	Comments			
PULPROG	vacpF2F3				
NUC1	¹³ C	Nucleus on the F1 channel.			
O1P	100 ppm	¹³ C offset.			
NUC2	¹⁹ F	Nucleus on the F2 channel.			
NUC3	¹ H	Nucleus on the F3 channel.			
D1	5 s	Recycle delay.			
NS	32	Number of scans.			
SW	300 ppm	Sweep width for PVDF.			
TD	1024	Number of acquired complex points.			
CNST31	15000	Spinning speed in Hz for rotor sync.			
P15	2 ms	Contact pulse (F1 and F2 channel).			
SPNAM0	ramp.100	For ramped CP			
ZGOPTNS	-Dpidec	Load Pi-decoupling rotor sync.			
CPDPRG2	PIDEC12	Decoupling scheme F2 channel (¹⁹ F).			
CPDPRG3	TPPM13	Decoupling scheme F3 channel (¹ H).			
Use ¹³ C ¹⁹ F CP	and decoupling	parameters from the <i>cfsl</i> experiment, Table 3.4.			
PL1		High power level F1 channel (¹³ C) contact pulse.			
PL2		High power level F2 channel (¹⁹ F) contact pulse.			
PL12		High power level F2 channel (¹⁹ F) excitation and decoupling.			
P3		90 ^{o 19} F pulse at PL12 (F2 channel).			
P22		PIDEC12 decoupling pulse, P22 = 2*P3.			
O2P	D2P -120 ppm ¹⁹ F offset - optimize in 0.5 - 1 ppm steps for maximum signal of CF2 peak (120 ppm).				
Use ¹ H decouplin	ng parameters fi	rom Table 3.4.			
PL13		= The PL12 value from Table 3.3 <i>fhdp</i> experiment (usually 80 kHz – see specification sheet).			
PCPD3		= The PCPD2 value from Table 3.3.			

Table 3.5 Acquisition Parameters

4 Contact

Manufacturer:

Bruker BioSpin NMR am Silberstreifen D-76287 Rheinstetten Germany Phone: +49 721-5161-0 http://www.bruker-biospin.com

NMR Hotlines

Contact our NMR service centers.

Bruker BioSpin NMR provide dedicated hotlines and service centers, so that our specialists can respond as quickly as possible to all your service requests, applications questions, software or technical needs.

Please select the NMR service center or hotline you wish to contact from our list available at:

http://www.bruker-biospin.com/hotlines_nmr.html

Appendix

A.1 POPT

POPT is the replacement program for "paropt" used for parameter optimization. The program offers automatic optimization of several parameters. POPT writes each parameter found back into the parameter set and uses the value during the upcoming optimization of the next parameter in the list. The optimum value is taken from the resonances within the defined spectral region "plotreg" (see below). A protocol file of the optimization is created and can be inspected by checking the "read Protocol" button (see Figure A.1).

The parameter optimization saves the processed data to the "pdata" directory, in files named from consecutive "processing" numbers beginning at processing number 999 and descending for each optimized parameters, i.e. 998, 997, etc. Despite the automatic parameter determination, it is recommended that the inspection of the processing numbers for agreement with the computer be done by the operator, as it is the operators responsibility to decide on the optimum value, not the computers.

When inspecting the data, one can use negative ppm values of the axis if the parameter values were increased during the optimization (if they were decreased, the ppm value is correct). These values represent the values of the parameters incremented. (different units are not specifically considered.

							E1
store as 20	D data (ser file)						
The AU pr	ogram specified in	n AUNM will be exe	ecuted				
Perform as	utomatic baseline	correction (ABSF)				
Overwrite	existing files (disa	able confirmation M	Message)				
Run optimi	isation in backgro	Jund					
OPTIMIZE	PARAMETER	OPTIMUM	STARTVAL	ENDVAL	NEXP	VARMOD	INC
2	pl2	POSMAX	-1	4	0	LIN	0.5
2	p31	POSMAX	3.8	5	0	LIN	0.1
2	p3	ZERO	0.5	8	0	LIN	0.25

Figure A.1 POPT Interface Window

The figure above uses the parameter PL2 incremented from:

- -1dB in steps of 0.5 dB up to 4 dB using maximum intensity in the chosen plotting region;
- Parameter P31 varied from 3.8 μs in increments of 0.1 μs up to 5 μs;
- Parameter, pulse width P3 varied from 0.5 µs in 0.25 µs increments up to 8 µs where POPT optimizes for a zero transition of the signal in the selected plotting region.

The above mentioned procedure does not contain or save any raw data. If one would like to save raw data for later inspection, the field "store as 2D data (ser file)" must be

checked. POPT then creates an experiment number 899 for the whole optimization procedure (this means for all optimizations, if more then one optimization is checked). This means that all 1D experiments for the entire POPT rune are concatenated into a 2D data set. If experiment number 899 already exists, the program prompts the operator to decide whether the existing experiment number 899 should be overwritten or a new experiment should be created with the number 898, descending.

The 2D data set can be inspected in TOPSPIN using the usual processing strategies for pseudo 2D data sets.

A.1.1 Optimization of Parameters

Optimization of parameters in experiments requiring Au programs for running the experiment can be achieved by checking the appropriate field in the parameter list.

Before starting POPT, one needs to make sure that POPT processes the data properly. This can only be achieved, if the processing parameters circled in Figure A.2 are set properly. In order to check whether all the parameters are set correctly:

- 1. Type the command "trf" into the command line.
- 2. Check whether the spectrum is properly processed.
- 3. Type the command "plotreg" to check whether the correct plotting region is displayed.

Figure A.2 Processing Parameters Important for trf

The figure above illustrates processing parameters important for *trf*. WDW, PH_mod, BC_mod and FT_mod. For example:

- When PH_mod has the value "pk", then *trf* executes the phase correction using the values of PHC0 and PHC1.
- When the PH_mod value is "no", no phase correction is applied.
- When the FT_mod has the value "no", no Fourier-transformation is performed and "he" time domain data are displayed.

A.1.2 Selecting and Saving the Correct Plotting Region

The correct plotting region is selected by:

1. Choosing the appropriate area in the spectrum. This is accomplished by holding down the right mouse button on one side of the spectral region of interest and dragging it over the desired spectral region. The mouse button is then released.

Figure A.3 Zooming into spectral region of interest

- 2. Zooming into spectral region of interest is achieved by placing the curser to the left or right outer side of the desired spectral region, pressing the left mouse button and dragging the cursor to the other side of the spectral region.
- 3. To save the display region, click the right mouse button while in the spectral window and check the second item on the pop up menu "Save Display Region To …".

Figure A.4 Saving the Display Region.

4. Check the radio button in the upcoming list (Parameters F1/2) and click "ok".

Save display region to	2
Options	
Parameters F1/2 (e.g. use	d by 'restore display',) [dpl]
O Parameters ABSF1/2 (e.g.	used by 'absf, apkf')
O Parameters STSR/STSI (u	sed by strip ft)
O Parameters SIGF1,2 (sign	al region) (used by 'sino')
O Parameters NOISF1,2 (noi	ise region) (used by 'sino')
O A text file for use with othe	r programs

Figure A.5 Pop-up list when choosing the "save display..." option.

A.1.3 Starting POPT and Choosing Parameter Options

- 1. Start POPT with the command POPT.
- 2. Check the boxes for the desired options in the top of the window
- Check the box for the first parameter and fill appropriate information into the fields. Nothing needs to be entered into the field NEXP, but the following field VARMOD, *lin* or *log* must be selected. The last field contains the increment of the parameter, either positive or negative number, depending on whether the parameter is incremented or decremented.

Walt 5 1 C. Josobos						
store as 2D data (ser f	lie)					
The AU program speci	fied in AUNM will be exe	scuted				
Perform automatic bas	eline correction (ABSF))				
Overwrite existing files	(disable confirmation N	(essage)				
Run optimisation in ba	ckground					
OPTIMIZE PARAMETE	R OPTIMUM	STARTVAL	ENDVAL	NEXP	VARMOD	INC
P1	IECOSIMAX V				UN	
	POSMAX	1				
	NEGMAX					
	ZERO					
	MAGMAX					
	MAGMIN					
Start optimize	Skip current optimiz	ation P	lead protocol	Add para	ameter	Restore
Caut	Read array file	Sav	e array file as	Ston ontr	nization	Help

- 4. Parameter values must be entered considering the default units of these\ parameters, i.e. for pulses units are in µs, for delays units are in s for power levels, units are in dB and for the offset frequencies O1 the units are in Hz or for the O1P value in ppm, whereas SFO1 would be in MHz.
- 5. If everything is filled out properly, check the "**save**" field and start the optimization by checking "**Start optimize**".

A.1.4 Manipulating or Stopping the Optimization

- The process of the optimization can be manipulated in a controlled fashion using the "Stop optimization" or "skip current optimization" button.
- **Read protocol** enables to inspect a table with optimization values.
- From the command line the optimization can be halted by typing "POPTHALT".
- Using "stop" only stops the current experiment and copies previously obtained data on the place of the stopped experiment and POPT continues with the next parameter value.

At the end of the optimization, POPT writes the obtained value into the acquisition parameter set of the experiment.

A.2 MAS Control

Remote operation of the MAS II unit is handled from TopSpin using the program 'mascontrol'. Mascontrol can be used for sample insert and eject, changing spinning speed, and generating a log file of the actual MAS spin rate to monitoring MAS-speed over time.

1. Type 'mascontrol' in the Topspin command line. The following window will open.

🔌 MAS Control								
Select probe								
WB2.5	WB4	WB7	WB10	SB2.5	SB4	SB7		

Figure A.7 Window for probe selection.

The information entered in the probe selection window is NOT fed back to the MAS II unit!

 In this window select the type of probe that is currently in the magnet. The MAS spin rate display will open. For 3.2 mm probes, select the 2.5 mm option. <u>Note</u>: This does not change the probe selected in the MAS II unit.

Figure A.8 MAS Control Window with spinning speed indication.

Checking the mode button yields more switches for stopping and starting sample rotation and for sample insert and eject.
3. Clicking on '**Mode**' will expand the display and provide buttons for rotor insert and eject, MAS start and stop operations.

Figure A.9 MAS Control Window - extended

- MODE toggles the switch display and
- ETC ... opens a menu for further options like MAS-rate log, update speed, new MAS rate setting, etc.
- 4. The 'etc...' button provides additional functionality. The spin rate log can be started and stopped by using the radio button at the top. The rate at which *mascontrol* updates the current speed can be changed from the default of 12 seconds, to a value as fast as every 4 seconds, by double-clicking the desired rate in the pop-up window. A similar option exists for writing to the log file.

Figure A.10 ETC ... menu for further options like MAS-rate log, update speed, new MAS rate setting.

5. To change the MAS rate, click on the 'Set New Spin Rate'. A new window will open that will allow the speed to be changed.

🍓 MAS R	ate	
	set new spinrate [H:	z]
-1		+1
-10	5000	+10
-100		+100
-1000		+1000
	Set Quit	

Figure A.11 Window for changing the MAS rate setting.

6. Consult the appropriate hardware manual for MAS II hardware operation.

A.3 Setting Transmitter Power

If the correct power level for the X-channel is not already known, begin operation using 25% of the maximum power for the channel selected. This information is available on the power handling data sheet that comes with each probe, and may be used if the amplifiers are linearized and the maximum output power is available. Make sure to find out where the output power was measured – at the transmitter output directly, before the HPPR modules, or after the HPPR modules. Such differences can account for up to 3dB differences in output. If you measure the power, make sure you write a README file into the CORTAB directory reporting important details on how the power was measured.

If CORTAB was not done, e.g. with older systems, use 50% of the nominal transmitter power for the power level 0.

For linear amplifiers one can use the following relations for changing power levels in dB:

 To half or double the RF output power one needs to add or subtract 3dB from the existing power level value.

This is generally valid above 0dB and below 0dB only if CORTAB has been done.

Example:

As an example, use 75W on a 2.5 mm CPMAS probe with a linearized (**CORTAB** done) 1000W transmitter. The maximum output at the probe is 650W, reported in the CORTAB directory by Johnny Perfect. Thus we know that we have 162.5W at 0 dB, 81.25W at 3 dB and 46 W at about 5.5 dB. The dB value is defined as follows, whereas "y" is a change in power level value PL2 – PL1 in dB attenuation:

Equation A.1: $y = powerlevel_2 - powerlevel_1$

Then using the definition of dB we find for $_{y}$ " the following expressions for ratios of RF-power output on W, or RF-field (or voltage) output.

Equation A.2: $ydB = 10 \cdot log(\frac{power_1(Watt)}{power_2(Watt)})$

That can then be used to calculate the power level change for a certain change of the pulse width or a nutation frequency, however as you are using amplitudes and not power, the equation changes to:

Equation A.3: $ydB = 20 \cdot log(\frac{pulsewidth_2}{pulsewidth_1})$

In order to find a new pulse width for a given power level we can then calculate:

Equation A.4: pulsewidth 2 = pulsewidth $1 \cdot 10^{\frac{(powerlevel2 - powerlevel1)}{20}}$

As an example if PL₁ = 0dB and P₁=5 μ s, then the pulse width at PL₂= -4 dB will be P₂= 3.2 μ s.

A.4 Calculating Pulse Parameters with Au Programs

Power level and pulse values can be calculated using the AU-program *calcpowlev*. The *calcpowlev* program asks for a new pulse width (P_2), in our case as a first input, whereas we will choose 3.2 µs. The program then requests a reference pulse width P_1 , which in our example is 5 µs, and returns -4dB as the change in the power level setting.

The AU-program **pulse** uses PL_1 and P_1 of the foreground data set to calculate either B_1 -fields in units of Hz, pulse widths, or power levels depending on the data input. If no unit, such as Hz, dB, or μ s is specified, then **pulse** uses ms as default, which can lead to unexpected results.

A.5 Figures

Figure 2.1	ATP Panel for Testing CPMAS Probes	12
Figure 2.2	EDC Experiment Setup Window	13
Figure 2.3	EDA Window of the KBr Experiment	14
Figure 2.4	Routing Table Examples	15
Figure 2.5	Icon to activate ased (reduced acquisition parameter) table	16
Figure 2.6	ASED table	17
Figure 2.7	The figure shows the FID after magic angle adjustment	18
Figure 2.8	Overview mode	19
Figure 2.9	PEAKW result pane	19
Figure 2.10	KBr spectrum and peakw analysis tool.	20
Figure 2.11	Dual Display Mode	21
Figure 2.12	Routing suggestions for various amplifier choices	22
Figure 2.13	POPT nutation spectrum from run on parameter P1	23
Figure 2.14	Calling the program pulse from the command line without any para 23	imeter
Figure 2.15	Result window from pulse utility	24
Figure 2.16	Parameter set for dsol experiment	26
Figure 2.17	Routing for double resonance experiment using high power amplif 27	iers
Figure 2.18	Adamantane Spectrum	29
Figure 2.19	13C spectrum of glycine natural abundance	35
Figure 2.20	Parameter optimization for flipback pulse after CP. Note 90° pulse the zero crossing	is at 36
Figure 2.21	15N CPMAS on glycine at natural abundance level	39
Figure 2.22	31P CPMAS on ADP	45
Figure 3.1	HFC Experiment Setup Example with Routing Table and Preample Selection.	ifier 49
Figure 3.2	HFX Band-pass Filter Cascade and Diplexer Setup	50
Figure 3.3	Example of routing for fhdp experiment	51
Figure 3.4	Example of routing for hfdp experiment	54
Figure 3.5	Direct 19F spectra of PVDF 15 kHz MAS, blue no decoupling, red 8 1H TPPM decoupling	0 kHz 56
Figure 3.6	Example of routing for cfsl experiment	58
Figure 3.7	13C{19F} spectra of PVDF 15 kHz MAS, 80 kHz 19F PIDEC12 de pling.	cou- 59
Figure 3.8	Example of routing for cfhsl experiment	62

Figure 3.9	13C{19F-1H} spectra of PVDF 15 kHz MAS, 80 kHz 19F Pi decoupling and 1H 80 kHz TPPM decoupling with PL13.] 33
Figure A.1	POPT Interface Window	37
Figure A.2	Processing Parameters Important for trf	39
Figure A.3	Zooming into spectral region of interest	70
Figure A.4	Saving the Display Region	70
Figure A.5	Pop-up list when choosing the "save display" option	71
Figure A.6	POPT interface with the first parameter being about to be entered7	71
Figure A.7	Window for probe selection	72
Figure A.8	MAS Control Window with spinning speed indication.	72
Figure A.9	MAS Control Window - extended	73
Figure A.10	ETC menu for further options like MAS-rate log, update speed, new MAS rate setting	' 73
Figure A.11	Window for changing the MAS rate setting	74

A.6 Tables

Table 2.1	Some Chemical Shifts That Can be Used for Referencing	11
Table 2.2	Acquisition Parameters	18

B92999_00_10

Bruker BioSpin your solution partner

Bruker BioSpin provides a world class, market-leading range of analysis solutions for your life and materials science needs.

info@bruker-biospin.com www.bruker-biospin.com