

Bruker **BioSpin**

PCI R-Cntrl •

PCI Rx Controller Technical Manual

Version 001

think forward

NMR Spectroscopy

The information in this manual may be altered without notice.

BRUKER BIOSPIN accepts no responsibility for actions taken as a result of use of this manual. BRUKER BIOSPIN accepts no liability for any mistakes contained in the manual, leading to coincidental damage, whether during installation or operation of the instrument. Unauthorized reproduction of manual contents, without written permission from the publishers, or translation into another language, either in full or in part, is forbidden.

This manual was written by

Jens Rommel and Willy Uhrig

© February 22, 2008: Bruker Biospin GmbH

Rheinstetten, Germany

P/N: Z31841 DWG-Nr.: Z4D10605 - 001

For further technical assistance on the PCI R-Cntrl unit, please do not hesitate to contact your nearest BRUKER dealer or contact us directly at:

> BRUKER BioSpin GMBH am Silberstreifen D-76287 Rheinstetten Germany

 Phone:
 + 49 721 5161 0

 FAX:
 + 49 721 5171 01

 E-mail:
 service@bruker.de

 Internet:
 www.bruker.com

Contents

	Contents	3
1	Introduction	. 5
	Features	6
1.1	PCI Conditions	6
1.2	2 Safety and Handling	. 6
	Installing the PCI R-Controller	7
	Checking the PCI Architecture after Booting with Linux	8
1.3	B The Channel Display	. 8
1.4	Ports	. 8
1.5	Currents and Voltages	. 8
1.6	Disclaimer	. 8
1.7	Warnings and Notes	. 9
1.8	Contact for Additional Technical Assistance	. 9
2	Reference Numbers	11
3	Production Status and Modifications	13
3.1	Introductory Status of the Product	13
	Modifications of the Introduced Assemblies	.13
3.2	2 Modification History	13
4	Description	15
4.1	Structure of Input Words at the LVDS Receiver and the FIFO	16
	Words from F–Controller	.16
	Words from G-Controller	.17
	Words from the DRU	.18
4.2	Software Interface	18
	PCI Addresses	19
	Local Address Layout	19
	Content of the DSP Configuration Registers	20
	Memory at EMIFA, Space CE0	21
	FIFO at EMIFA, Space CE3	22
	Flash Prom at the EMIFB Bus, Space CE2	23
	Registers at the EMIFB Bus, Space CE0	23
4.3	B Data Acquisition and Time Measurement	29
	R–Ctrl Operating in F–Controller Mode	.30
	R–Ctrl Operating in G–Controller Mode	30
	R-CTRL Operating in DRU Mode	31
4.4	Engineering Design	31
	Data Input	32

5	Addendum3	3
5.1	Pin Allocation of Connectors 3	3
	Figures	9
	Tables	1

Introduction

The PCI Rx–Controller called PCI R–Cntrl with part number H12565 is a standard PCI expansion card. It is able to receive the data streams sent by:

- the Tx–Controllers configurated as F–Controller or as G–Controller;
- the DRU–M, part number Z105987.

The R–Cntrl is supervised by its software driver running under LINUX and utilized by the test programs of the "ipsotest". Therefore it has to be mounted in the PCI environment of "IPSO Host". This can be accomplished by using a PCI StarGen Bridge and an external PCI Box both delivered from "Hartmann Elektronik" (www. hardmann–elektronik.de), see below.

The mounted PCI R–Cntrl operate as the second R–Controller and so on, additionally to the built–in R–Controller in slot 1 of the "IPSO 19" Unit" or onboard of "IPSO AQS".

Figure 1.1. Rx-Controller Front and Top View

Features

- The Rx–Controller is able to receive 48–bit words via its LVDS input at a clock rate of 80 MHz if connected to a Tx controller and at a rate of 100 MHz if connected to a DRU–M.
- Rx measures the time distance of each Tx A–Word from the previous one and stores this value as a number of receive clock cycles in the upper 16–Bit of the 64–Bit receive FIFO.
- Receive FIFO for 8k Words of 64 bit connected to the EMIFA bus of the DSP
- 64–bit DSP TMS320C6415 with 1MByte on chip RAM, EMIFA, EMIFB, SDRAM and PCI–32Bit/33Mhz, interface.
- External RAM of 2MByte/16MByte connected to the EMIFA bus.
- EMIFA data band with of 160M Words of 64 bits.
- Separate EMIFB bus for control functions.
- FLASH PROM with board and revision information.

PCI Conditions

1.1

Type of PCI Bus:	32 bit/ 33 MHz.
Length of the card:	Short, 176 mm.
PCI functions:	Single.
Number of interrupts:	One at IntA, pin A6.
PCI signal voltage:	The PCI R–Cntrl can be used in an 3.3 V environment.
	Received PCI signals have to be of 3.3 V-signaling. The PCI interface of the DSP is not 5 V tolerant.
	The level of PCI signals sent by the R–Cntrl are also be- tween 0 and 3.3 V.
	This is why the PCI R–Cntrl should not be mounted in the 5 V–PCI slots of the "IPSO 19" Unit" or "IPSO AQS".

Safety and Handling

1.2

- Handling under ESD safety conditions is necessary. Don't touch uncovered metal of PCB and connectors before discharging yourself!
- Do not connect a receiver to the LVDS connector of the controller in slot 2 of the IPSO 19" Unit. There will never be valid data.
- A LVDS cable should never be removed from or connected to a powered controller. Corrupted data could be sampled as valid.
- Do not connect more than one gradient amplifier to the same system.

Installing the PCI R-Controller

Mounting the PCI R-Controller requires the following accessories:

Table 1.1. Accessories Required for Mounting the PCI R-Controller

Part Number	Drawing Number	Description
	LMH0 000 041 (LMB2200010)	Star Fabric PCI Extension Box, 3.3 V
	1H00 001 712 (1H00 001 7109)	Star Fabric PCI Bridge, 3.3 V
	F006.01305	Cat 5 RJ45–Cable, 5 meter
86868		48-Bit LVDS-Cable, 1 meter

The PCI R–Controllers have to be mounted in the external PCI extension box.

Because the RX–controller is a 3.3 V device, the extension box had to be configured to work with 3.3 V.

Figure 1.2. Connecting the External PCI Box to the IPSO

Checking the PCI Architecture after Booting with Linux

While booting, Linux checks the PCI topology and allocates a base address and a channel number to each R–Cntrl. The allocated number is indicated in the LED display. The default configuration can be changed in the ipsotest.

The Channel Display

To get more oversight for wiring the R–Cntrl and T–Cntrl, the R–Cntrl indicates its logical number of channel. When Linux booting is completed, normally every controller indicates a different number. If a controller does not indicate a number, the R–Cntrl was not recognized as a known device.

The decimal point in the display indicates the correct FPGA firmware was loaded after power-up.

Ports

1.4

1.5

1.6

1.3

LVDS Connector

The receiving data words enter the Rx-Controller via a LVDS interface with the following features:

- Input via 8 low voltage, low noise LVDS data lines and one clock line pair.
- Operating transfer rates of 80 to 100M words per second.
- Word width of 48 bits.

Currents and Voltages

Table 1.2. Currents and Voltages

Part Number	+5 V	+3.3 V	+12 V	+5 V SB	-12 V
H12565	0	0.6 A	0	0	0

Disclaimer

The PCI Rx-Controller should only be used for its intended purpose as described in this manual. Use of the controller for any purpose other than that for which it is intended is taken only at the users own risk and invalidates any and all manufacturer warranties.

Service or maintenance work must be carried out by qualified personnel.

Read this manual before operating the controller and corresponding unit. Pay particular attention to any safety related information.

Warnings and Notes

There are two types of information notices used in this manual. These notices highlight important information or warn the user of a potentially dangerous situation. The following notices will have the same level of importance throughout this manual.

Note: Indicates important information or helpful hints

WARNING: Indicates the possibility of severe personal injury, loss of life or equipment damage if the instructions are not followed.

Contact for Additional Technical Assistance

For further technical assistance on the BPSU36-2 unit, please do not hesitate to contact your nearest BRUKER dealer or contact us directly at:

BRUKER BioSpin GMBH am Silberstreifen D-76287 Rheinstetten Germany Phone: + 49 721 5161 0 FAX: + 49 721 5171 01

1700	10121011101
Email:	service@bruker.de
Internet:	www.bruker.de

1.8

Reference Numbers

Table 2.1. Parts and Assemblies

	Lower Group	Uppe	r Group	
Part Number Drawing Number		Description	Part Number	Description
H12564	H4P2880	PCI RxC PCB	H12565	PCI Rx-Controller
H12564F1	H4P2880A	PCI RxC PCB-long		Test version

Table 2.2.Accessories

Part Number	Drawing Number	Description
86868		48-Bit LVDS Cable, 1 meter

Production Status and Modifications

3.1

Introductory Status of the Product

Table 3.1. Introductory Status

Part Number	Name	Layout Number	Modification	Program File	Firmware	Jumper Setting
					no	no

Prog File

The name of the program file includes the layout number and the EC level.

Modifications of	the Introduced Assemblies	3.1.1
Jumper Setting		
	There are no jumpers to be set or which can be erroneously modified.	
PCI Bus		
	INT_A is used.	
Firmware		
	There is no firmware stored on the Rx-Controller.	
Modification History		3.2

No modifications have been made to date.

Description

Versions

Location	Name	Part Number	EC Number	Firmware	Increments	Software Requirements
PCI Bus	PCI Rx- Controller	H12565			Flash	

Concerned

Part Number 86868 LVDS Cable, 1 meter Part Number Z105987 DRU-M

Architecture

Figure 4.1. The Rx-Controller

Operation

The Rx-Controller is designed to receive data words of 48-bits sent by the IPSO Tx-Controller or the DRU.

These data words are received on 8 line pairs in a serialized form. They are transferred to parallel words in the LVDS receiver and delivered to the LVDC (FPGA) at a clock rate of 80 MHz (FCtrl, GCtrl) or 100 MHz (DRU). In the LVDC, the words are checked (validity and parity) and assigned with a time stamp fed into the FIFO. In case of a parity error, the parity flag in the status registries set and hold up to the FIFO will be cleared.

The 3 possible data sources (FCtrl, GCtrl, DRU) send in different formats. Therefor, 3 receiving modes have been implemented in the LVDC and selected depending on the recognized source.

The 48-bit words are stored in a FIFO which is 64-bit wide. The upper 16-bits of the FIFO words are used to hold the time stamps of each word. This time informa-

tion gives the distance to the preceding word measured in numbers of clocks. The type of words which are measured and get the stamp depend on the receiving mode.

In the FCtrl mode the A-words are used. In the GCtrl mode the distance between two NG words is counted. In the DRU mode, the counting starts with each Control Word and ends at the following Control or Data Word.

The FIFO words can be processed by the DSP, transferred to its local memory or via the PCI Bus.

The control and status register can be accessed by the DSP via the EMIFB bus. All registers and both memories of the Rx-Controller can also be accessed by any other controller via the PCI Bus.

Structure of Input Words at the LVDS Receiver and the FIFO	4.1
--	-----

Depending on the connected data source and the associated receiving mode, the Rx-Controller checks the validity and the parity of the incoming words (A, B words in FCtrl mode; Gradient data and NG words in GCtrl mode; Data and Control words in DRU mode).

The resulting error status and the FIFO status can be read on the EMIFB bus.

Words from F–Controller

4.1.1

A data package from the F-Controller consists of 2 Words (A+B) in adjacent clock cycles. The TIME value in the upper 16 bits of the FIFO word is the number of clock cycles between the previous A-Word and this one.

Table 4.1.	F–Controller words at output of LVDS receiver and FIFO	F-Controller Mode)
------------	--	-------------------	---

Bi	t	64		49	48	47	46	45		1
Word A	At	not used			PAR	SYNC	WID	Data from F-Controller		ntroller
Word B	LVDS	/DS not used		PAR	SYNC	WID	Data from F-Controller			
Word A	At	TIME value, low part			PAR	SYNC	WID	Data from F-Controller		ntroller
Word B	3 FIFO TIME		value, hig	h part	PAR	SYNC	WID	Data f	rom F-Co	ntroller

Field	Value	Description
WORD_ID (WID)	0 1	46-bit in every word Word A Word B
SYNC		Reflects the current state of the 20 MHz reference clock at trans- mitter.
PARITY		Even parity bit, created form bit 1 to 46.

Table 12	Rit Fields of the E_Controller	Output Word
1 <i>aule</i> 4.2.	DIL FIEIUS UI LITE F-CUITUUIIEI	

Words from G-Controller

4.1.2

A Gradient switching package from the G–Controller consists of a variable number of Gradient data words and 1 Next Gradient word. Usually, these words are transmitted in adjacent clock cycles but this is not necessary.

The TIME value in the upper 16 bits of the FIFO word is the number of clock cycles between the previous Next Gradient word and this one.

 Table 4.3.
 G–Controller Words at Output of LVDS Receiver and FIFO (G–Controller Mode)

Bit		64		49	48	47		3	2	1
Next Gradient	At	Not applied			Parity	Not allocated			!VALID	!NG
Gradient Data	LVDS	Not applied			Parity	Gradient			!VALID	!NG
Next Gradient	At	TIME	TIME value, low part			Not allocated		!VALID	!NG	
Gradient Data	FIFO	TIME value, high part		Parity	Gradient		!VALID	!NG		

Table 11	Dit Fielde	fthe T	Controllar	Autout	Mard
Table 4.4.	DIL FIEIUS C	л ше г		Output	wora

Field	Value	Description
!VALID:!NG		These bits identify the Gradient data words and the Next–Gradient words which activate the Gradients transmitted since the previous Next–Gradient word
	00	Not allowed, erroneous combination
	01	Gradient data word
	10	Next–Gradient word
	11	Idle cycle without data
PARITY		The even parity bit, created from bit 1 to bit 47.

Words from the DRU

		-				-	-			
Bit		63		48	47	46		2	1	0
DRU Control Word	At	Not applied		Parity	DRU Control Information			1	0	
DRU Data Word	LVDS	Not applied			Parity	DRU Data			0	1
DRU Control Word	At	TIME value, low part		Parity	DRU Control Information			1	0	
DRU Data Word	FIFO	TIME value, high part			Parity		DRU Data	1	0	1

Table 4.5. DRU Words at Output of LVDS Receiver and FIFO (DRU Mode)

Table 4.6.	Bit Fields of the DRU–Controller Output Word
10010 1.0.	

Field	Value	Description
!Data!Ctrl		These bits identify the DRU data words and the control words (Data and Header/Trailer information
	00 01 10 11	Not allowed, erroneous combination Data word Control word Idle cycle without data
PARITY		The even parity bit, created form bit 1 to 47.

Software Interface

4.2

Nearly all resources of the Rx-Controller can be accessed by both software running locally or software running on the host controller. Only the FIFO is excluded from this. The FIFO can be accessed by the DSP only.

Both address ranges, local DSP and global PCI bus, are defined by 32-bit addresses. The access from the PCI range into many local ranges is possible through address windows, two dedicated to each controller. These include a 4 MB window (for prefetchable accesses) and a 8 MB window (for non-prefetchable accesses). The segmentation of the PCI address range to the window spaces the controllers is carried out by the BIOS and fixed by defining the content of all PCI base registers.

Every window can be moved through the local address range by modifying the content of the DSP page register (DSPP).

4.1.3

The content of the Base 0 register is defined by the BIOS of the host controller.

The content of the DSPP register can be written by the software running on the host controller. This register can be reached through the nonprefetchable window.

Table 4.7. Relations Between PCI and Local Addresses on R-Controllers

	4 MB Prefetchable	Range	8 MB Nonprefetchable Range		
	Bit [3122]	Bit [210]	Bit [3123]	Bit [220]	
PCI Address	<base0></base0>	AD [210]	<base1></base1>	AD [220]	
Local Address	<dspp></dspp>		0000 0001 1		

Local Address Layout

4.2.2

Table 4.8.	Memory	Map of the	DSP 6415
------------	--------	------------	----------

Local Hex Address Range	Block Size (Bytes)	Bus	Data Bus Width (Bytes)	Description	Utilization
000x xxxx	1M	Internal	8	On chip RAM	
0180 0000 – 0183 FFFF	256K	Internal		EMIFA Config. Register	
0184 0000 – 0187 FFFF	256K	Internal	L2 Cache Config. Register		
0194 0000 – 0197 FFFF	256K			Timer 0 Register	
0198 0000 – 019B FFFF	256K			Timer 1 Register	
019C 0000 – 019F FFFF	256K			Interrupt Select Register	
01A0 0000 – 01A3 FFFF	256K			Enhanced DMA Register	
01A8 0000 – 01AB FFFF	256K	Internal		EMIFB Config Register	
01AC 0000 – 01AF FFFF	256K	Internal		Timer 2 Register	
01B0 0000 – 01B3 FFFF	256K	Internal		GPIO Register	
01C0 0000 - 01C3FFFF	256K			PCI Register	
6000 0000 – 63FF FFFF	64M	EMIFB CE0	2	External RAM	Register

Local Hex Address Range	Block Size (Bytes)	Bus Data Bus Width (Bytes)		Description	Utilization
6400 0000 – 67FF FFFF	64M	EMIFB CE1	2	External RAM	
6800 0000 – 6BFF FFFF	64M	EMIFB CE2	2	External RAM	
6C00 0000 – 6FFF FFFF	64M	EMIFA CE3	2	External RAM	FIFO 16K x 64
8xxx xxxx	256M	EMIFA CE0	8	External RAM	RAM
9xxx xxxx	256M	EMIFA CE1	8	External RAM	
Аххх хххх	256M	EMIFA CE2	8	External RAM	
Bxxx xxxx	256M	EMIFB CE3	8	External RAM	FIFO 16K x 64

	Table 4.8.	Memory	Map of the	DSP 6415
--	------------	--------	------------	----------

Content of the DSP Configuration Registers

4.2.3

Table 4.9.	EMIFA Configuration Register	

Local Hex Address	Acronym	Value	Description
1800048	CE0SEC	00000042	EMIFA CE0 Space Secondary Control
1800044	CE1SEC	unmodified EMIFA CE1 Space Secondary Control	
1800050	CE2SEC	unmodified EMIFA CE2 Space Secondary Control	
1800054	CE3SEC	00000040 EMIFA CE3 Space Secondary Control	
1800000	GBLCTL	00012724	EMIFA Global Control Rx-Controller with 2 MB SRAM
1800008	CE0CTL	FFFFFE3	EMIFA CE0 Space Control Rx-Controller with 2 MB SRAM
1800004	CE1CTL	unmodified EMIFA CE1 Space Control, not used	
1800010	CE2CTL	unmodified	EMIFA CE2 Space Control, not used
1800014	CE3CTL	FFFFFE3	EMIFA CE3 Space Control, FIFO
1800018	SDCTL	0248f000	EMIFA SDRAM Control Rx-Controller with 2 MB SRAM
180001C	SDTIM	003F05DC	EMIFA SDRAM Refresh Control Rx-Controller with 2 MB SRAM
1800020	SDEXT	00175F3F	EMIFA SDRAM Extension Rx-Controller with 2 MB SRAM

Local Hex Address	Acronym	Value	Description
1A80000	GLBCTL	00012324	EMIFB Global Control
1A80008	CE0CTL	5055C11D	EMIFB CE0 Space Control, Register
1A80004	CE1CTL	FFFFFBF	EMIFB CE1 Space Control, not used
1A80010	CE2CTL	2A22E80A	EMIFB CE2 Space Control, BIS Flash Prom
1A80014	CE3CTL	FFFFFBF	EMIFB CE3 Space Control, not used

Table 4.10. EMIFB Configuration Register

Table 4.11. GPIO Configuration Register

Local Hex Address	Acronym	Value	Used As	Description
01B00000	GPEN	0x1FF		GPIO Bit Enable; Use of the GPIO Pins GP0,, GP8 as IO Pins
01B00004	GPDIR	0xE - - - - - 1 0 - -	not applied not applied not applied MCBSP2 enable of serial PCI Config Prom not applied not applied FIFO full FIFO not full not applied not applied	Direction of GPIO pins adjusted as: GP0 Input GP1 Output GP2 Output GP3 Output GP4 Input GP5 Input GP6 Input, EXT_INT6 of the DSP GP6 Input, EXT_INT6 of the DSP GP7 Input GP8 Input
01B00008	GPVAL	0xBE		GPIO Value Register, Output Value of GPIO

Memory at EMIFA, Space CE0

4.2.4

The external RAM of the DSP has a word width of 64-bit. It is connected to the DSP via the EMIFA bus with a band width of 106 MWords per second.

Local Hex Address	Size (MB)	Word (Byte)	Туре	Bandwidth (MB/s)	Type of Controller	Identification
8000 0000 - 801F FFFF	2	8	SRAM	1280	RCTRL H12532	imbf=FFFF or 0000 and slot_brdv=XFXX or X0XX
					RCTRL embed- ded in AQS Host H12547	imbf=0001

Table 4.12. Type of External Memory used on the RX-Controllers

FIFO at EMIFA, Space CE3

4.2.5

The FIFO (IDT72V3670) can store 8K Words of 64-bits each. The multiplex logic LVDC fills the FIFO and the DSP reads the words out via EMIFA with a bandwidth of 106 MWords per second.

Every FIFO word includes the received data of 48-bits and a time stamp of 16-bits.

Table 4.13.Type of FIFOs used on the RX-Controllers

Local Hex Address	Size (KByte)	Word (Byte)	Туре	Bandwidth (MB/s)	Type of Controller	Identification
B000 0000 - B00F FFF8	128	8	IDT72V 3670	1280	Rx CTRL H12532	imbf=FFFF or 0000 and slot_brdv=XFXX or X0XX
					Rx CTRL embedded in AQS Host H12547	imbf=0001

4.2.6

Flash Prom at the EMIFB Bus, Space CE2

Access features to the BIS Flash Prom:

Bus Width:	2 byte, data bit 7,, 0 implemented, data bit 15,, 8 not implemented; therefore this doubles the occupied address room.
Control of access:	Number of clock cycles.
Duration of Access:	85 ns for write and 270 ns for read access.

Table 4.14. Type of FIFOs used on the RX-Controllers

Local Hex Address	Size (KB)	Word (Byte)	Туре	Type of Controller	Identification
6800 0000 – 6801 FFFF	64	1		RCTRL H12532	imbf=FFFF or 0000 and slot_brdv=XFXX or X0XX
Flash Prom is part of AQS Host H12547 and not connected to the DSP of the RCTRL		1		RCTRL embedded in AQS Host H12547	imbf=0001

Registers at the EMIFB Bus, Space CE0

4.2.7

All registers are access	sed via the EMIFB bus.			
Access features to the registers:				
Bus Width:	2 byte, data bit 15,, 0 implemented.			
Control of access:	Ready controlled.			
Duration of Access:	Ca. 144 ns. for write and 120 nest. for read access.			

Address Layout

Table 4.15. Device Codes on EMIFB (CE0 space), Existent on RCTRL

Register	Local Address	Function	Mode R/W	Bits
ctrl	6000000	Control Register	W	1, 0
fifores	6000004	FIFO Reset	W	
sts	6000008	Status Register	R	15-0
channel	600000A	Channel Register	R/W	3-0
chanconf	60000030	Channel Configu- ration	R	15-0
slot_brdv	60000038	Slot and Board Version	R	15-0

Every read access to other addresses of the EMIFB bus than presented in this table delivers the content of the Status Register (sts).

Register Description

Control Register (ctrl)

Register	Local Address	Function	Mode R/W	Bits	
ctrl	6000000	Control Register	W	0	

The receiving mode can be set by modifying these two bits.

A read of the status register (sts) delivers the current selection.

Bits	15		2	1	0
Field		Not implemented	mod1	mod0	
Reset State					1

Table 4.16. Control Register

Field	Value	Description
mod (10		Modus of Operation
	X1	RCTRL connected to a F-Controller
	00	RCTRL connected to a G-Controller
	10	RCTRL connected to a DRU

FIFO Reset (fifores)

Register	Local Address	Function	Mode R/W	Bits
fifores	6000004	FIFO Reset	W	-

Writing to this register without data resets counters and flags of the FIFO and resulting in a clear of the content. A pending parity error bit is also cleared.

The FIFO is also cleared with a power-up and a PCI reset.

Control Register (ctrl)

Register	Local Address	Function	Mode R/W	Bits	
channel	600000A	Channel Register	R/W	3-0	

The channel number of the Fx-Controller to which the software wants the RCtrl to be connected to is written (by the software) into this register.

The content of this register is shown at the front display. This is advantageous in test applications with multiple Rx-Controllers.

The register is implemented in version = 2 and so on (seen in chanconf).

Bits	15		4	3	2	1	0
Field	Not implemented			chan			
Reset State				0	0	0	0

Table 4.17. Channel Register

Field	Value	Description		
chan (30	0000	Reset State		
	00011001	Connect Rx-Controller to a Fx-Controller out of nine.		

Channel Control Register (chanconf)

Register	Local Address	Function	Mode R/W	Bits
chanconf	6000030	Channel Configuration	R	15-0

The bits of the Channel Configuration Register provide information about versions, functions and options.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Field	Boar	d Fun	ction		Version				FCt	rl Char	nnel	Exte	ernal (Config	. Bit	

Table 4.18.	Channel Configurat	tion Register
-------------	--------------------	---------------

Field	Value	Description
External Config. Bit (30		"Board Function" specific meaning:
		On Rx-Controller:
	1111	IPSO Rx-Controller, H12532
	1110	PCI Rx-Controller, H12565
FCTRL Channel (65)		The FCTRL channels are labeled 1 to 8. By TCTRL, GCTRL and RCTRL is FCTRL channel = 0.
	111	F-Controller 1
	110	F-Controller 2
	101	F-Controller 3

Field	Value	Description
	100	F-Controller 4
	011	F-Controller 5
	010	F-Controller 6
	001	F-Controller 7
	000	F-Controller 8 or TCTRL, GCTRL, RCTRL
Version (127)		"Board Function" specific meaning:
		On Rx-Controller: Version of the ,LVDC' FPGA
	000001	LVDC Version 1 on IPSO Rx–Controller (H12532), with- out BIS Flash Prom and without Channel Register
	000010	LVDC Version 2 on the Rx–Controllers with Flash and Channel Register and existent as IPSO– (H12532F1) and PCI Rx–Controller (H12565)
Board Function (1513)		Labels the function of the channels.
	000	TCTRL
	001	FCTRL
	010	GCTRL
	100	RCTRL

Table 4.18. Channel Configuration Register

Slot Board Version Register (slot_brdv)

Register	Local Address	Function	Mode R/W	Bits
slot_brdv	60000038	PCI Slot and Board Version of a Tx-Controller	R	15-0

This register contains the slot address in the IPSO 19" Unit and the hardware version.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Field		Slot A	ddress	6	В	Board Revision					Boa	ard Su	b-revis	sion		

Field	Value	Description
Board Revision (118)		4-Bit labeling of the board version to differentiate the boards with the various hardware.
	0000	IPSO Rx-Controller with 2 MB external RAM.
	0001	IPSO Rx-Controller with 2 MB external RAM and Flash.
	0010	IPSO Rx-Controller with 16 MB external RAM and Flash.
Board Sub-revision (70)	0000000	Labeling of the sub-revision, e.g. new EC due to a soft- ware relevant error.
Slot-Add (1512)		Gives the slot of the controller, relevant in the IPSO 19" Unit.
	0001	Slot 1
	0010	Slot 2
	0011	Slot 3
	0100	Slot 4
	0101	Slot 5
	0110	Slot 6
	0111	Slot 7
	1000	Slot 8
	1001	Slot 9
	1111	Default at the Rx–Controller embedded in IPSO AQS Host, H12547
	1011	Default at the PCI Rx–Controller, H12565

Table 4.19. Slot Board Version Register

Status Register (sts)

Register	Local Address	Function	Mode R/W	Bits
sts	6000008	Status Register	R	7-0

The status register is read only. It contains the FIFO flags, the mode control bits and the transfer error bits.

The register enters its reset state after power-up, reset and a write to the **fifores** address.

Bit	15		9	8	7	6	5	4	3	2	1	0
Fields	Not applied			WERR	IR	PAF	OR	PAE	HFL	mod1	mod0	PERR
Reset State				0	0	1	1	0	1	1	0	0

Table 4.20. Status Register

Field	Value	Description
WERR		Word Error
	1	A sequence or control bit error occurred since last FIFO reset. The cause depends on the selected mode.
IR		FIFO input ready, connected to EXT_INT6 of the DSP.
	0	Input ready, FIFO not full.
	1	FIFO full.
PAF		PAE, Flag of FIFO almost empty; threshold adjusted to 32 words.
	0	FIFO contains less than 33 words.
	1	FIFO contains more than 32 words.
HFL		FIFO Half Full Flag.
	0	FIFO contains more than 4096 words.
	1	FIFO contains less than 4096 words.
mod (10)		Mode of operation.
	11	Reserved
	10	F–Controller Mode: Rx CTRL connected to a F–Control- ler.
	00	G–Controller Mode: Rx CTRL connected to a G–Control- ler.
	01	DRU Mode: Rx CTRL connected to a DRU.

Field	Value	Description			
PERR		Parity error of an input word.			
	1	Error since last FIFO reset.			

Data Acquisition and Time Measurement

4.3

Data Acquisition

The receiving speed is 80 MWords per second from the Fx-Controller and 100 MWords per second from the DRU.

Every received data word is checked for:

- being an empty or a valid data word, resulting in acceptance or rejection
- having the correct and expected position in the sequence, result is WERR of sts
- having the correct parity, result is PERR of sts.

Sequence violations or parity errors set the error flags but do not avoid storing the word in the FIFO. This is to provide a complete image of the defective sequence.

The error flags are reset at power-up, PCI reset or a write access to **fifores**.

Time Measurement

Every received word sequence consists of data words and controlling keywords and idle or empty words. The stored sequence image (in the FIFO) includes only the keywords and their affiliated following data words of different number. There are no gaps.

Here, measurement of time means, counting the time distance of each keyword from the previous one as number of receiving clock cycles.

Keywords are:

- A-words of the sequence from the F-Controller.
- NG-words of the sequence from the G-Controller.
- Ctrl-words of the sequence from the DRU.

Setting the receiving mode in the Control Register selects the right keywords.

The time distance is measured by a 32-bit counter. The low part of the 32-bit value will be stored together with the keyword in the empty upper 16-bits of the 64-bit FIFO. Except for stream from the DRU, the upper part of the 32-bit value will be stored together with the next data word.

The word stream from the DRU provides no possibility to store the upper part of the counter. Therefore, the measurable time capacity is reduced to a 16-bit count.

With receiving the keyword, the counter is cleared and starts counting again at zero. The maximum measurable time distance is:

- 53.687 seconds @ 80 MHz, Fx-Controller
- 655.36 microseconds @ 100 MHz, DRU.

R-Ctrl Operating in F-Controller Mode

4.3.1

All A-words and the one B-words which follows an A-word in the next clock period will be stored. All A-words get a time stamp.

Identifier	Value	Accepted	WERR	Sequential Situation	Time Measuring
WID	0	Yes		A-Word following a B-Word	Low part of timer inserted in this A-Word and timer cleared.
	1	Yes		B-Word following an A-Word	High part of timer inserted in this B-Word
	0	Yes	0->1	A-Word following an A-Word	Low part of timer inserted in this A-Word and timer cleared
	1	No		B-Word following a B-Word	Counting

R–Ctrl Operating in G–Controller Mode

4.3.2

All NG words (Next Gradient) and all valid words (gradient data words) will be stored. There are no constraints regarding, succession, number or clock period.

Every NG word gets a time stamp measured from the preceding NG word.

Identifier	Value	Accepted	WERR	Sequential Situation	Time Measuring
!Valid!N G	00	Yes	0->1	Undefined.	Low part of timer inserted in this NG word and timer cleared.
	01	Yes		First valid word fol- lowing a NG word.	High part of timer inserted in this valid word.
	01	Yes		Valid word after first valid word following a NG word.	Counting.
	10	Yes		NG word following an NG word.	Low part of timer inserted in this NG word and timer cleared.
	10	Yes		NG word following a Valid word.	Low part of timer inserted in this NG word and timer cleared.
	01	No		ldle.	Counting.

4.3.3

All control words (!Ctrl=0) and all data words (!Data=0) will be stored.

There are streams of control words and, separated by idle words, back-to-back streams of data words. Every control word gets a time stamp measured from the preceding control word. Every data word gets a time stamp measured from the last preceding control word.

Identifier	Value	Accepted	WERR	Sequential Situation	Time Measuring
!Data!Ct rl	00	Yes	0->1	Undefined.	Low part of timer inserted in this word and timer cleared.
	01	Yes		Data word.	Low part of timer inserted in this data word, not cleared.
	10	Yes		CTRL word.	Low part of timer inserted in this CTRL word and timer cleared.
	11	No		ldle.	Counting.

Engineering Design

4.4

Dimensions

Figure 4.2. PCI Rx-Controller

Ports

Data Input

- Low voltage, low noise LVDS input via 8 balanced data lines and one clock line.
- Transfer rate 80 to 100 million words per second.
- Word width 48-bit.

JTAG Structure

The implemented JTAG interface has 3 chains. JTAG is used to program the logic, read the BIS Prom and debug the DSP operation.

Table 4.21. JTAG Structure on Rx-Controller of the IPSO 19" Unit

Connector	Stxxx		
JTAG Bridge	Uxx, Adr=yy		
Connector	ST?? ST??		
JTAG Chains	Chain 1	Chain 2	Chain 3
Devices		Uxx:DSP	Uxx:FIFO1
			Uxx:FIFO2
			Uxx:FPGA
			Uxx:EEPROM (FPGA)

Power Requirements

Part No.	Assembly	+5V	Σ +5 V	+3.3V	+12V	+5VSB	-12V
H1256xx	Rx-Controller	0	0	0.6A	0	0	0

Addendum

5

Pin Allocation of Connectors

LVDS Connector

Figure 5.1. Pin location of the 48Bit LVDS Connector at PCB

ment
men

Function	Type of Wire	Transmitter Signal	Receiver Signal	Pin Nr.
Signal: Differential pair of the received	Turista di su d	TxCLK_P	RxCLK_P	6
corresponding inputs of the transmitter.	shielded	TXCLK_M	RXCK_M	18
Shield: Common drain wire of all sepa- rate shields, connected to CHASSIS.		LVDS	Gnd	26
Signal: Differential pair of the received	Turista di su d	TxIN_P0	RxIN_P0	3
corresponding inputs of the transmitter.	shielded	TxIN_M0	RxIN_M0	15
Shield		LVDS	S Gnd	26

			-	
Signal	Twieted and	TxIN_P1	RxIN_P1	4
	shielded	TxIN_M1	RxIN_M1	16
Shield		LVD	S Gnd	26
Signal		TxIN_P2	RxIN_P2	5
	Twisted and shielded	TxIN_M2	RxIN_M2	17
Shield		LVD	S Gnd	26
Signal	T	TxIN_P3	RxIN_P3	9
	I wisted and shielded	TxIN_M3	RxIN_M3	21
Shield		LVD	S Gnd	26
Signal		TxIN_P4	RxIN_P4	10
	I wisted and shielded	TxIN_M4	RxIN_M4	22
Shield		LVD	S Gnd	26
Signal		TxIN_P5	RxIN_P5	11
	I wisted and shielded	TxIN_M5	RxIN_M5	23
Shield		LVD	S Gnd	26
Signal		TxIN_P6	RxIN_P6	12
	Twisted and shielded	TxIN_M6	RxIN_M6	24
Shield		LVD	S Gnd	26
Signal		TxIN_P7	RxIN_P7	13
	I wisted and shielded	TxIN_M7	RxIN_M7	25
Shield		LVD	S Gnd	26
USB signal pair, left open		US	SB+	1
	I wisted and shielded	U	SB-	14
Shield of the USB signal pair, con- nected to CHASSIS		USE	3 Gnd	2
Signal: connected to bit1 of register "chanconf" on F and G Controller	Individual	CHANNEL	_DETECT0	7
Signal: connected to bit1 of register "chanconf" on F and G Controller	Individual	CHANNEL	_DETECT1	20
VCC of USB power, left open	Individual	USE	3 Pwr	19
GND of USB power, connected to GND	Individual	USE	3 Gnd	8
Common shield of the entire bundle	Shield	CHA	SSIS	Body

Table 5.1.Cable and Pin Assignment

Chassis

Chassis is a separate plane in the PCB layer stack. This plane stacks directly next to the ground plane, giving a very tight capacitive (only capacitive) and low inductance coupling to GND. The chassis plane screws to the external chassis along the front edge near the connectors and the line drivers.

This solution reduces the digital noise at that point and the noise which is picked up by the driver and carried to the outside. In addition it avoids parasitic current through the GND plane which could be caused by potential differences of the remote device.

DS_OPT, Deskew optimization:

DS_OPT of the transmitter is triggered after power up and under software intervention. At the receiver this pin should be configurable to high or low which would enable or disable the receiver to optimize the skews.

JTAG Connectors

Pin	Signal	Pin	Signal
1	TRSTB	2	GND
3	TDOB	4	GND
5	TDIB	6	GND
7	TMSB	8	GND
9	TCKB	10	GND

Figure 5.2. JTAG Programming Connector

Pin	Signal	Pin	Signal
1	TMSL1	2	TRSTL1
3	TDIL1	4	ENABLE_T
5	3,3V	6	GND
7	TDOL1	8	GND
9	TCKL1	10	GND
11	TCKL1	12	GND
13	EMU0	14	EMU1

Figure 5.3. JTAG Emulation Connector for DSP

PCI Connector

Pin	Side B	Side A
1	- 12 V	TRST#
2	ТСК	+12V
3	GND	TMS
4	TDO	TDI
5	+5V	+5V
6	+5V	INTA#
7	INTB#	INTC#
8	INTD#	+5V
9	PRSNT1#	Reserved
10	Reserved	+3.3V ^(I/O)
11	PRSNT2#	Reserved
12	3.3V	Key
13	3.3V	Key
14	Reserved	3.3V aux.
15	GND	RST#
16	CLK	+3.3V ^(I/O)
17	GND	GNT#
18	REQ#	GND
19	+3.3V ^(I/O)	PME#
20	AD[31]	AD[30]

Table 5.2. PCI Board Connector Revision 2.3

Pin	Side B	Side A
32	AD[17]	AD[16]
33	C/BE[2]#	+3.3V
34	GND	FRAME#
35	IRDY#	GND
36	+3.3V	TRDY#
37	DEVSEL#	GND
38	GND	STOP#
39	LOCK#	+3.3V
40	PERR#	SMBCLK
41	+3.3V	SMBDAT
42	SERR#	GND
43	+3.3V	PAR
44	C/BE[1]#	AD[15]
45	AD[14]	+3.3V
46	GND	AD[13]
47	AD[12]	AD[11]
48	AD[10]	GND
49	M66EN	AD[09]
50	5V	Key
51	5V Key	

AD[08]

AD[07] +3.3V

AD[05]

AD[03]

GND

AD[01]

+3.3V^(I/O)

ACK64#

+5V +5V

52

53

54 55

56

57

58

59 60

61

62

C/BE[0]#

+3.3V

AD[06]

AD[04]

GND

AD[02]

AD[00]

+3.3V^(I/O)

REQ64# +5V

+5V

21 AD[29] +3.3V 22 GND AD[28] 23 AD[27] AD[26] 24 AD[25] GND 25 +3.3V AD[24] 26 C/BE[3]# IDSEL 27 AD[23] +3.3V 28 GND AD[22] 29 AD[21] AD[20] 30 AD[19] GND 31 +3.3V AD[18]				
22 GND AD[28] 23 AD[27] AD[26] 24 AD[25] GND 25 +3.3V AD[24] 26 C/BE[3]# IDSEL 27 AD[23] +3.3V 28 GND AD[22] 29 AD[21] AD[20] 30 AD[19] GND 31 +3.3V AD[18]	21	AD[29]	+3.3V	
23 AD[27] AD[26] 24 AD[25] GND 25 +3.3V AD[24] 26 C/BE[3]# IDSEL 27 AD[23] +3.3V 28 GND AD[22] 29 AD[21] AD[20] 30 AD[19] GND 31 +3.3V AD[18]	22	GND	AD[28]	
24 AD[25] GND 25 +3.3V AD[24] 26 C/BE[3]# IDSEL 27 AD[23] +3.3V 28 GND AD[22] 29 AD[21] AD[20] 30 AD[19] GND 31 +3.3V AD[18]	23	AD[27]	AD[26]	
25 +3.3V AD[24] 26 C/BE[3]# IDSEL 27 AD[23] +3.3V 28 GND AD[22] 29 AD[21] AD[20] 30 AD[19] GND 31 +3.3V AD[18]	24	AD[25]	GND	
26 C/BE[3]# IDSEL 27 AD[23] +3.3V 28 GND AD[22] 29 AD[21] AD[20] 30 AD[19] GND 31 +3.3V AD[18]	25	+3.3V	AD[24]	
27 AD[23] +3.3V 28 GND AD[22] 29 AD[21] AD[20] 30 AD[19] GND 31 +3.3V AD[18]	26	C/BE[3]#	IDSEL	
28 GND AD[22] 29 AD[21] AD[20] 30 AD[19] GND 31 +3.3V AD[18]	27	AD[23]	+3.3V	
29 AD[21] AD[20] 30 AD[19] GND 31 +3.3V AD[18]	28	GND	AD[22]	
30 AD[19] GND 31 +3.3V AD[18]	29	AD[21]	AD[20]	
31 +3.3V AD[18]	30	AD[19]	GND	
	31	+3.3V	AD[18]	

Table 5.2. PCI Board Connector Revision 2.3

Figures

1 Introd	uction	5
Figure 1.1. Figure 1.2.	Rx-Controller Front and Top View Connecting the External PCI Box to the IPSO	5 7
2 Refere	ence Numbers	11
3 Produ	ction Status and Modifications	13
4 Descr	iption	15
Figure 4.1.	The Rx-Controller	15
Figure 4.2.	PCI Rx-Controller	31
5 Adder	ndum	33
Figure 5.1.	Pin location of the 48Bit LVDS Connector at PCB	
Figure 5.2.	JTAG Programming Connector	35
Figure 5.3.	JTAG Emulation Connector for DSP	35

Figures

Tables

1 Introdu	uction
Table 1.1. Table 1.2.	Accessories Required for Mounting the PCI R-Controller Currents and Voltages
2 Refere	nce Numbers 1
Table 2.1.	Parts and Assemblies
Table 2.2.	Accessories
3 Produc	ction Status and Modifications 1
Table 3.1.	Introductory Status 1
4 Descri	ption 1
Table 4.1.	F-Controller words at output of LVDS receiver and FIFO (F
	Controller Mode) 16
Table 4.2.	Bit Fields of the F–Controller Output Word 1
Table 4.3.	G-Controller Words at Output of LVDS Receiver and FIFO
Table 4.4	(G-Controller Mode) 17 Bit Fielde of the E. Controller Output Word
Table 4.4.	DRIL Words of Output of LVDS Reseiver and EIEO (DRIL
	Mode) 18
Table 4.6.	Bit Fields of the DRU–Controller Output Word 1
Table 4.7.	Relations Between PCI and Local Addresses on R-Control
	lers 19
Table 4.8.	Memory Map of the DSP 6415 1
Table 4.9.	EMIFA Configuration Register 2
Table 4.10.	EMIFB Configuration Register 2
Table 4.11.	GPIO Configuration Register 2
Table 4.12.	Type of External Memory used on the RX-Controllers 2
Table 4.13.	Type of FIFOs used on the RX-Controllers 2
Table 4.14.	Type of FIFOs used on the RX-Controllers 2
Table 4.15.	Device Codes on EMIFB (CE0 space), Existent on RCTRL
Table 4.16.	Control Register
Table 4.17.	Channel Register 2
Table 4.18.	Channel Configuration Register
Table 4.19	Slot Board Version Register
Table 4.20.	Status Register
Table 4.21.	JTAG Structure on Rx-Controller of the IPSO 19" Unit 3
5 Adden	dum 3
	Oable and Dia Assistment

Table 5.1.	Cable and Pin Assignment	33
Table 5.2.	PCI Board Connector Revision 2.3	36

End of Document

Bruker BioSpin your solution partner

Bruker BioSpin provides a world class, market-leading range of analysis solutions for your life and materials science needs

Bruker BioSpin Group

info@bruker-biospin.com www.bruker-biospin.com