

Bruker BioSpin

LVDS Gradient Interface

48-Bit LVDS Gradient Interface Technical Manual

Version 001

think forward

NMR Spectroscopy

The information in this manual may be altered without notice.

BRUKER BIOSPIN accepts no responsibility for actions taken as a result of use of this manual. BRUKER BIOSPIN accepts no liability for any mistakes contained in the manual, leading to coincidental damage, whether during installation or operation of the instrument. Unauthorized reproduction of manual contents, without written permission from the publishers, or translation into another language, either in full or in part, is forbidden.

This manual was written by

Jens Rommel and Willy Uhrig

This manual was desktop published by

Stanley J. Niles

© February 22, 2008: Bruker Biospin GmbH

Rheinstetten, Germany

P/N: Z31840 DWG-Nr.: Z4D10604 - 001

For further technical assistance on the LVDS Gradient Interface unit, please do not hesitate to contact your nearest BRUKER dealer or contact us directly at:

> BRUKER BioSpin GMBH am Silberstreifen D-76287 Rheinstetten Germany

 Phone:
 + 49 721 5161 0

 FAX:
 + 49 721 5171 01

 E-mail:
 service@bruker.de

 Internet:
 www.bruker.com

Contents

	Contents	. 3
1	Introduction	5
1.1	Introduction	5
1.2	Version Declaration	5
1.3	Acronyms	6
1.4	Disclaimer	
1.5	Warnings and Notes	
1.6	Contact for Additional Technical Assistance	7
2	Specifications	9
2.1	Involved Devices	9
2.2	Accessories	10
3	Pin Assignment and Connections	. 11
3.1	Cables	. 11
	Pins Assignment	
3.2	The PCB Connector	
3.3	Signal Description	. 14
	Pin Connections	.15
4	Local Bus Bit Assignment	17
4.1	The 32-Bit Local Bus Connection on the GCU, BGU and DPP .	. 18
4.2	The 64-Bit Local Bus Connection on G-Cntrl	20
5	Gradient Address and Data Layout	21
6	Functional Requirements	23
6.1	Parity	23
6.2	Control	
6.3	Configuration Recommendations for Transmitter and Receiver	
7	Timing	27
	Figures	29
	Tables	31

Introduction

Introduction

This document describes the Low Voltage Differential Serial (LVDS) interface between the sources of the gradient sequence (GCU/GCntrl or DPP output respectively) and their destinations (Gradient Amplifiers DPP Input respectively).

These devices are connected in the following manner:

- GCU or G-Cntrl Output -> Gradient Amplifier or BGU Input
- GCU or GCntrl-Output -> DPP Input/DPP-Output -> Grad.Amp. or BGU-Input.

GCU/G-Cntrl-Output and Gradient Amplifier/BGU-Input can be connected directly. Inserting the DPP as a third device is optional.

This document is based on the description of the 28-bit interface "LVDS GCU3/ BGU3 Interface" supplemented with the following advancements:

- Size of words is now 48 bit; bandwidth up to 80 M words; transmitted on8 data pairs with a bit rate of 480 MHz.
- Possibility to safeguard the transmission by a parity bit.
- Extended data size from 20 to 32 bits for future use.
- Extended address range from 64 to 1024 addresses.

Serving the extended data size and address range needs devices with a local data bus wider than 32 bits. Therefore GCU, DPP and BGU so far can't make use of these two features. But the requirements to connect them each other and to 64-bit devices by this interface are taken into account and fulfilled by the specifications of this document. Of course to do this would require in advance to replace their interface devices by 48-bit ones.

Version Declaration

Modifications will be marked with a vertical bold line at the right side. Modifications marked in this version are made since 2005_11_17.

1.2

Acronyms

LVDS	Low Voltage Differential Serial interface.
GCU	Gradient Control Unit of the AV System.
G-Controller (GCntrl)	Gradient Controller of the IPSO System.
F-Controller (FCntrl)	Frequency Controller of the IPSO System.
BGU	Gradient Amplifier of the AV System for medical applications.
Grad.Amp.	Generic Gradient Amplifier.
DPP	Digital Pre-emphasis Processor.

Disclaimer

1.4

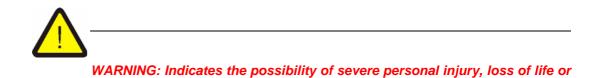
1.3

The unit should only be used for its intended purpose as described in this manual. Use of the unit for any purpose other than that for which it is intended is taken only at the users own risk and invalidates any and all manufacturer warranties.

Service or maintenance work on the unit must be carried out by qualified personnel.

Only those persons schooled in the operation of the 48-Bit LVDS Interface should operate the unit.

Read this manual before operating the unit. Pay particular attention to any safety related information.


Warnings and Notes

1.5

There are two types of information notices used in this manual. These notices highlight important information or warn the user of a potentially dangerous situation. The following notices will have the same level of importance throughout this manual.

Note: Indicates important information or helpful hints

equipment damage if the instructions are not followed.

Contact for Additional Technical Assistance

For further technical assistance on the BPSU36-2 unit, please do not hesitate to contact your nearest BRUKER dealer or contact us directly at:

BRUKER BioSpin GMBH am Silberstreifen D-76287 Rheinstetten Germany

Phone:	+ 49 721 5161 0
FAX:	+ 49 721 5171 01
E-mail:	<e-mail address="">@bruker.de</e-mail>
Internet:	www.bruker.de

1.6

Specifications

2.1

Involved Devices

Device	Applica-	Part #	Environment	al Conditions
Device	tion	Part #	Hardw.	Softw.
Gradient-Controller (G-CntrlD)	HR/TOMO	H12530	IPSO	topspin Version x.x
Gradient Control Unit (GCU3)	HR/TOMO	H5817	AQS	XWIN–NMR Version 3.5
DPP1: Digital-Preemphasis-Proc- essor, 28-Bit LVDS	HR/TOMO	H12513	IPSO	topspin Version x.x
DPP1: Digital-Preemphasis-Proc- essor, 48-Bit LVDS	HR/TOMO	H12513F1	IPSO	topspin Version x.x
DPP2: Digital-Preemphasis-Proc- essor with PPC	HR/TOMO	H12560	IPSO	topspin Version x.x
Gradient-Amplifier/BGU3 DIA Con- verter LVDS RAMPD Board	ТОМО	T9227	IPSO/AQS	XWIN-NMR Version 3.5
Gradient-Amplifier/BGU3 DIA Con- verter LVDS Board	HR	T9226	IPSO/AQS	XWIN-NMR Version 3.5

Accessories

Part	Туре	Manufa cturer	Part Nr.
48-Bit LVDS Receiver, (33-112) MHz	DS90CR484	NS	85539
48-Bit LVDS Transmitter, (33-112) MHz	DS90CR483	NS	85529
48-Bit LVDS Receiver, (65-112) MHz	DS90CR482	NS	86853
48-Bit LVDS Transmitter, (65-112) MHz	DS90CR481	NS	86112
48–Bit LVDS PCB Connector, 26 pin fe- male	10226-1210VE	Зm	85843
48-Bit LVDS Cable 1m	14526-EZHB-100-0Q C	3m	86868
48-Bit LVDS Cable 2m	14526-EZHB-200-0Q C	3m	
Part	Туре	Manufa cturer	Part Nr.
48–Bit LVDS Cable 5m	14526-EZHB-500-0Q C	3m	
48–Bit LVDS Cable 10m	14526-EZHB- A00-0QC	3m	not rec- om- mended

Pin Assignment and Connections

This chapter contains the pin assignment and description of connectors and cables (for the serial side of the LVDS).

Cables

3.1

The cable consists of 10 separately shielded pairs and 4 individual wires. The 10 shields are connected to a common drain wire (LVDS Gnd).

The shield of the entire bundle is connected to the plated body of the connector called "Chassis".

The characteristic Impedance is 100+/- 10 Ohms.

The Propagation Velocity 4.1 ns/m.

Pins Assignment

Type of Wire	Function	Transmitter Signal	Receiver Signal	Pin Nr.	Usage
Twisted	Signal	TxCLK_P	RxCLK_P	6	used
+ Shielded	Signal	TxCLK_M	RxCLK_M	18	used
	Shield	LVDS	Gnd	26	used
Twisted	Signal	TxOUT_P0	RxIN_P0	3	used
+ Shielded	Signal	TxOUT_M0	RxIN_M0	15	used
	Shield	LVDS	Gnd	26	used
Twisted	Signal	TxOUT_P1 RxIN_P1		4	used
+ Shielded	Signal	TxOUT_M1 RxIN_M1		16	used
	Shield	LVDS	Gnd	26	used
Twisted	Signal	TxOUT_P2	RxIN_P2	5	used
+ Shielded	Signal	TxOUT_M2	RxIN_M2	17	used
	Shield	LVDS	Gnd	26	used

Twisted	Signal	TxOUT_P3	RxIN_P3	9	used
+ Shielded	Signal	TxOUT_M3	RxIN_M3	21	used
	Shield	LVDS	Gnd	26	used
Twisted	Signal	TxOUT_P4	RxIN_P4	10	used
+ Shielded	Signal	TxOUT_M4	RxIN_M4	22	used
	Shield	LVDS	Gnd	26	used
Twisted	Signal	TxOUT_P5	RxIN_P5	11	used
+ Shielded	Signal	TxOUT_M5	RxIN_M5	23	used
	Shield	LVDS	S Gnd	26	used
Twisted	Signal	TxOUT_P6	RxIN_P6	12	used
+ Shielded	Signal	TxOUT_M6 RxIN_M6		24	used
	Shield	LVDS	Gnd	26	used
Twisted	Signal	TxOUT_P7	RxIN_P7	13	used
+ Shielded	Signal	TxOUT_M7	RxIN_M7	25	used
	Shield	LVDS	6 Gnd	26	used
Twisted	Signal	US	B+	1	used
+ Shielded	Signal	US	SB-	14	used
	Shield	LVDS	6 Gnd	26	used
Individual	Signal	CHANNEL	_DETECT0	7	used
Individual	Signal	CHANNEL	_DETECT1	20	used
Individual	Signal	USE	3 pwr	19	reserved
Individual	Signal	USB	gnd	8	used
Shield	Common Shield Of The Entire Bundle	CHA	SSIS	Metal surface of the connector	used

3.2

The PCB Connector

The PCB is av10226-1210VE, 26-pin female connector.

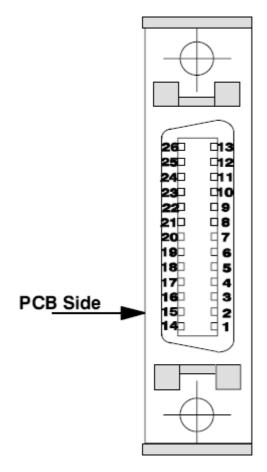


Figure 3.1. Front View at 48-bit LVDS Connector

Signal Description

· · · · · · · · · · · · · · · · · · ·	·
TxCLK	Differential pair of the serial transmit clock connected to the corresponding outputs of the transmitter.
RxCLK	Differential pair of the received serial transmit clock connected to the corre- sponding inputs of the receiver.
TxOUT	Differential pair of the serial transmitted data connected to the correspond- ing outputs of the transmitter.
RxIN	Differential pair of the received serial data stream connected to the corre- sponding inputs of the receiver.
LVDS Gnd	Common drain wire of all separate shields, connected to CHASSIS.
USB Gnd	Shield of the USB signal pair, connected to CHASSIS.
USB +/-	USB signal pair, connected to CHASSIS if not used.
USB pwr	VCC of USB power, connected to CHASSIS if USB is not used.
USB gnd	GND of USB power, connected to GND at GCU and GCntrl, tied top in 20 at DPP input, left open at DPP output and BGU input if USB is not used.
CHANNEL_DETECT 0/1	By reading the logical state of CHANNEL_DETECT the GCU, GCntrl and FCntrl can recognize the connection of the DPP, the Gradient Amplifier, the SGU or the open line.
CHASSIS	Chassis is a separate plane in the PCB layer stack. This plane stacks directly next to the ground plane, giving a very tight capacitive (only capacitive) and low inductance coupling to GND. The chassis plane screws to the external chassis along the front edge near the connectors and the line drivers.
	This solution reduces the digital noise at that point and the noise which is picked up by the driver and carried to the outside. In addition it avoids parasitic current through the GND plane which could be caused by potential differences of the remote device.
DS_OPT	Deskew optimization:
	DS_OPT of the transmitter is triggered after power up and under software intervention.
	At the receiver this pin should be configuerable to High or Low which would enable or disable the receiver to optimize the skews.

Pin Connections

				Signa	al at			
Signal	Pin Nr.	GCU	G-Cntrl	DPP2_Out	DPP2_In	BGU/ Grad. Amp.	SGU	
				connec	ted to			
DS_OPT/ DESKEW		DS_OPT of th vated after po		DESKEW of L configurable (
CHANNEL_ DETECT_0	7	Status registe	s register + pull_up		open	Pin 8 (GND)		
CHANNEL_ DETECT_1	20	Status registe	r + pull_up	pull_up	Pin 8 (GND)	Pin 8 (GND)	open	
USB gnd	8	GND	GND		of DPP_In to DPP_Out		(16	
USB pwer	19	open	open 5 V Pin 19 of Pin 19 of DPP_In DPP_Out				ce (if any)	
USB +/-	1/14	open USB Hub Pin 1 + 14 Pin 1 + 14of of DPP_In DPP_Out						
USB Gnd	2			CHAS	SSIS			
LVDS Gnd	26							

Local Bus Bit Assignment

This chapter contains information on the local bus bit assignment of the involved devices on the parallel side of the LVDS.

NXGO and BSTR are the "Next Gradient" signal and the "Gradient Data Valid" signal sent from GCU.

NG and VALID are the "Next Gradient" signal and the "Gradient Data Valid" signal sent from GCntrl.

	LVDS Parallel Interface																				
Bit Pos.	48	47 - 44 43 - 38						37	-	22	21	-	18	17	-	6	5	4	3	2	1
Bit#	1		4			6			16			4			12		1	1	1	1	1
Meaning	Ρ	M S B		A	ddres	S		M SB		I	Data				ata es)		(re	es)	L	V	Ν
Device					_																
BGU	P A R	C	ре	pen ADD<50>				DAT	A<1	50>	gnd			g	nd		gr	nd	-	! BSTR	! N X G O
GCU	P A R		gnd	I	ADI	ADD<50>			D	ATA<1	90>			g	nd		gr	nd	! LAST	! B S T R	! N X G O
DPP2	P A R								D	ATA<1	90>			g	nd		gr	nd	! L A S T	! B S T R	! N X G O

Table 4.1. Bit Assignment of 48-bit LVDS

IPSO/G- Cntrl	P A R	ADD<90>	DATA<190>	gnd	gnd	! L A S T	! > A I D	! N G
Grad. Amp.	P A R	ADD<90>	DATA<190>	gnd	gnd	! L S T	! V A L I D	! N G

Table 4.1.	Bit Assignment of 48-bit LVDS
10010 1111	

The 32-Bit Local Bus Connection on the GCU, BGU and DPP

4.1

GCU and DPP are equipped with a 32-bit processor and a 32-bit local data bus. Therefore they can't access all 48-bit at once.

On DPP the processor is able to accept 20 gradient data bits, 10 address bits, !LAST and !NXGO. The data word of the GCU contains several control bits and can handle 26 bits of the LVDS word only.

The Gradient structure is a 32-bit wide word list in Data Memory. This list is created by the i960 on GCU and written into the Sequencer Data RAM. Bit 31 is a StopBit for the Sequencer and bit 26 marks a word for the external DAC or its internal Timer. Bits 26 to31 are not transferred to external destinations.

Bit 0 to 25 of the GCU Gradient Memory form together with the validity bit (BSTR) and the next gradient strobe (NXGO) the 28-bit gradient data word of the so far used 28-bit LVDS. Introducing the parity bit (PAR) and wider address and data parts made the wider 48-bit LVDS necessary. In such case the !LASTBit can not be retrieved from any bit position of the local bus. It has to be generated by the sequencer.

Transferring the 48-bit word to DPP or Grad.Amp. is released at the parallel side of the LVDS by the 80 MHz rising edge.

Bit Pos. at LVDS	48	47	-	44	43	-	38	37	-	22	21	-	18	17	-	6	5	4	3	2	1																																																
Bit#	1		4			6			16			4			12		1	1	1	1	1																																																
	Ρ	M S B		A	ddres	s		M S B			Data)ata res)		(re	es)	N	V	N																																																
Meaning	P A R	ADD<96> ADD<50>			DA	ГА< 0>	15	gnd gnd					gnd		! L A	! B S	! N X																																																				
	Γ						DATA<190>								S T	T R	< G O																																																				
Local Bus	Local Bus Pos. at:																																																																				
GCU	-	n.a.		n.a.		n.a.		n.a.		n.a.		n.a.		n.a.		n.a.		n.a.		n.a.		n.a.		n.a.		n.a.		n.a.		n.a.		n.a.		n.a.		n.a.		n.a.		n.a.		n.a.		n.a.		n.a.		n.a.		n.a.		n.a. 25		-	20	19	-	4	4 3 - 0		0	r	ı.a.				n.a.		
DPP	-	29	-	26	25	-	20	19	-	4	3	-	0	r	ı.a.		n.a.																																																				
BGU	-		n.a.		25	-	20	19	-	4	n.a.		r	ı.а.				n.a.																																																			

Table 4.2.Connection of the 32-Bit Local Bus to 48-Bit LVDS

!BSTR, !NXGO, !LAST and PAR are not generated or handled by the processor on GCU and BGU and !BSTR and PAR also not on DPP. Therefore they have at that locations no representation on the Local Bus.

The !BSTR signal active low indicates the validity of the gradient address and data lines at the LVDS output of the receiver.

The next gradient signal (!NXGO = active low) is always valid also without the BSTR validity bit.

The 64-Bit Local Bus Connection on G-Cntrl

Bit Pos. at LVDS	48	47	-	44	43	-	38	37	-	22	21	-	18	17	-	6	5	4	3	2	1	-	-
Bit#	1		4			6			16			4		,	12		1	1	1	1	1	1	1
	Ρ	M S B		А	ddres	SS		M S B			Data				ata es)		(re	es)	L	V	Ν	0	•
Meaning	P A R	AD	D<: >	96	ADI	D<5	0>		D	ATA<	:190	>		g	nd		gr	nd	! L A S T	! BST R	! N X G O	O U T	A / B
Local Bus Pos. at:																							
G-Cntrl	-	47 b	-	44 b	43 b	-	38 b	37 b	-	22 b	21 b	-	18 b	17 b		6 b	5 b	4 b	3 b	2 b	3 4 a	3 3 a	0

Table 4.3.Connection of the 64-Bit Local Bus to 48-Bit LVDS

PAR is not generated by the processor. Therefore it has no representation on the Local Bus.

Transferring the gradient data is carried out by the sequencer. The LVDS interface is clocked with the 80 MHz rising edge.

The VALID signal (VALID = active low) indicates the validity of the gradient address and data lines of the BWord at the LVDS output of the receiver.

The next gradient signal of word A (NG = active low) is always valid without any VALID bit.

Gradient Address and Data Layout

Table 5.1. Gradient Address Layout (all further addresses are reserved).

News	Gradient Ad-	Gradient	Eff	ect			
Name	dress ADD<9::0>	Data DAT<19::0>	on DPP	on Grad.Amp.			
X Gradient	0x000		X Gra	adient			
Y Gradient	0x001	<amplitude< td=""><td colspan="5">Y Gradient</td></amplitude<>	Y Gradient				
Z Gradient	0x002	value>	Z Gra	adient			
B0 Gradient	0x003		B0 Gradient				
		0x10	X,Y,Z,B0 → 0	BGU-HR: X,Y,Z,B0 → 0			
Control word	0-025	0x20	Count X,Y,Z,B0 down	BGU-TOMO: Count X,Y,Z,B0 down			
Control word	0x03F	0x01		Blank of X Grad.			
		0x02	forwarded to	Blank of Y Grad.			
		0x04	Grad. Amp.	Blank of Z Grad.			
		0x08		Blank of B0 Grad.			

The data bits of the Control Word are not analyzed on the existent BGU! Only the address 0x03F activates setting or counting the gradient values to zero. If the DPP is inserted between GCU and Grad.Amp., the Control Word will be processed on the DPP and dependent on its data content forwarded or not forwarded to the Grad.Amp.

A future Grad.Amp. can get this control word, analyze its data bits and carry out an action controlled out of the pulse program, if this would be reasonable.

Table 5.2. Gradient Data Layout

DATA<190>	19		4	3	 0
Bit Value, 20 bit DAC	MSB				LSB
Bit Value, 16 bit DAC	MSB		LSB		
LVDS Value Coding, 16 bit, hexadecimal		7 F F F Pos. 0 0 0 0 8 0 0 0 Neg.			
DAC Value Coding, 16 bit, hexadecimal		F F F F Pos. 8 0 0 0 0 0 0 0 Neg.			

Functional Requirements

6.1

- The Parity is created to be "Even" by including the following number of bits: bit1...bit47 on GCntrl and DPP2
 - bit1...bit46 on FCntrl
- DPP1 (H12513 with 28-bit LVDS and H12513F1 with 48-bit LVDS) is not able to generate the parity bit.
- Switching off the parity check by software intervention should be possible at any input!

Control

- The LVDS Receiver Interface at the Gradient Amplifier must have a pre-load register for the Gradient Data of each channel located between the LVDS Receiver and the DAC Register.
- The rising edge of the received 80 MHz clock of the phase with NXGO/NG = low loads the contents of all preload registers into the DAC Registers.
- Each NXGO/NG is followed by the new gradient data packet which must be loaded into the preload registers and activated with the next NXGO/NG.
- The rising edge of the received 80 MHz clock of each clock phase with BSTR/ VALID = low loads the value at the Gradient Data lines into the preload register indicated by the value at the Gradient Address lines of that clock phase.
- NXGO/NG are valid independent of BSTR/VALID respectively. That means, they need not the validity declaration of BSTR/VALID.
- Each single clock phase with NXGO/NG = low is followed by 1, 2, 3 or n (X, Y, Z, B0) clock phases with BSTR/VALID = low.
- Clock phases with BSTR/VALID = low could be separated by idle phases.
- There are no clock phases with NXGO/NG = low AND BSTR/VA-LID = low.

6.2

Configuration Recommendations for the Transmitter and Receiver

	As described above the pin DS_OPT of the transmitter is triggered after the Pow- er-On reset to send the optimization sequence.
	Experience shows that, if the DESKEW process is enabled at the receiver and the cable is plugged out and in again without powering the system down and up would lead to malfunctioning up to the next power down. Therefore, there should also be additional means at the transmitter to carry out the DESKEW sequence on the running system, preferably software. Otherwise the cable must not be changed after power up.
	The DESKEW sequence lasts at least 4 clock cycles (50 nsec) but can also be longer. The outputs of the receiver device are held low during DESKEW except for the clock. The evaluating logic has to make sure that a 48-bit word with all bits at low will not be sampled as valid data.
	The transmitter and receiver devices (DS90CR481/482) provide several features to avoid the sampling of invalid data and to optimize the signal quality (Power down, Deskew, DC balancing, Pre-emphasis). To work properly they require a consistent configuration on both sides of the cable:
Deskew	Activated at the transmitter after status change of CHANNELDE-TECT by a soft- ware command and after Powerup.Configurable at the receiver by jumper or software.Disabled at the receiver if the length of the cable is below 5 meters.
	Disabled at the receiver if no means are provided to start Deskew by a software command on the powered system. Disabled at the transmitter and the receiver at a transfer clock over 80 MHz.
Pre-emphasis	Configurable at the transmitter by jumper or software.
	Disabled at the transmitter if the cable length is below 2 meters. There must not be any over or undershoot at the receivers end.
DC Balancing	Enabled at the transmitter.
Power Down	Disabled at transmitter and receiver.

Device	Function	Config.	Configurable
Receiver DS90CR482	Deskew	Disabled pin4=GND	YES by jumper or soft- ware
	Power down	Disabled	NO

6.3

Device	Function	Config.	Configurable		
	Deskew	Activated after Power-On reset	Activateable by software		
Transmitter	DC balancing	Enabled pin24=VCC	NO		
DS90CR481	Preemphasis	Disabled pin14=open (NC)	YES by jumper or soft- ware		
	Power down	Disabled	NO		

It should be pointed out that all these features can not avoid the sampling of corrupted data as valid in case of plugging out and in the cable under power.

Functional Requirements

Timing

7

Details of Clock Data Timing should be extracted from National Semiconductors Website (http://www.national.com/pf/DS/) for following data sheets:

48-Bit LVDS: DS90CR481/482

Timing

Figures

1	Introduction	5
2	Specifications	9
3	Pin Assignment and Connections	11
Fig	gure 3.1. Front View at 48-bit LVDS Connector	13
4	Local Bus Bit Assignment	17
5	Gradient Address and Data Layout	21
6	Functional Requirements	23
7	Timing	27

Figures

Tables

1	Introdu	ction	5
2	Specific	ations	9
3	Pin Ass	ignment and Connections	11
4	Local B	us Bit Assignment	17
Ta	ole 4.1.	Bit Assignment of 48-bit LVDS	. 17
Ta	ole 4.2.	Connection of the 32-Bit Local Bus to 48-Bit LVDS	. 19
Ta	ble 4.3.	Connection of the 64-Bit Local Bus to 48-Bit LVDS	. 20
5	Gradien	t Address and Data Layout	21
Ta	ble 5.1.	Gradient Address Layout (all further addresses are re- served). 21	
Ta	ble 5.2.	Gradient Data Layout	. 22
6	Functio	nal Requirements	23
7	Timing		27

End of Document

Bruker BioSpin your solution partner

Bruker BioSpin provides a world class, market-leading range of analysis solutions for your life and materials science needs

Bruker BioSpin Group

info@bruker-biospin.com www.bruker-biospin.com