Bruker BioSpin

19F Lockswitch •

200-600 MHz
Operating \& Service Manual

Version 001

The information in this manual may be altered without notice.

BRUKER accepts no responsibility for actions taken as a result of use of this manual. BRUKER accepts no liability for any mistakes contained in the manual, leading to coincidental damage, whether during installation or operation of the instrument. Unauthorised reproduction of manual contents, without written permission from the publishers, or translation into an other language, either the entire manual or a part of it, is forbidden.

This manual describes the units as they are at the date of printing. On request, the manufacturer shall supply circuit diagrams, lists of components, descriptions, calibrating instructions and any other information for use by qualified personnel of the user, in charge of repairing the parts of the unit which have been stated by the manufacturer to be "repairable". Such supply shall in no event constitute permission to modify or repair the units or approval of the same.

All rights reserved for the units, circuits, processes and appellations mentioned herein.

This unit is not designed for any type of use which is not specifically described in this manual. Such use may be hazardous.

This manual was written by
SCHANN Cédric
© December 6, 2006: Bruker Biospin SA
Wissembourg, France
P/N: Z31747
DWG-Nr: 1452.001

Contents

Contents iii
1 General Information 5
1.1 Introduction 5
2 Safety 7
2.1 Labels 7
Identifying plate 7
Manufacturer's nameplate 8
2.2 Safety labels and symbols 9
Warning signs 9
3 Installation 11
3.1 Initial inspection 11
Mechanical check 11
Claim for damage 11
Reshipment and repackaging requirements 11
Environment requirements 12
3.2 Installation requirements 12
Bench operation 12
3.3 System check 12
3.4 Initial turn on procedure 12
4 Operation 13
4.1 Front Panel 13
Indicators 13
4.2 Connectors 13
4.3 Rear panel 14
5 Technical description 15
5.1 System Overview 15
5.2 Theory of operation 16
RF Path 16
Control Board 17
Delay between control signal and RF Power 17
6 Specifications 19
6.1 General specifications 19
6.2 Common characteristics 20
Figures 21
Tables 23

General Information

The 19F Lockswitch allows to perform experiments with Lock and Fluorine decoupling, or just Fluorine observation. It is possible to switch from ${ }^{1} \mathrm{H}$ to the ${ }^{19} \mathrm{~F}$ observation by using only one ${ }^{1} \mathrm{H}$ amplifier without doing any cable changes. This can be done thanks to the internal routing dispatching the source (${ }^{1} \mathrm{H}$ or ${ }^{19} \mathrm{~F}$) either on the "Fluorine" (DEC/LOCK 19F to HPPR) or on the " Proton " output (1 H PREAMP OUT). This system also permits to perform "Fluorine Gradient Shimming".

Figure 1.1. 19F Lockswitch Wiring Diagram

This accessory is housed in a 19 ", $1 \mathrm{U}, 280 \mathrm{~mm}$ rack cabinet.

Safety

The 19 Lockswitch $200-600 \mathrm{MHz}$ is in accordance with the standard 61010-1 safety Requirements for Electrical Equipments.

Labels are provided to alert operating and service personnel to conditions that may cause personal injury or damage to the equipment from misuse or abuse. Please read the labels and understand their meaning.

The 19 F Lockswitch $200-600 \mathrm{MHz}$ can be identified by an identifying plate at the front panel of the unit that has following information.

Figure 2.1. Identifying plate

- (A) Part Number

This field indicates the part number of the product.

- (B) Variant

This field indicates the variant number that identifies the production category of the product. The default variant is 00 .

- (C) ECL

This field indicates the revision number that identifies the product configuration. The initial revision is 0.00 .

- (D) Serial Number

This field indicates the serial number of the product.

- (E) Type

This field contains the designation of the product.

- (F) Information

This field contains additional information about the product.

The 19F Lockswitch $200-600 \mathrm{MHz}$ can be identified by a manufacturer's nameplate at the back panel of the unit that has following information:

Figure 2.2. Manufacturer's nameplate

- (A) Voltage

This field indicates the input mains voltage of the product.

- (B) Frequency

This field indicates the input mains frequency of the product.

- (C) Phases

This field indicates the number of phases of the mains.

- (D) Power

This field indicates the absorbed power of the product.

- (E) Current

This field indicates the absorbed current of the product.

- (F) Wires

This field indicates number of wires with the ground in the mains cord.

- (G) Part Number

This field indicates the assembly number that identifies the part number of the product.

Warning signs

2.2.1

WARNING! Risk of electrical shocks

Figure 2.3. General hazard symbol

Please disconnect line cord before opening or prevent potential hazards such as :

- Electric schock on power supply,
- Contact burn with the RF module and heatsink,
- Finger scratch due to the fan assembly on the RF module.

Figure 2.4. Electrical hazard symbol

Please disconnect line cord before opening :

- Take care Don't touch electric parts.

Installation

The installation of the device must be done only by an authorized and qualified technician, in total accordance with the running standards. Every breakdown due to a non-respect of the following instructions will not be attributable to Bruker and will not be covered by the guarantee clauses.

Mechanical check

If damage of the shipping carton is evident, request the carrier's agent to be present when the instrument is unpacked. Check the equipment for damage and inspect the cabinet and panel surfaces for dents and scratches.

Claim for damage

3.1.2

If the unit is mechanically damaged or fails to meet specifications upon receipt, notify BRUKER or our representative immediately. Retain the shipping carton and packing material for the carriers inspection as well as for subsequent use in returning the unit if necessary.

Whenever possible, the original carton and packing material should be used for reshipment. If the original packing material is not available, wrap the instrument in heavy paper or plastic. Use a strong shipping container. If a cardboard is used, it should be at least 200 lbs. test material.

Use shock absorbing material around all sides of the instrument to provide a firm cushion and to prevent from movements inside the container wall on each side. Protect the front panel by means of cardboard spacers inserted between the front panel and the shipping carton. Make sure that the instrument cannot move in the container during shipping. Seal the carton with a good grade of shipping tape and mark the container :
" FRAGILE ELECTRONIC INSTRUMENT."

This amplifier is build for inside use only on a maximum high level of 2000 m above sea level (6600 feet).
No specific cooling or ventilation is required.
Be sure that the amplifier has enough area around so that the free air flow into and out of the amplifier is not obstruct.
It should, however, be in an environment which conforms, the $5^{\circ} \mathrm{C}-45^{\circ} \mathrm{C}\left(41^{\circ} \mathrm{F}\right.$ $113^{\circ} \mathrm{F}$) thermal specifications, a 80% maximum relative humidity of air and a contamination level of 2 (mince a normal, only non conductive contamination, temporary conductivity due to condensation is possible).

No special precautions are necessary. Mount the equipment in an area which is relatively free of vibration, and has sufficient room for cable connections.
The amplifier is a class II of installation category.

The unit can be placed onto a secure flat surface.

System check

Before applying power for the first time the following items should be checked:

- The AC input voltage 230 VAC -40% to $+15 \%$ range must be compatible with.

The following list describes how to turn on the 19F Lockswitch and what should be seen as this occurs.

Before starting this procedure, make sure that you have properly followed instructions in the section "System check".

1. Connect the device to the AC line and turn the circuit breaker to " 1 ".
2. Observe the indicators on the front panel :

- The ON/OFF Switch will illuminate,
- The +5 V ON and +15 V ON LED's will illuminate.

3. System is now fully operational.

Operation

Front Panel
4.1

The 19F Lockswitch front panel is provided with 2 leds for Supply indication and 10 coaxial connectors.

Normal operation is indicated when following LED's are on :

Table 4.1. Indicators

+15V ON	Indicates that the +15 V supply is applied.
+5V ON	Indicates that the +5 V supply is applied.

Table 4.2. Connectors

BSMS 19F TR IN	SMA type connector (female). 19F Lock input coming from BSMS LTX.
AMPLI 1H IN	N type connector (female). RF Power input coming from Proton amplifier output.
1H PREAMP OUT	N type connector (female). 1H Power output connected to 1H PREAMP.
DEC/LOCK 19F to HPPR	SMA type connector (female). 19F output connected to 19F HPPR.
SEL OBS 1H/19F	SMA type connector (female). Selection between ${ }^{1} \mathrm{H}$ or ${ }^{19} \mathrm{~F}$ mode.
SEL DEC/LOCK 19F	SMA type connector (female). Selection between 19F Lock and 19F RF Pulse.
TP-FO IN	SMA type connector (female). Lock Protection Pulse Input coming from BSMS LTX.
TP-FO OUT	SMA type connector (female). Lock Protection Pulse connected to HPPR.

2H LTX BLNK IN	SMA type connector (female). Coming from BLAXH2H (or BSMS 2H-TX) LTX BLNK.
TX-BLNK OUT	SMA type connector (female). Connected to BSMS LTX. This signal is used to blank the LTX.

Figure 4.1. 19F Lockswitch Front Panel Design

Figure 4.2. 19F Lockswitch Front Panel View

The rear Panel of the 19F Lockswitch is free of elements in exception of the three pole $(2 P+E)$ line filter socket.

Technical
 Description

The 19F Lockswitch is composed of different sub-assemblies :

- Switched power supply

Protected by a $4 \mathrm{~A} 250 \mathrm{~V} 5 \times 20 \mathrm{~mm}$ fuse, it delivers the +15 V and the +5 V to the entire system.

- Control board

It dispatchs the logic signals to the other components, according to the inputs such as SEL OBS 1H/19F, SEL DEC/LOCK19F, TP-FO IN or 2 H LTX BLNK IN. It also displays, using leds on front panel, the presence of the +15 V and the +5 V .

- Relay switch

This component allows to switch the RF power to the 1 H Preamplifier of the spectrometer (1H Mode) or to the internal PIN diodes switch (19F Mode).

- PIN Diodes switch

It permits to route to the 19F HPPR, either the 19F Lock or, via the electromechanical relay, the 19F RF power.

Figure 5.1. 19F Lockswitch System Block Diagram

The 19F Lockswitch consists of :

- An electromechanical relay,
- A PIN diodes switch.

Electromechanical relay

The relay is used to route the RF power to the 1H Preamplifier of the spectrometer (1H Mode) or to the internal PIN diodes switch (19F Mode).
This is done with the signal SEL OBS $1 \mathrm{H} / 19 \mathrm{~F}$ on the front panel, according to the truth table below.

Table 5.1. Electromechanical relay RF routing truth table

Spectrometer	SEL OBS 1H/19F	RF routing
AMX / ARX	Logical level "low" (0V)	AMPLI 1H IN to 1H PREAMP OUT
	Logical level "high" $(+5 \mathrm{~V})$	AMPLI 1H IN to internal PIN diodes switch
AVANCE	Logical level "low" (0V)	AMPLI 1H IN to internal PIN diodes switch
	Logical level "high" $(+5 \mathrm{~V})$	AMPLI 1H IN to 1H PREAMP OUT

PIN diodes switch

The PIN diodes switch is used to route either the 19F Lock or a 19F RF Pulse to the output DEC/LOCK 19F to HPPR. This is done with the signal SEL DEC/LOCK 19F on the front panel, according to the truth table below :

Table 5.2. PIN diodes switch RF routing truth table

Spectrometer	SEL OBS 1H/19F	RF routing
AMX / ARX	Logical level "low" (0V)	19F Lock routed to output
	Logical level "high" (+5V)	19F Lock is isolated. Allows 19F RF Pulse to output
AVANCE	Logical level "low" (0V)	19F Lock is isolated. Allows 19F RF Pulse to output
	Logical level "high" (+5V)	19F Lock routed to output

A Programmable Logique Device (PLD) processes the logical inputs SEL OBS $1 \mathrm{H} / 19 \mathrm{~F}$ and SEL DEC/LOCK 19 F in order to command the 2 switching components of the system.

- SEL OBS $1 \mathrm{H} / 19 \mathrm{~F}$ is for the relay switch,
- SEL DEC/LOCK 19F is for the PIN diodes switch.

SEL OBS or SEL DEC/LOCK logical inputs are fed to the PLD through an optocoupler having a pretty "long" switching time. That's why you must ensure that you send the RF Power at least $\mathbf{1 2 \mu s}$ after the logical level "low" on SEL DEC/LOCK.

Because of the Electromechanical Relay Switch, this delay is increased to 10 ms for SEL OBS.

Specifications

General specifications
6.1

Table 6.1. 19F Lockswitch General specifications

RF SPECIFICATIONS	
Frequency range	188 to 600 MHz
INSERTION LOSS	
1H Preamp Out vs Obs 19F In	0.1 dB typ. full range
Dec/Lock 19F to HPPR vs Obs 19F In	0.3dB typ. @ 188MHz - 1dB typ. @ 564MHz
Dec/Lock 19F to HPPR vs 19F TR In	0.5dB typ. @ 188MHz - 0.9dB typ. @ 564MHz
ISOLATION	
Ampli 1H In routed to 1H PREAMP Out \& BSMS 19F TR In routed to DEC/LOCK 19F to HPPR	
Dec/Lock 19F to HPPR vs Obs 19F In	> 100dB typ. full range
Ampli 1H In routed to DEC/LOCK 19F to HPPR	
1H Preamp Out vs Obs 19F In	> 80dB typ. full range
Dec/Lock 19F to HPPR vs 19F TR In	> 70dB typ. full range
RF POWER HANDLING CAPABILITIES	
1H Mode	Max. 150W PW 100ms DC 25\% / Max. 35W CW
19F Mode	Max. 150W PW 5ms DC 25\% / Max. 35W CW
DC TRANSIENTS	
BSMS 19F TR In	$\pm 500 \mathrm{mV} \mathrm{\&} \mathrm{<} 1 \mu \mathrm{~s} \mathrm{typ}$.
Dec/Lock 19F to HPPR	$\pm 500 \mathrm{mV} \mathrm{\&} \mathrm{<} 1 \mu \mathrm{~s}$ typ.
SWITCHING TIME	
Delay between the commutation signal SEL \& the RF Power	
Sel Obs 1H/19F	Min. 10ms due to the electromechanical relay
Sel Dec/Lock 19F	Min. $12 \mu \mathrm{~s}$ due to the optocoupler

SUPPLY	
Power supply	230VAC -40% to $+15 \%$ single phase $50-60 \mathrm{~Hz}$
Fuse (On internal supply)	4A $250 \mathrm{~V} 5 \times 20 \mathrm{~mm}$

Common characteristics
6.2

Table 6.2. $19 F$ Lockswitch Common characteristics

RF Input Connector BSMS 19F TR IN	SMA female coaxial connector
RF Output Connector Dec/Lock 19F to HPPR	SMA female coaxial connector
RF Input Connector Ampli 1H In	N female coaxial connector
RF Output Connector 1H Preamp Out	N female coaxial connector
Logical I/O Connector	SMA female coaxial connector
Rear Panel Interface	AC Line in socket
Size	19" Rack Cabinet, 1 U height, 280 mm depth
Weight	4 kgs

Figures

1 General Information 5
Figure 1.1. 19F Lockswitch Wiring Diagram 5
2 Safety 7
Figure 2.1. Identifying plate 7
Figure 2.2. Manufacturer's nameplate 8
Figure 2.3. General hazard symbol 9
Figure 2.4. Electrical hazard symbol 9
3 Installation 11
4 Operation 13
Figure 4.1. 19F Lockswitch Front Panel Design 14
Figure 4.2. 19F Lockswitch Front Panel View 14
5 Technical description 15
Figure 5.1. 19F Lockswitch System Block Diagram 15
6 Specifications 19

Figures

Tables

1 General Information 5
2 Safety 7
3 Installation 11
4 Operation 13
Table 4.1. Indicators 13
Table 4.2. Connectors 13
5 Technical description 15
Table 5.1. Electromechanical relay RF routing truth table 16
Table 5.2. PIN diodes switch RF routing truth table 16
6 Specifications 19
Table 6.1. 19F Lockswitch General specifications 19
Table 6.2. 19F Lockswitch Common characteristics 20

Bruker BioSpin your solution partner

Bruker BioSpin provides a world class, market-leading range of analysis solutions for your life and materials science needs

Bruker BioSpin Group

www.bruker-biospin.com

