

BLAXH2H500/100/150

Amplifier 200-600MHz
Operating \& Service Manual

Version 002

The information in this manual may be altered without notice.

BRUKER accepts no responsibility for actions taken as a result of use of this manual. BRUKER accepts no liability for any mistakes contained in the manual, leading to coincidental damage, whether during installation or operation of the instrument. Unauthorised reproduction of manual contents, without written permission from the publishers, or translation into an other language, either the entire manual or a part of it, is forbidden.

This manual describes the units as they are at the date of printing. On request, the manufacturer shall supply circuit diagrams, lists of components, descriptions, calibrating instructions and any other information for use by qualified personnel of the user, in charge of repairing the parts of the unit which have been stated by the manufacturer to be "repairable". Such supply shall in no event constitute permission to modify or repair the units or approval of the same.

All rights reserved for the units, circuits, processes and appellations mentioned herein.

This unit is not designed for any type of use which is not specifically described in this manual. Such use may be hazardous.

This manual was written by
GEISSERT Bernard
© September 30, 2005: Bruker Biospin SA
Wissembourg, France
P/N: Z31742
DWG-Nr: 1449.002

Contents

Contents iii
1 General Infomation 5
1.1 Introduction 5
2 Safety 7
2.1 Labels 7
Identifying plate 7
Manufacturer's nameplate 8
2.2 Safety labels and symbols 9
Warning signs 9
3 Installation 11
3.1 Initial inspection 11
Mechanical check 11
Claim for damage 11
Reshipment and repackaging requirements 11
Environment requirements 12
Installation requirements 12
Bench operation 12
System check 12
Initial turn on procedure 12
Software installation 13
How to remap the 2 H channel using ACBTool 15
4 Operation 23
4.1 Front Panel 23
Indicators 23
4.2 Connectors 24
Interface Connector RS485 24
4.3 Rear panel 26
5 Technical description 27
5.1 System Overview 27
5.2 Theory of operation 29
RF Path 29
Control Board 30
SBS Bus Controller 31
Status Led Board 31
BBIS Board 31
6 Specifications 33
6.1 General specifications 33
7 Service information and maintenance 37
7.1 Preventive maintenance of the RF module on BLA-type Amplifiers 37
Figures 39
Tables 41

General Infomation

The BLAXH2H500/100/150 is a linear broadband pulse power amplifier specifically designed for Nuclear Magnetic Resonance (NMR) applications for 4,7 to 14 Teslas Systems. It is commercialized under the BRUKER part number W1345058.

The class $A B$ linear amplifier provides a 500 W peak power output over the frequency range $6-365 \mathrm{MHz}$ on the X channel output, a 140 W peak power output over the frequency range 220 to 564 MHz (100 W for 180 to 220 MHz and at 600 MHz) on the H channel output and a 150 W peak power output over the frequency range $30-92 \mathrm{MHz}$ on the 2 H channel output.

The amplifier is realized by employing N-CHANNEL MOS BROADBAND RF POWER FETs of the latest generation. The unit can provide full power for any combination of pulse width / duty cycle up to $100 \mathrm{~ms} / 25 \%$ for the H 100 channel, $60 \mathrm{~ms} / 6 \%$ for the X 500 channel and $5 \mathrm{~ms} / 10 \%$ for 2 H 150 channel. Its built-in protection circuitry will allow lower power pulses for longer pulse widths and duty cycles, maintaining a 30 W X channel, a 35 W H channel and a 15 W 2 H channel average power.
An electronic protection circuitry has been designed to protect against:

- Excessive power output level (overdrive)
- Excessive pulse repetition rate (over duty-cycle protection)
- Excessive pulse duration (over pulse-width)
- More than 50% reflected RF power (mismatch ≥ 6)
- Thermal overload (overheat).
- The 2 H channel is not protected against reflected RF power and excessive power output level.
The amplifier is powered by an internal switched power supply assembly that provides the +32 VDC for the power amplifiers, in addition to all low level voltages for the system.

The supply is self protecting for overcurrent and overvoltage.
The entire unit is housed in a $19{ }^{\prime \prime}, 3 \mathrm{U}, 520 \mathrm{~mm}$ rack cabinet.

Safety

The BLAXH2H500/100/150 200-600MHz amplifier is in accordance with the standard 61010-1 safety Requirements for Electrical Equipments.

Labels

Labels are provided to alert operating and service personnel to conditions that may cause personal injury or damage to the equipment from misuse or abuse. Please read the labels and understand their meaning.

The BLAXH2H500/100/150 200-600MHz can be identified by an identifying plate at the front panel of the unit that has following information.

Figure 2.1. Identifying plate

A /B/ClD
E
F

- (A) Part Number

This field indicates the part number of the product.

- (B) Variant

This field indicates the variant number that identifies the production category of the product. The default variant is 00 .

- (C) ECL

This field indicates the revision number that identifies the product configuration. The initial revision is 0.00 .

- (D) Serial Number

This field indicates the serial number of the product.

- (E) Type

This field contains the designation of the product.

- (F) Information

This field contains additional information about the product.

The BLAXH2H500/100/150 200-600MHz can be identified by a manufacturer's nameplate at the back panel of the unit that has following information:

Figure 2.2. Manufacturer's nameplate

- (A) Voltage

This field indicates the input mains voltage of the product.

- (B) Frequency

This field indicates the input mains frequency of the product.

- (C) Phases

This field indicates the number of phases of the mains.

- (D) Power

This field indicates the absorbed power of the product.

- (E) Current

This field indicates the absorbed current of the product.

- (F) Wires

This field indicates number of wires with the ground in the mains cord.

- (G) Part Number

This field indicates the assembly number that identifies the part number of the product.

Warning signs

2.2.1

WARNING! Risk of electrical shocks

Figure 2.3. General hazard symbol

Please disconnect line cord before opening or prevent potential hazards such as:

- Electric schock on power supply.
- Contact burn with the RF module and heatsink.
- Finger scratch due to the fan assembly on the RF module.

Installation

The installation of the device must be done only by an authorized and qualified technician, in total accordance with the running standards. Every breakdown due to a non-respect of the following instructions will not be attributable to Bruker and will not be covered by the guarantee clauses.

Mechanical check

If damage of the shipping carton is evident, request the carrier's agent to be present when the instrument is unpacked. Check the equipment for damage and inspect the cabinet and panel surfaces for dents and scratches.

Claim for damage

3.1.2

If the unit is mechanically damaged or fails to meet specifications upon receipt, notify BRUKER or our representative immediately. Retain the shipping carton and packing material for the carriers inspection as well as for subsequent use in returning the unit if necessary.

Whenever possible, the original carton and packing material should be used for reshipment. If the original packing material is not available, wrap the instrument in heavy paper or plastic. Use a strong shipping container. If a cardboard is used, it should be at least 200 lbs. test material.
Use shock absorbing material around all sides of the instrument to provide a firm cushion and to prevent from movements inside the container wall on each side. Protect the front panel by means of cardboard spacers inserted between the front panel and the shipping carton. Make sure that the instrument cannot move in the container during shipping. Seal the carton with a good grade of shipping tape and mark the container :

" FRAGILE ELECTRONIC INSTRUMENT."

This amplifier is build for inside use only on a maximum high level of 2000 m above sea level (6600 feet).
No specific cooling or ventilation is required.
Be sure that the amplifier has enough area around so that the free air flow into and out of the amplifier is not obstruct.
It should, however, be in an environment which conforms, the $5^{\circ} \mathrm{C}-45^{\circ} \mathrm{C}\left(41^{\circ} \mathrm{F}\right.$ $113^{\circ} \mathrm{F}$) thermal specifications, a 80% maximum relative humidity of air and a contamination level of 2 (means a normal, only non conductive contamination, temporary conductivity due to condensation is possible).

No special precautions are necessary. Mount the equipment in an area which is relatively free of vibration, and has sufficient room for cable connections.
The amplifier is a class II of installation category.

The unit can be placed onto a secure flat surface.

System check

Before applying power for the first time the following items should be checked:

- The AC input voltage $220-230$ VAC $\pm 15 \%$ range must be compatible with.
- An external blanking (gating) pulse must be applied to the amplifier in order for the unit to function. Ensure that this pulse has a proper level and logic polarity.
- The BLAXH2H500/100/150 has a nominal input level of +4 dBm . Ensure that the system drivers are operating at these levels.

The following list describes how to turn on the BLAXH2H500/100/150 and what should be seen as this occurs.

Before starting this procedure, make sure that you have properly followed instructions in the section "System check".

1. Connect the amplifier to the AC line and turn the circuit breaker to ON .
2. Observe the indicators on the front panel :

- The +32 V ON LED's will illuminate
- The $+15 \mathrm{~V},-15 \mathrm{~V}$ and +5 V ON LED's will illuminate

3. System is now fully operational.
4. For this amplifier both channels H 100 and X 500 are similar to the old BLAXH500/100 P/N: W1345082 (same input and output wiring).
The third channel 2 H is now located in the external amplifier housing and produce increased power Output for decoupling experiments.
Therefore, a stand alone RCB (BSMS Real time Control Board) is available. The RF Input and Output label's are the same like on BSMS 2H-TX.

- The BLAXH2H500/100/150 200-600MHz has, like all other BLA's, an address selector on the front side of the amplifier. Starting from this address, the software counts, during "cf", how many amplifiers are present in BBIS and reserves the following addresses.
So the 2 H amplifier is ever seen as a third channel.
- The BLAXH2H500/100/150 200-600MHz amplifier has in addition a "software switch", which can be set or read by the ACBTool 4.0 or higher.
Both X and 2 H channels address can be changed (remapping) to a wished address higher than 3. These information are stored in a new BBIS.
- For systems with not more than 3 channels, RO3 from router 1 (address 3) must be used for the FX IN of the 2 H amplifier.
No remapping is necessary.

Figure 3.1. "cf" report before remapping

Figure 3.2. "edasp" window before remapping

- For systems with more then 3 channels, the first free router output must be used (address 7 or higher)
ACBTool 4.0 or higher allows the remapping of the 2 H amplifier address.

See ACBTool "read me".

Figure 3.3. "cf" report after remapping

Figure 3.4. "edasp" window after remapping

1. Launch ACBTool and check its version. It should be 4.0 or higher.

Figure 3.5. ACBTool Check Version

2. Select "2 Check/Download all boards" in the main menu.

Figure 3.6. ACBTool Main Menu

See comments from "DOWNLOAD - REPORT"
2 Download - Report situations :

- ACBSlaves needs autodownload then press " y " to start autodownload.

Figure 3.7. ACBSlaves needs autodownload

- ACBSlaves is up to date then press RETURN to continue.

Figure 3.8. ACBSlaves is up to date

3. Select " 8 board functions BLA_1..." in the main menu.

Figure 3.9. ACBTool Main Menu

4. Then select"7 SBS Address Remapping for BLA_1...".

Figure 3.10. ACBTool Board Functions_BLA1 Menu

5. For 2 H remapping, select " 3 For X remapping, select "2

Remap Amplifier 3 - not remapped". Remap Amplifier 2 - not remapped".

Figure 3.11. ACBTool SBS Address Remapping for BLA_1 Menu

6. After, follow the indications on screen.

Figure 3.12. ACBTool SBS Address Remapping for BLA_1 with entries

- New hex address is the address you want to give to 2 H Amplifier.
- New channel number should be "0" in this case.
- New Amplifier Input Number sould be "1" in this case.
- If the parameter "New Channel Number" is N, the parameter "New Amplifier Input Number" must be set to $N+1$.
- If you want to remap Amplifier 2 (e.g. X channel) and Amplifier 3 (e.g. 2 H channel) at the same new hex address, the parameter "New Channel Number" must be different for the 2 channels (respectively 0 and 1 for example).

7. In the next menu, type " y " to perform remapping

Figure 3.13. ACBTool New Settings

8. If successful, ACBTool should write the message below.

Figure 3.14. ACBTool Save and Close

9. Do "cf" again.

Figure 3.15. "cf" report after remapping

10. After, do "edasp" and you should see the windows below.

Figure 3.16. "edasp" window after remapping

Operation

> Front Panel
4.1

The BLAXH2H500/100/150 front panel is provided with 2×13 indicators for status monitoring, 11 connectors and 2 interface connectors.

Indicators

4.1.1

Normal operation is indicated when following LED's are on:

Table 4.1. Indicators

$\mathbf{+ 3 2 V}$ ON	Indicates that the +32V supply is applied.
$\mathbf{+ 1 5 V}$ ON	Indicates that the +15V supply is applied.
$\mathbf{- 1 5 V}$ ON	Indicates that the -15V supply is applied.
$\mathbf{+ 5 V}$ ON	Indicates that the +5V supply is applied.
Overdrive	Indicates when the peak power limit has been reached.
Duty Cycle	Indicates when the duty cycle limit has been reached.
Pulse Width	Indicates when the pulse width limit has been reached.
Mismatch	Indicates when the max. reflected power limit has been reached.
RF Power FLT	Lights ON when one of the above limits has been reached. Overheat sensed excessive heatsink temperature. All gatings are removed from the amplifier until the unit cools. The function is self-resetting and no maintenance is needed. Indicates that a fan on the assembly stops turning. The gatings are cut off and fans must be changed for good working.
Channel ON	Lights on when RF Power is present on H channel or X channel.
2H ON	Lights on when RF power is present on the 2H amplifier.
2H Error	Indicates when an error has occured on the 2H channel. This could be a: - Duty cycle error, - Pulse width error.
This Led is also coupled with the overheat error.	

Table 4.2. Connectors

X / H in	RF In SMA type connectors (female). Nominal +4dBm drive to the BLAXH2H Serie to deliver full power.
X / H out	RF OUT N type connectors (female).
BLNKX / BLNKH	Blanking signals BNC type connector (female). TTL logic, 5V = blanking ON, OV = blanking OFF. When BLANKING signal is at TTL level high (+5V), no gating is applied to the amplifier stages, and no RF Power is possible. When BLANKING signal is at TTL level low (OV), the amplifier stages are gated and RF Power is possible.
FX IN	Connection from the Router or the SGU auxiliary RF output. This is the input of the 2H amplifier.
FO IN	Connection from the L-TX 2H-TR. This is the 2H lock signal.
2H OUT	Connection to the HPPR 2H-module. This is either the output of the 2H amplifier and the 2H lock signal.
SEL 2H AMP	This is the SEL2H/DEC connection from TCUT3L. This signal is used to command the RF switch located on the 2H amplifier board. It is also used to blank the 2H amplifier (same polarity as a BLNK signal).
LTX BLNK	Connection to L-TX TX-BLNK. This signal, the same as SEL2HAMP, is used to blank the L-TX (ECLO2 or higher) during Deuterium decou- pling.

Interface Connector RS485

The Control I/O interface connections are 15 pin, D shape sub-miniature type connectors mounted on the SBS BUS Controller.

SBS BUS = Serial Bruker Spectrospin Bus

The next table shows the pinout of the master and slave connectors.

Table 4.3. RS485 pinout assignment

Pin 1	Shield	Pin 9	Transmit data line -	
Pin $\mathbf{2}$	Transmit data line +	Pin 10	NC	
Pin 3	Wake up line /WUP	Pin 11	Receive data line -	
Pin 4	Receive data line +	Pin 12	NC	
Pin 5	NC	Pin 13	VRS (+12V)	
Pin 6	GND	Pin 14	VRS (+12V)	
Pin 7	GND	Pin 15	VRS (+12V)	
Pin 8	GND			

Figure 4.1. BLAXH2H500/100/150 Front Panel Design

Figure 4.2. BLAXH2H500/100/150 Front Panel View

The rear Panel of the BLAXH2H Serie Amplifiers is free of elements in exception of the three pole $(2 P+E)$ line filter socket.

Figure 4.3. BLAXH2H500/100/150 Rear Panel Design

Technical description

The BLAXH2H500/100/150 amplifier provides a RF Output Power of 500W in the $6-365 \mathrm{MHz}$ frequency range for the X channel and a 140 W RF Output Power in the 220 to 564 MHz frequency range (100 W from 180 to 220 MHz and at 600 MHz). A third amplifier provides a RF output Power of 150 W in the $30-92 \mathrm{MHz}$ frequency range for the 2 H channel.
The RF section of the system consists of a linear module BLMXH2H500/100/150, mounted around a single, self-contained Push fan assembly, heatsink.

The linear module BLMXH2H500/100/150 includes three class AB power amplifiers. The amplifiers for the H and 2 H channels are located on the top side of the module, and the one for the X channel on the bottom side.
X and H channel are connected to the front panel of the amplifier via a bi-directional coupler. The 2 H channel is connected directly to the front panel.

The entire system is tied together by a Digital Signal Processing control board, processing information from the amplifier and blanking signal, providing protection to X and H channels from excessive peak power, duty cycle and pulse width for average power, maximum reflected power and heatsink overtemperature. The DSP control board reads identification information of the amplifier (BBIS).
Monitoring of Fan status, Supply status \& LED status is also performed by the control board.

Moreover, a 2 H supervisor print is in relation with the DSP control board, to ensure protection of the 2 H channel.
These are the following:

- Duty cycle and Pulse width (Average Power).
- Heatsink overtemperature.
- Fan assembly misfunction.

Figure 5.1. BLAXH2H500/100/150 System Block Diagram

The BLAXH2H500/100/150 amplifier (P/N: W1345058) consists of three Class AB power amplifiers.

A nominal input power level of +4 dBm produces a nominal output peak power of :

- 500 W for 6% duty cycle at 60 ms pulse width maximum on the X channel output.
- 140 W for 25% duty cycle at 100 ms pulse width maximum on the H channel output.
- 150 W for 10% duty cycle at 5 ms pulse width maximum on the 2 H channel output.

The unit is also capable of longer pulses for lower average power.

RF Power amplifier Channel X500

In the first section of this power amplifier, the input RF signal is fed directly to a hybrid amplifier followed, via an AsGa RF Switch, by a thermo compensated attenuator and two class A drivers to build a nominal 40 dB to 44 dB gain block.

In this section, only the RF switch requires a control board conditioned gating signal to control the operation of the switching element.
The second section of the PA includes two FET transistors.
The circuitry around the transistors consists of complementary input and output transformers and baluns and operates the devices in push-pull.

This section requires a control board conditioned gating signal in order to control the bias gate voltage on the gates of the FETs.

The input-output gain of this section is at nominal 13 dB .
The entire RF power amplifier has a 57 dB nominal gain, and operates at +32VDC.

RF Power Amplifier Channel H100

In the first section of this power amplifier, the input RF signal is fed through a hybrid amplifier followed by a thermo compensated attenuator, a RF switch and two class A drivers to build a nominal 41 dB gain block.

In this section, the RF switch and the second class A transistor require a control board conditioned gating signal to improve better anti-droop behavior.
The second section of the PA includes one FET transistor.
The circuitry around the transistor consists of complementary input and output transformers and baluns and operates the devices in push-pull.

This section requires a control board conditioned gating signal in order to control the bias gate voltage on the gates of the FET.
The input-output gain of this section is at nominal 10 dB .
The entire RF power amplifier has a 51 dB nominal gain, and operates off +32VDC.

RF Power Amplifier Channel 2H150

In the first section of this power amplifier, the input RF signal is fed directly to a hybrid amplifier followed by a thermo compensated attenuator followed by a class A driver to build a nominal 37 dB gain block.
The second section of the PA includes a FET transistor.
The circuitry around consists of complementary input and output transformers and baluns. This transistor requires a control board conditionned gating signal in order to control the bias gate voltage. The input-output nominal gain value of this section is 13 dB .
The entire RF power amplifier has a 50dB nominal gain and operates at +32VDC.

2H RF Power Switch

The output of the 2 H 150 W power amplifier is connected directly to an RF Power switch, located on the same board. This switch is used to select either the 2 H amplifier or the lock transmitter.

It is composed of PIN diodes and provides a 60 dB isolation between the 2H OUTPUT and the FO IN input when the 2 H amplifier is selected. PIN diodes also have 0.4 dB insertion between FO IN and 2 H OUTPUT when the 2 H amplifier is not selected. In this mode, the LTX signal can feed through.

RF Coupler

The bi-directional couplers on the front panel provides an approximate 1V peak DC signal for full output power from the envelope.
The bi-directional couplers also provides peak DC signal for reflected power.
Both signals, forward and reflected, are analyzed by the control board for monitoring and protection setting.

The BLA Control Board consists of circuitry to monitor the output characteristics of the amplifiers, as determined from the DC peak detection's from the bi-directional couplers, and to condition the input blanking (gating) signals and deliver them to the above mentioned RF Paths.

The monitoring circuitry also serves to process the information from the detection and protect the amplifier from overstress in peak power, average power versus duty cycle and pulse width, so as reflected power.

The control board also monitors the RF Path heatsink temperature to protect against thermal overstress, and reads identification information of the amplifier.

Information from supply and fans are also being analyzed by the control board.
If one of the above overstresses, or faults on power supplies or fans, appears, the gating signals are disabled, and the status led board on the front panel displays the fault.

The SBS Bus Controller, via the RS485 connector, could read all the information given by the control board as described before, read information about forward and reflected power, information of identifications of the amplifier (Bruker Board Identification System = BBIS).
The SBS Bus controller, via the RS485 connector, also could minimize absolute ratings for pulse width, duty cycle, reflected power and peak power limitations.

Warning: the operating of the SBS Bus Controller needs the exploitation of a Spectrometer Management Software such as BRUKER XWIN-NMR in addition of the ACB (Amplifier Control Board)

Status Led Board

The Status Led Board, on the front panel of the amplifier, displays overstress functions, supplies status, and so on, as described in "Indicators" on page 23.

The Universal BBIS board is located on the amplifier case and contains identification information of the amplifier.

Technical help: please contact your local representative.

Specifications

General specifications
6.1

Table 6.1. BLAXH2H500/100/150 channel X500 specifications

Frequency range	6 to 365 MHz
Linear Gain	$57 \mathrm{~dB} \pm 1 \mathrm{~dB}$ typ.
Gain Flatness	$\pm 1 \mathrm{~dB}$ max.
Minimum Pulsed Output Power (at nominal input +4 dBm)	600W typ. to 100 MHz 500 W typ. to 300 MHz 400 W min. to 365 MHz
CW Output Power (int. limitation)	30W max.
Linear Output Power	300W typ. @ 1dB compression
Linearity	$\pm 1 \mathrm{~dB}$ to 400W typ.
Amplifier biasing	Class AB Operation
Blanking Delay Time	$1 \mu \mathrm{~s} \mathrm{~min}$.
RF Rise Time	< 100ns
RF Fall Time	< 50ns
DC Ringing	$\pm 500 \mathrm{mV}$ typ. (due to blanking signal)
Input Noise Figure	6dB typ.
Output Noise Power (Unblanked)	$<-110 \mathrm{dBm} / 1 \mathrm{~Hz}$
Output Noise Power (Blanked)	$<25 \mathrm{~dB}$ over Thermal noise
IN / OUT Impedance	50Ω
Input V.S.W.R.	1.3 max.
Output Harmonics 2fc ; 3fc	30dBc ; 10dBc max. @ 500w
Pulse Width (int. limitation)	60ms @ 500W (up CW @ 30W)
Duty Cycle (int. limitation)	6\% @ 500W (up to 100\% @ 30W)
Droop \& Pulse Flatness	$\pm 3 \%$ @ 300W for 20ms Pulse Width $\pm 1.5 \%$ @ 500W for 1ms Pulse Width
Amplitude stability versus temperature	$\pm 0,1 \% /{ }^{\circ} \mathrm{C}$

Table 6.2. BLAXH2H500/100/150 channel H100 specifications

Frequency range	180 to 600 MHz
Linear Gain	$51 \mathrm{~dB} \pm 1$ typ.
Gain Flatness	$\pm 1 \mathrm{~dB}$ max.
Minimum Pulsed Output Power (at nominal input +4 dBm)	140W min. 220 to 564 MHz 100 W min. 180 to 220 MHz and at 600 MHz
CW Output Power (int. limitation)	35W max.
Linear Output Power	80W typ. @ 1dB compression
Linearity	$\pm 1 \mathrm{~dB}$ to 80W typ.
Amplifier biasing	Class AB Operation
Blanking Delay Time	$1 \mu \mathrm{~s} \mathrm{~min}$.
RF Rise Time	< 100ns
RF Fall Time	< 50 ns
DC Ringing	$\pm 200 \mathrm{mV}$ typ. (due to blanking signal)
Input Noise Figure	6dB typ.
Output Noise Power (Unblanked)	<-117dBm@ 1Hz
Output Noise Power (Blanked)	Thermal noise
IN / OUT Impedance	50Ω
Input V.S.W.R.	1.3 Max.
Output Harmonics 2fc ; 3fc	40dBc ; 16dBc max. @ 100W
Pulse Width (int. limitation)	100ms @ 140W (up to CW @ 35W)
Duty Cycle (int. limitation)	25\% @ 140W (up to 100\% @ 35W)
Droop \& Pulse Flatness	$\pm 2 \%$ @ 140W for 20ms Pulse Width
Amplitude stability versus temperature	$\pm 0,1 \% /{ }^{\circ} \mathrm{C}$

Table 6.3. BLAXH2H500/100/150 channel 2 H 150 specifications

Frequency range	30 to 92 MHz
Linear Gain	$50 \mathrm{~dB} \pm 1$ typ.
Gain Flatness	$\pm 1 \mathrm{~dB}$ max.
Minimum Pulsed Output Power (at nominal input +4 dBm)	150W min. full range
CW Output Power (int. limitation)	15W max.
Linear Output Power	150W typ. @ 1dB compression
Linearity	$\pm 1 \mathrm{~dB}$ to 150W typ.
Amplifier biasing	Class AB Operation
Blanking Delay Time	$3 \mu s$ min. (due to PIN diodes switch)
RF Rise Time	< 500ns (due to PIN diodes switch)
RF Fall Time	< 50ns
DC Ringing	N/A
Input Noise Figure	4,5dB typ.
Output Noise Power (Unblanked)	<-120dBm@ 1Hz
Output Noise Power (Blanked)	Thermal noise
IN / OUT Impedance	50Ω
Input V.S.W.R.	1.3 Max.
Output Harmonics 2fc ; 3fc	25dBc ; 11dBc max. @ 150W
Pulse Width (int. limitation)	5ms @ 150W (up to 100\% @ 15W)
Duty Cycle (int. limitation)	10\% @ 150W (up to 100\% @ 15W)
Droop \& Pulse Flatness	$\pm 2 \%$ @ 150W for 5ms Pulse Width
Amplitude stability versus temperature	$\pm 0,15 \% /{ }^{\circ} \mathrm{C}$

Table 6.4. Channel 2H250 Pin diode switching specification

Insertion FO_IN vs 2HOUT	0.4 dB typ.
Isolation 2HOUT vs FO_IN	$>60 \mathrm{~dB}$ full range

Table 6.5. BLAXH2H500/100/150 Common Specifications

Constant Internal Protection	Supplies \& Fans faults \& Over temperature Forward Power for X and H channels: Peak \& CW Power Pulse Width Duty Cycle				
Front Panel Indicators	Reflected Power : Peak \& CW Power Pulse Width and Duty Cycle for 2H channel				
Front Panel Interfaces	Amplifier Status Led Board	$	$	Front Panel controls	AC Line ON / OFF
:---	:---				

Service information and maintenance

7

Every intervention on the device must be carried out by a authorized and qualified person. Any failure due to a non-respect of the following instructions will not be attributable to BRUKER and will not be covered by the guarantee clauses.

Preventive maintenance of the RF module on BLA-type Amplifiers

The RF module inside BLA's Amplifiers is equipped with a easily extractible PUSH FAN Assembly.

Fan's on assembly have a high reliability and manufacturer gives a expected live time of 70000 hours (8 years) at $25^{\circ} \mathrm{C}$ and 5 years at $60^{\circ} \mathrm{C}$.
Replacement of the assembly could be done in the field when a misfonction of fans is detected by lightning from the OVERHEAT Status Led.

To prevent such a misfonction, a preventive maintenance could be done every 4 years.

This assembly can be ordered on the manufactory BBIO-FR by P/N:W1346523 «PUSH FAN ASSEMBLY 6».

Operation :

1. Disconnect all cables from the front panel and the line cord on the rear pa-nel, take out the amplifier from the NMR console and place it to a secure flat surface.
2. Unscrew and remove the coverage plat from the amplifier.
3. Disconnect the 2 wires (red $+32 \mathrm{~V} /$ black GND) from the dispatch supply connector on the RF module and disconnect the fan status wires (white) from connector J18 on BLA control board.
4. Unscrew the 2 screws on the top of the push fan assembly.
5. Remove the push fan assembly.
6. Placed the new fan assembly in the holes on the bottom of the RF module and screw it on.
7. Connect all wires (status and supply).
8. Connect line cord and turn on the BLA amplifier.
9. Note that the fans are turning and no OVERHEAT status led appears on front panel.
10. Put the coverage plat on the BLA amplifier and screw it.
11. Put the amplifier in the NMR console, connect all cables on the front panel and the line cord on the rear panel.

Figures

1 General Infomation 5
2 Safety 7
Figure 2.1. Identifying plate 7
Figure 2.2. Manufacturer's nameplate 8
Figure 2.3. General hazard symbol 9
3 Installation 11
Figure 3.1. "cf" report before remapping 13
Figure 3.2. "edasp" window before remapping 14
Figure 3.3. "cf" report after remapping 14
Figure 3.4. "edasp" window after remapping 15
Figure 3.5. ACBTool Check Version 15
Figure 3.6. ACBTool Main Menu 16
Figure 3.7. ACBSlaves needs autodownload 16
Figure 3.8. ACBSlaves is up to date 17
Figure 3.9. ACBTool Main Menu 17
Figure 3.10. ACBTool Board Functions_BLA1 Menu 18
Figure 3.11. ACBTool SBS Address Remapping for BLA_1 Menu 18
Figure 3.12. ACBTool SBS Address Remapping for BLA_1 with entries 19
Figure 3.13. ACBTool New Settings 20
Figure 3.14. ACBTool Save and Close 20
Figure 3.15. "cf" report after remapping 21
Figure 3.16. "edasp" window after remapping 21
4 Operation 23
Figure 4.1. BLAXH2H500/100/150 Front Panel Design 25
Figure 4.2. BLAXH2H500/100/150 Front Panel View 25
Figure 4.3. BLAXH2H500/100/150 Rear Panel Design 26
5 Technical description 27
Figure 5.1. BLAXH2H500/100/150 System Block Diagram 28
6 Specifications 33
7 Service information and maintenance 37

Figures

Tables

1 General Infomation 5
2 Safety 7
3 Installation 11
4 Operation 23
Table 4.1. Indicators 23
Table 4.2. Connectors 24
Table 4.3. RS485 pinout assignment 25
5 Technical description 27
6 Specifications 33
Table 6.1. BLAXH2H500/100/150 channel X500 specifications 33
Table 6.2. BLAXH2H500/100/150 channel H100 specifications 34
Table 6.3. BLAXH2H500/100/150 channel 2 H 150 specifications 35
Table 6.4. Channel 2 H 250 Pin diode switching specification 35
Table 6.5. BLAXH2H500/100/150 Common Specifications 36
7 Service information and maintenance 37

