Palladium(II)-Catalyzed C-H Activation/ C-C Cross Coupling Reactions

Chunrui Sun Lee Group

Definition

<u>General</u>

"bond activation" refers to any process which increase the reactivity of a bond.

Organometallic

"C-H bond activation" refers to the formation of a complex wherein the C-H bond interacts directly with the metal to afford a C-M intermediate in the absence of a free radical or an ionic Intermediate.

Contents

- Introduction
- Olefination of C(sp²)—H Bonds: Pd^{II}/Pd⁰ Catalysis
- Arylation of C(sp²)—H and C(sp³)–H Bonds: Pd[∥]/Pd^Ⅳ Catalysis
- Sequential ortho-Alkylation and Olefination of Aryl Iodides: Pd⁰/Pd^{II}/Pd^{IV} Catalysis
- Arylation and Alkylation of C(sp²)—H and C(sp³)—H Bonds: Pd⁰/Pd^{II} Catalysis
- Arylation and Alkylation of C(sp²)—H and C(sp³)—H Bonds with Organometallic Reagents: Pd^{II}/Pd⁰ Catalysis
- Conclusion and Outlook

Introduction

Mechanisms

Echavarren, A. et al. J. Am. Chem. Soc. 2007, 129, 6880

Electrophilic Aromatic Substitution

Sames, D. et al. J. Am. Chem. Soc. 2005, 127, 8050

Electrophilic Aromatic Substitution

σ-Bond Metathesis

Buchwald, S. et al. J. Am. Chem. Soc. 2003, 125, 12084

Proton Abstraction Mechanism

Echavarren, A. et al. J. Am. Chem. Soc. 2007, 129, 6880

Proton Abstraction Mechanism

Assisted Intermolecular

Proton Abstraction Mechanism

Olefination of C(sp²)–H Bonds: Pd^{II}/Pd⁰ Catalysis

- Introduction
- Olefination of C(sp²)—H Bonds: Pd^{II}/Pd⁰ Catalysis
- Arylation of C(sp²)—H and C(sp³)–H Bonds:
 Pd^{II}/Pd^{IV} Catalysis
- Sequential ortho-Alkylation and Olefination of Aryl Iodides: Pd⁰/Pd^{II}/Pd^{IV} Catalysis
- Arylation and Alkylation of C(sp²)—H and C(sp³)—H Bonds: Pd⁰/Pd^{II} Catalysis
- Arylation and Alkylation of C(sp²)—H and C(sp³)—H Bonds with Organometallic Reagents: Pd^{II}/Pd⁰ Catalysis
- Conclusion and Outlook

Early Report

Fujiwara, Y. et al. Tetrahedron Lett. 1967, 8, 1119

ortho-Selective Olefination of Arene

Miura, M. et al. J. Org. Chem. 1998, 63, 5221

de Vries. et al. J. Am. Chem. Soc. 2002, 124, 1586

Indole Olefination

Trost, B. M. et al. J. Am. Chem. Soc. 1978, 100, 3930

Indole Olefination

Different Oxidant

Itahara, T. et al. J. Chem.Soc. Perkin Trans. 1 1983, 1361

Stoltz, B.M. et al. J. Am. Chem. Soc. 2003, 125, 9578

Different Oxidant

Oxidant-free

Ma, S. et al. Tetrahedron Lett. 2004, 45, 8419

Regioselective Olefination of Pyrroles

entry	catalyst loading	R	yield of C2	yield of C3	ratio 2:3
1	10	Bn	48	23	2.1:1
2	10	SEM	48	21	2.3:1
3	10	Ac	65	-	>95:5
4	10	Boc	73	-	>95:5
5	10	Ts	70	-	>95:5
6	10	TIPS	-	78	<5:95

Gaunt, M. et al. J. Am.Chem.Soc. 2006, 128, 2528

Olefination of Pyridine N-oxide

meta C-H Activation/Olefination

Yu, J.-Q. et al. J. Am.Chem.Soc. 2009, 131, 5027

Arylation of C(sp²)–H and C(sp³)–H Bonds: Pd^{II}/Pd^{IV} Catalysis

- Introduction
- Olefination of C(sp²)—H Bonds: Pd^{II}/Pd⁰ Catalysis
- Arylation of C(sp²)—H and C(sp³)–H Bonds: Pd[∥]/Pd^Ⅳ Catalysis
- Sequential ortho-Alkylation and Olefination of Aryl Iodides: Pd⁰/Pd^{II}/Pd^{IV} Catalysis
- Arylation and Alkylation of C(sp²)—H and C(sp³)—H Bonds: Pd⁰/Pd^{II} Catalysis
- Arylation and Alkylation of C(sp²)—H and C(sp³)—H Bonds with Organometallic Reagents: Pd^{II}/Pd⁰ Catalysis
- Conclusion and Outlook

ortho-Methylation of anilides

Rahman, H. et al. J. Am.Chem.Soc. 1984, 106, 5759

Direct ortho-Arylation of Naphthoic acids

Daugulis, O. et al. Acc. Chem. Res. 2009, 42, 1074

X-ray crystallographic Structure of Pd^{IV} Complexes

x-ray crystal structure

Canty, A. et al. J. Chem. Soc. Chem. Commun. 1986, 1722

Sanford, M. et al. J. Am. Chem. Soc. 2005, 127, 12790

Arylation of C-H bonds by Pd^{II}/Pd^{IV} catalysis

Arylation of C-H bonds using Arl

J. Am. Chem. Soc. 2005, 127, 13154 28

Sequential ortho-Alkylation and Olefination of Aryl Iodides: Pd⁰/Pd¹¹/Pd¹¹/ Catalysis

- Introduction
- Olefination of C(sp²)—H Bonds: Pd^{II}/Pd⁰ Catalysis
- Arylation of C(sp²)—H and C(sp³)–H Bonds:
 Pd^{II}/Pd^{IV} Catalysis
- Sequential ortho-Alkylation and Olefination of Aryl Iodides: Pd⁰/Pd^{II}/Pd^{IV} Catalysis
- Arylation and Alkylation of C(sp²)—H and C(sp³)—H Bonds: Pd⁰/Pd^{II} Catalysis
- Arylation and Alkylation of C(sp²)—H and C(sp³)—H Bonds with Organometallic Reagents: Pd^{II}/Pd⁰ Catalysis
- Conclusion and Outlook

ortho-Alkylation of C-H bonds by Pd⁰/Pd¹¹/Pd¹¹

ortho Alkylation and Cyanation of Arenes

Tetrasubstituted Helical Alkenes

Lautens, M. et al. Angew. Chem. Int. Ed. 2009, 48, 1447

Arylation and Alkylation of C(sp²)–H and C(sp³)–H Bonds: Pd⁰/Pd¹¹ Catalysis

- Introduction
- Olefination of C(sp²)—H Bonds: Pd^{II}/Pd⁰ Catalysis
- Arylation of C(sp²)—H and C(sp³)–H Bonds:
 Pd^{II}/Pd^{IV} Catalysis
- Sequential ortho-Alkylation and Olefination of Aryl Iodides: Pd⁰/Pd^{II}/Pd^{IV} Catalysis
- Arylation and Alkylation of C(sp²)—H and C(sp³)—H Bonds: Pd⁰/Pd^{II} Catalysis
- Arylation and Alkylation of C(sp²)—H and C(sp³)—H Bonds with Organometallic Reagents: Pd^{II}/Pd⁰ Catalysis
- Conclusion and Outlook

Arylation of Electron Rich Heterocycles

Nomura, M. et al. Bull. Chem. Soc. Jpn. 1998, 71, 467

Pd⁰/Pd^{II} Catalytic cycle

ortho-Coupling of broad substrates

Intramolecular Arylation of C(sp³)–H bonds

Baudoin, O. et al. Angew. Chem. Int. Ed. **2009**, 48, 179 Baudoin, O. et al. J. Am. Chem. Soc. **2008**, **1**30, 15157

Arylation of C(sp³)–H Bonds with External ArB(OH)₂

Bulchwald, S. et al. J. Am. Chem. Soc. 2005, 127, 4685

Arylation of C(sp³)–H Bonds with External ArB(OH)₂

Bulchwald, S. et al. J. Am. Chem. Soc. **2005**, 127, 4685

Pd-Migration

Larock, R. et al. Angew. Chem. Int. Ed. 2005, 44, 1873

40

Arylation and Alkylation of C(sp²)–H and C(sp³)–H Bonds with Organometallic Reagents: Pd^{II}/Pd⁰ Catalysis

- Introduction
- Olefination of C(sp²)—H Bonds: Pd^{II}/Pd⁰ Catalysis
- Arylation of C(sp²)—H and C(sp³)–H Bonds:
 Pd^{II}/Pd^{IV} Catalysis
- Sequential ortho-Alkylation and Olefination of Aryl Iodides: Pd⁰/Pd^{II}/Pd^{IV} Catalysis
- Arylation and Alkylation of C(sp²)—H and C(sp³)—H Bonds: Pd⁰/Pd^{II} Catalysis
- Arylation and Alkylation of C(sp²)—H and C(sp³)—H Bonds with Organometallic Reagents: Pd^{II}/Pd⁰ Catalysis
- Conclusion and Outlook

Comparison of Conventional Cross-coupling With C–H Activation/C–C Coupling

C-H Coupling with Organotin Reagents

Yu, J-Q. et al. J. Am. Chem. Soc. 2006, 128, 78

C-H Coupling with Organotin Reagents

Yu, J-Q. et al. J. Am. Chem. Soc. 2006, 128, 78

Scope of Coupling Partner

Sames, D. et al. J. Am. Chem. Soc. 2002, 124, 11856

 $R = Me, Et, {}^{n}Bu, {}^{n}Hex, Ph(CH_2)_2, cyclopropyl, aryl$

Yu, J-Q. et al. J. Am. Chem. Soc. 2006, 128, 12634

Scope of Coupling Partner

Expanding the Substrate Scope

Yu, J-Q. et al. J. Am. Chem. Soc. 2008, 130, 14082

Expanding the Substrate Scope

Yu, J-Q. et al. J. Am. Chem. Soc. 2007, 129, 3510

Expanding the Substrate Scope

Yu, J-Q. et al. J. Am. Chem. Soc. 2008, 130, 17676

Enantioselective C-H Activation/C-C Coupling

Yu, J-Q. et al. Angew. Chem. Int. Ed. 2008, 47, 4882

Proposed Working Model

Influence of the Ligand

52

Simplified Stereomodel

Yu, J-Q. et al. Angew. Chem. Int. Ed. 2008, 47, 4882

Conclusions and Outlook

Regioselective arene C–H activation

Enantioselective C_H activation of C(sp³)_H bonds

