## Protein Purification III: Electrophoresis and Enzyme Assays

After you've expressed a protein and purified it, you need to know

1) How pure is it?

2) What is the concentration?

3) What is the activity (for an enzyme)?



# Protein purity determination by SDS-PAGE

SDS: sodium dodecyl sulfate PAGE: polyacrylamide gel electrophoresis

### Principles

• (-) charged molecules are attracted to a (+) electrode when a charge (potential) is applied.

• If molecules have evenly spaced charge, they migrate according to size.

• The migration depends on the medium(gel) used.



















## How does stacking gel work in SDS-PAGE?

http://www.biochem.arizona.edu/classes/bioc463a/Info/lecture\_notes/PAGE.pdf

#### Stacking Gel Interactions:

• When an electrical current is applied to gel, ions carry the current to the anode (+).

• CI- ions, having the highest charge/mass ratio migrate faster, being depleted at cathode end and concentrated at anode end.

 $\bullet$  Glycine from electrophoresis buffer enters gel at pH 6.8 and becomes primarily zwitterionic moving slowly. (pKa1=2.5, pKa2=9.6 and pI=6.0)

Protein, coated with SDS has a higher charge/mass ratio than glycine so moves fast, but slower than CI-.

• When protein encounters resolving gel it slows down due to increased frictional resistance (smaller pore size), allowing following protein to "catch up" or stack.

• As protein is depleted from cathode end, glycine must carry current so begins to migrate behind protein, in essence concentrating the proteins further at stacking gel/resolving gel interface.

#### **Resolving Gel Interactions:**

• When glycine reaches resolving gel it becomes anionic and migrates much faster than protein due to higher charge/mass ratio.

• Now proteins are sole carrier of current and separate according to their molecular mass due to sieving effect of pores in gel.











| Step                                                             | Protein<br>(mg) | Total activity<br>(milliunits) | Specific<br>activity<br>(milliunits/mg) | Yield<br>(%) | Purification<br>(fold) |
|------------------------------------------------------------------|-----------------|--------------------------------|-----------------------------------------|--------------|------------------------|
| Crude extract                                                    | 1070            | 890                            | 0.8                                     | -            | -                      |
| (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub><br>precipitation | 400             | 580                            | 1.5                                     | 65           | 1.9                    |
| Gel Filtration<br>Chromatography<br>(Sephadex G50)               | 38              | 278                            | 7.3                                     | 31           | 9.0                    |
| Ion Exchange<br>Chromatography<br>(Q-Sepharose)                  | 2               | 96                             | 58.0<br>48.0                            | 11           | 73.0                   |

One unit (U) of enzyme activity is the amount of enzyme that hydrolyzes 1  $\mu mole$  of substrate per minute at 37°C