Sensitivity Enhancement in Solid-State 13C NMR of Synthetic Polymers and Biopolymers by 1H NMR Detection with High-Speed Magic Angle Spinning

Yoshitaka Ishii, James P. Yesinowski,† and Robert Tycko*

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520

Received January 3, 2001

Indirect detection of 13C and 14N nuclear magnetic resonance (NMR) spectra through 1H NMR signals offers large sensitivity advantages in studies of organic and biological molecules in solution and is almost universally employed. 1-3 Although sensitivity enhancement by indirect detection was first demonstrated in NMR4-6 and nuclear quadrupole resonance7,8 of solids, direct detection has generally been preferred in solid-state NMR. 9 This is because the broad 1H NMR lines of organic solids negate sensitivity enhancement under the most common conditions. We have recently10 that substantial sensitivity enhancements can in fact be achieved by indirect detection in one-dimensional (1D) solid-state 13C NMR spectroscopy of organic compounds and biopolymers under magic angle spinning (MAS) at speeds that greatly reduce the 1H NMR line widths.10 Here we demonstrate the feasibility of sensitivity enhancement in solid-state 13C NMR spectroscopy of general organic solids. We present experimental results both for the noncrystalline synthetic polymer poly(methyl methacrylate) (PMMA) and for the heptapeptide α-acetyl-Lys-Leu-Val-Phe-Phe-Ala-Glu-NH$_2$ (A$_4$) in the form of amyloid fibrils. We report extension to 13C NMR, which forms the basis for many structural and dynamical studies in organic and biological systems, and to 2D spectroscopy significantly broadens the impact and generality of indirect detection methods in solid-state NMR.

The sensitivity enhancement factor ξ, defined as the ratio of frequency-domain signal-to-noise ratios for 13C-detected and 13C-detected measurements, is given by

$$\xi = \left(\frac{x_{\text{d}}}{\alpha} \right)^{1/2} \left(\frac{y_{\text{d}}}{y_{\text{c}}} \right)^{1/2} \left(\frac{W_{\text{d}}}{W_{\text{c}}} \right)^{1/2} \left(\frac{Q_{\text{e}}}{Q_{\text{c}}} \right)^{1/2} \frac{A_{\text{H}}}{A_{\text{C}}}$$

where y is the magnetogyric ratio, W is the effective line width, Q is the quality factor of the sample coil, and A subsumes properties such as coil geometry, filling factor, receiver noise

Figure 1. 2D 13C/1H heteronuclear correlation spectra of PMMA powder (9 mg, unlabeled) obtained with 13C detection (a, c, e, g) and with 1H detection (b, d, f, h). 1D slices are shown at 1H shifts of 0.9 (c, d), 3.7 (e, f), and −3.5 ppm (g, h).

1 Permanent address: Chemistry Division, Naval Research Laboratory, Washington DC 20375-5342.
15 Figure 1 compares 2D 13C/1H heteronuclear correlation (HETCOR) spectra of PMMA powder obtained with conventional 13C detection and with 1H detection. These spectra are acquired at 17.6 T (749.5 and 188.5 MHz 1H and 13C NMR frequencies) and...
nuclei that do not participate in polarization transfer to 13C nuclei.

To obtain the sensitivity enhancements described above, we apply
and with 1H detection. In this case, because the 13C-detected
measurement is 1D but the 1H-detected measurement is necessarily
in the 1D13C-detected measurement. For quaternary and proto-
dated 13C sites, ξ is reduced by the factor α^{15}. To compensate for this
reduction, 1H signals are detected with pulsed spin-locking
(PSL), i.e., 1H signals are sampled in windows between rotor
synchronized radio frequency (rf) pulses that reduce the effective
1H line width to roughly 50 Hz. Because of the finite pulse lengths
and receiver dead time, the sampling windows comprise a fraction
$d = 0.438$ of the total acquisition time. 1H chemical shift
information is lost under PSL, but this information is also absent
in the 1D 13C-detected measurement. For quaternary and proto-
nated 13C sites, $\xi \approx 2.5$ in Figure 2. For the carbonyl site, $\xi \approx 1.5$.

The PMMA samples in Figures 1 and 2 are not 13C-labeled. A potential pitfall in 1H-detected 13C NMR measurements, especially
at natural abundance, is the large “t_1 noise”14 contributed by 1H
nuclei that do not participate in polarization transfer to 13C nuclei.
To obtain the sensitivity enhancements described above, we apply
two 400 μs rf pulses at the 1H NMR frequency, with phases x and y and with amplitudes set to $t_y/2$ for rotary resonance recoupling20
during the 13C dephasing period t_d (see Figure 1 caption). These pulses destroy 1H magnetization that would otherwise generate t_1 noise.

Figure 3 compares 13C-detected and 1H-detected 13C/1H HET-
COR spectra of β_{16-22} fibrils obtained at $\tau_R = 31250 \pm 5$ Hz
and 17.6 T. Ten percent of β_{16-22} molecules are 13C-labeled at
all carbon sites in the central five hydrophobic residues.13 ξ values are up to 2.4 for protonated and 1.8 for nonprotonated 13C signals.
Although the sharper 13C lines in β_{16-22} fibrils lead to smaller ξ
values than in Figure 1, these results still indicate a reduction of data acquisition time by a factor of 10.

The spectrum in Figure 3b provides new constraints on the structure of β_{16-22} amyloid fibrils.1 13C chemical shift assign-
ments, initially determined from 13C/13C 2D exchange spectra,13
are confirmed by the present data. Additionally, 1H chemical shifts
determined from Figure 3b (5.1, 4.7, 5.1 ppm 1H shifts for Leu17,
Val18, and Ala21, respectively, ± 0.3 ppm precision; 1.2 and 0.8
1H ppm 1H shifts for Leu17 and Ala21) support a β-strand backbone
conformation for the labeled residues.21 1H$_{\beta}$ (5.8 ppm) and 1H$_{Y}$
(1.6 and 3.2 ppm) shifts for Phe residues and the 1H$_{Y}$ (1.2 ppm)
shift for Val18 are anomalous,21 possibly indicating intermolecular
contacts of Phe residues and intermolecular or intramolecular
contacts between Phe and Val residues in a laminated β-sheet structure.13

Acknowledgment. Supported in part by a grant to R.T. from the NIH
Intramural AIDS Targeted Antiviral Program. Y.I. was supported by a
postdoctoral fellowship from the Japan Society for the Promotion of
Science.

Supporting Information Available: Table of chemical shifts from
Figure 3 and expansion of Figure 3b with assignments (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.
JA015505J

References:

1983, 100, 305–310.
1984, 106, 5006–5212.
(20) Oas, T. G.; Griffin, R. G.; Levitt, M. H. J. Chem. Phys. 1988, 89,
692–695.

Figure 2. 1D 13C NMR spectra of PMMA powder (4.5 mg, unlabeled)
obtained with 13C detection (a) and with 1H detection (b). Total of 344
scans for each spectrum. Spectrum a is obtained in a 1D manner with
CP and decoupling conditions as in Figure 1. Spectrum b is a single slice
of a 2D spectrum obtained with the conditions in Figure 1b, but with a
pulse spin locking (PSL) train applied in the t_{1H} period and with $t_d = 4$
ms. The PSL train consists of one 6 μs $\pi/2$ pulse with phase x per sample
rotation period. Complex 1H signal points are sampled every 0.5 μs during
14 μs windows between PSL pulses.

Figure 3. 2D 13C/1H heteronuclear correlation spectra of amyloid fibrils
formed by the heptapeptide β_{16-22} (2 mg, lyophilized powder; peptides
uniformly 13C-labeled in the central five amino acid residues are diluted to
10% in unlabeled peptides) obtained with 13C detection (a, c, e, g) and with 1H detection (b, d, f, h). 1D slices are shown at 1H shifts of 0.7
(c, d), 6.9 (e, f), and 13.0 ppm (g, h, vertical scale increased to show
noise level). Experimental conditions are the same as in Figure 1 but t_d
= 6.5 ms, maximum t_c and t_{1H} (or t_{1C} and t_{1H}) values are 1.50 and 0.75
ms, and 9726 total scans per spectrum. Lorentzian broadening of 335 Hz
in the 13C dimension and Gaussian broadening of 675 Hz in the 1H
dimension are applied.